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Cancer drug resistance continues to be a major impediment in medical oncology. Clinically,
resistance can arise prior to or as a result of cancer therapy. In this review, we discuss
different mechanisms adapted by cancerous cells to resist treatment, including alteration
in drug transport and metabolism, mutation and amplification of drug targets, as well
as genetic rewiring which can lead to impaired apoptosis. Tumor heterogeneity may also
contribute to resistance, where small subpopulations of cells may acquire or stochastically
already possess some of the features enabling them to emerge under selective drug
pressure. Making the problem even more challenging, some of these resistance pathways
lead to multidrug resistance, generating an even more difficult clinical problem to overcome.
We provide examples of these mechanisms and some insights into how understanding
these processes can influence the next generation of cancer therapies.
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CANCER TALE: ITS TREATMENT AND RELAPSE
In 1961, Frei and Freireich initiated the high-dose four-drug com-
bination clinical trial for the treatment of pediatric leukemia
(Frei et al., 1965). Despite the threat imposed by administering
four drugs at once, few weeks following treatment onset, chil-
dren began to respond, “the bone marrow biopsies came back
one after another—all without leukemia cells. Red blood cells and
white blood cells and platelets sprouted up in an otherwise scorched
field of bone marrow. But the leukemia did not return” (Mukher-
jee, 2010). Out of the 16 enrolled patients, 11 showed complete
remission. This outstanding success, however, was short-lived.
With the exception of a handful of children, all patients even-
tually relapsed, developing a more vigorous form of cancer that
was no longer responsive to the treatment: leukemic cells had
invaded the blood–brain barrier and colonized the brain “the
only place unreachable by chemotherapy….the children died one
after the other-felled by virtue of the adaptation designed to protect
them…it was a consequence of the body’s defense system subvert-
ing cancer treatment” (Mukherjee, 2010). To date, this story still
reflects the same tale of cancer treatment where its resistance
and relapse remains a major challenge (Wilson et al., 2009). In
this review we provide an overview of advances made in our
understanding of the mechanisms that enable cancerous cells to
adapt to and eventually overcome therapy, and how identifying
these mechanisms can help circumvent resistance and improve
treatment.

Despite its complex biological nature, many recent successes
have been made in the treatment of cancer, including most strik-
ingly chronic myeloid leukemia (CML) and acute promyelocytic
leukemia (APL) which have met with great success as well as many
cases of pediatric leukemias, Hodgkin’s lymphomas, and testicular
cancers (Siegel et al., 2012). These success stories mainly relied on
an increased understanding of the diverse molecular mechanisms
governing tumor development. Owing to this, various anti-cancer
therapies were designed to target disease-specific mechanisms that

are absent in normal cells. Such strategies include (i) inhibi-
tion of a specific oncoprotein, such as targeting the oncogenic
fusion proteins Bcr–Abl and PML–RARA with Gleevec and all
trans retinoic acid (ATRA) with arsenic trioxide respectively or (ii)
activation of a specific immune response against cancerous cells
demonstrated by the use of interferon alpha alone or in combi-
nation with other anti-cancer drugs including 5-fluorouracil and
cytarabine (Raderer and Scheithauer, 1995; Guilhot et al., 1997;
Druker et al., 2001; Kreitman et al., 2001; Tallman et al., 2002;
Goldman and Melo, 2003; O’Brien et al., 2003; Sawyers, 2004;
Kreitman, 2006; Ferrantini et al., 2007; Chin and Gray, 2008; Sell-
ers, 2011). Many of these drugs are currently being used in the
clinic and have established positive impact on patient survival.
However, a major impediment to their success is the development
of therapeutic resistance which in some cases predates clinical
intervention (Wilson et al., 2009). Based on tumor response to
the initial therapy, cancer resistance can be broadly classified into
two categories, primary and acquired (Meads et al., 2009; Lip-
pert et al., 2011). While primary drug resistance exists prior to
any given treatment, acquired resistance occurs after initial ther-
apy. Unfortunately, the majority of patients will likely develop
resistance at a certain point of treatment. For example, 50–70%
of patients with adenocarcinoma relapse following surgery with
a chemoresistant phenotype (Castells et al., 2012), and approxi-
mately 20% of adults with acute lymphoblastic leukemia suffer
from primary resistance to treatment (Testi et al., 1992; Giona
et al., 1994; Thomas et al., 1999; O’Connor et al., 2011). In addi-
tion, primary resistance has been recognized in nearly 50% of
all cancer patients in the 1990s (Pinedo and Giaccone, 1998).
Therefore, the design of anti-cancer drugs that are fully effective
necessitates a better understanding of the mechanisms by which
cancer cells elude treatment. Here we will discuss several features
of drug resistant cells including modification of drug transport,
mutation of extracellular receptors, amplification and mutation of
drug targets as well as related topics. Additionally, we will briefly
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address the important question of how resistant cell populations
emerge.

MECHANISMS OF DRUG RESISTANCE
Both primary and acquired resistance can be caused by alterations
to drug metabolism (sequestrations or enhanced detoxification)
or modifications to the drug targets (Gottesman, 2002; Gatti and
Zunino, 2005; Teicher, 2006; Wilson et al., 2006; Ullah, 2008). A
brief overview of these mechanisms supported with examples of
clinical relevance are presented below (Figure 1).

Perhaps the most studied mode of resistance involves drug
metabolism, including its uptake, efflux, and detoxification. The
means by which drugs enter cells depend on their chemical nature,
and it mainly necessitates the use of receptors, which they bind
to and transmit their effects without cellular entry, or trans-
porters, which allow their cellular entry (Gottesman, 2002). At
this level, resistance can result from mutations that modify activ-
ity or reduce the expression of surface receptors and transporters.
For instance, mutations or reduced expression of the extracellu-
lar receptor smoothened (Yauch et al., 2009; Atwood et al., 2012;
Kasper and Toftgard, 2013), nucleoside transporters (Galmarini
et al., 2001; Damaraju et al., 2003) or one or both folate trans-
porters (Longo-Sorbello and Bertino, 2001) result in defective
uptake of cyclopamine, nucleoside drugs, such as cytarabine,
and toxic folate analogs, such as methotrexate, respectively. On
the other hand, enhanced drug efflux is frequently caused by
increased expression of ATP binding cassette (ABC) membrane
transporters (Gottesman et al., 2002). Among the 48 known ABC
transporters in humans, elevation of three members, P-gp (MDR1
gene product), Multidrug resistance-associated protein 1 (MRP1)
and mitoxantrone resistance protein [MXR; also known as breast
cancer resistance protein (BCRP) or placenta ABC protein (ABC-
P)], have been correlated with cancer chemoresistance to various
drugs (Gottesman, 2002; Gottesman et al., 2002). For instance, P-
gp transports a wide variety of hydrophobic anti-cancer drugs such
as vinblastine, doxorubicin, vincristine, and taxol, and therefore its
increased expression has been correlated with resistance to these
(Gottesman et al., 2002). MRP1 on the other hand, transports neg-
atively charged natural-product drugs in addition to drugs that
have been modified by the conjugation of glutathione (GSH), glu-
curonic acid or sulfate (Jedlitschky et al., 1996; Hipfner et al., 1999;
Konig et al., 1999; Borst et al., 2000); while, MXR overexpression
has been correlated with resistance to topoisomerase I inhibitors,
anthracyclines, and mitoxantrone (Gottesman, 2002). As can be
seen, these factors comprise a major site for the development of
drug resistance.

To exert their cytotoxic effects, many anti-cancer drugs must
undergo metabolic activation. For instance, cytarabine (also
known as AraC), a nucleoside drug widely used for the treatment
of acute myelogenous leukemia (Sampath et al., 2006), necessitates
initial phosphorylation by deoxycytidine kinase to cytarabine-
monophosphate which is subsequently phosphorylated to the
active form cytarabine triphosphate. To circumvent the effects of
these drugs, cancer cells develop resistance through decreased drug
activation (Kufe and Spriggs, 1985; Bardenheuer et al., 2005). This
occurs via the downregulation or mutation of enzymes involved
in this metabolic pathway, such as deoxycytidine kinase in the

case of cytarabine (Sampath et al., 2006). Drug inactivation can
also play a major role in the development of resistance. These
mechanisms include, for example, conjugation of the drug to
GSH, a powerful anti-oxidant that protects the cells against the
damaging effects of reactive oxygen species (Wilson et al., 2006).
GSH conjugation to platinum drugs, such as oxaliplatin and
cisplatin used in the treatment of various types of cancers, ren-
ders them substrates for ABC transporters which enhances drug
efflux (Meijer et al., 1992; Ishikawa and Ali-Osman, 1993). Fur-
thermore, the topoisomerase I inhibitor, irinotecan, used for
treating colon cancer, have been shown to become inactivated via
phase I drug metabolizing enzymes, CYP450 (Xu and Villalona-
Calero, 2002). Finally, binding of platinum drugs, particularly
cisplatin, to metallothionein (MT), a small cysteine-rich protein, is
another means of drug inactivation (Kelley et al., 1988; Kasahara
et al., 1991).

Many cancer cells develop an overreliance or dependency on
an oncogene. This is referred to as oncogene addiction (Arber
et al., 1997; Weinstein, 2002; Weinstein and Joe, 2006; Sharma and
Settleman, 2007). Targeting such oncogenes, provided a basis for
the development of targeted therapies. Examples of such targeted
therapies include: (i) imatinib targeting BCR/ABL tyrosine kinase
in CML (Hughes et al., 2003), (ii) gefitinib and erlotinib target-
ing the epidermal growth factor receptor (EGFR) tyrosine kinase
domain in non-small cell lung carcinoma (Lynch et al., 2004; Shep-
herd et al., 2005; Taron et al., 2005), and (iii) trastuzumab targeting
human epidermal growth factor receptor-2 (HER-2) receptor in
breast carcinomas (Slamon et al., 2001; Piccart-Gebhart et al.,
2005). Unfortunately, the long term effectiveness of these drugs
is hindered by the development of drug resistance due to muta-
tion of the targeted protein (Gioeli, 2011; Wong and Lee, 2012).
In the case of BCR/ABL and EGFR inhibitors, resistance emerges
as a result of mutations occurring at the gatekeeper residues of
the kinase domain which disables drug binding (Gorre et al., 2001;
Blencke et al., 2003; Kobayashi et al., 2005; Pao et al., 2005; Soverini
et al., 2005; Balak et al., 2006; Jabbour et al., 2006, 2008; Nicol-
ini et al., 2006; Apperley, 2007; Costa et al., 2007; Bean et al.,
2008; Gioeli, 2011). Furthermore, it has been demonstrated that
resistance mutations can be detected prior to treatment in small
subpopulations of tumor cells suggesting that these mutant forms
were selected via the targeted therapy used (Hofmann et al., 2003;
Toyooka et al., 2005; Inukai et al., 2006). In essence, understand-
ing how mutations in the target proteins confer resistance enables
the development of new therapeutic approaches to surmount
resistance. For instance, second generation CML inhibitors have
been developed based on mutational studies of patients who have
become Gleevec resistant.

Other mechanisms by which cancerous cells circumvent the
effects of targeted inhibitors have also been described, including
amplification of alternative oncogenes or inactivation of alter-
native survival pathways (le Coutre et al., 2000; Engelman et al.,
2007). In some cases, targeting of one protein alone (that cells are
showing dependency on) can become ineffective because another
parallel pathway supports tumor survival. In this case, the two
pathways develop a synthetic lethal relationship (Hartman et al.,
2001; Tucker and Fields, 2003). This way, the loss/inactivation of
one of these genes would be supported by the other pathway and
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FIGURE 1 | A major impediment in the treatment of cancer is the

development of resistance. While most tumors initially respond to the given
therapy, the majority will relapse following treatment, and in some cases
resistance even predates clinical intervention. Therefore cancer resistance
can be classified in to two broad classes: primary or acquired. In both cases,
the emergence of resistant cells could be due to, at least, two mechanisms:
(A) presence of multiple initial clones some of which emerge as dominant
after treatment. These subpopulations could possess stem-like characteristics
and/or use their interactions with the surrounding microenvironment to enter

into a dormant state, thus surviving the insult of therapy. (B) Acquisition of
stochastic alterations within the cancer cells per se. In all cases, the surviving
population is less likely to respond to any further therapy and will be
responsible for the minimal residual disease and cancer relapse. The
biochemical underpinnings of resistance include: alterations to drug
metabolism, increased drug efflux, decreased drug uptake, modification of
the drug targets, amplification of targeted protein, genetic rewiring, enhanced
DNA repair, inactivation of apoptotic proteins, or activation of anti-apoptotic
ones, among others.

for the most effective treatment, one would need to target both
pathways (Luo et al., 2009; Nijman, 2011).

An example of new pathways emerging once another path-
way is targeted comes from the work of Isoyama et al. (2012),
showed that acquired resistance to phosphatidylinositol 3-kinase
(PI3K) inhibitors (such as ZSTK474) was due to the upregula-
tion of insulin-like growth factor 1 receptor (IGF1R) pathway and

that inhibition of this pathway with selective IGF1R inhibitors
reverses the acquired PI3Ki resistance phenotype (Isoyama et al.,
2012). Additionally, resistance could result from evasion of apop-
totic pathways triggered by the acquisition of either inactivating
mutations in genes coding for apoptotic proteins, such as p53, or
activating mutations in genes coding for anti-apoptotic proteins,
such as B cell lymphoma 2 (Bcl-2; Teicher, 2006). Indeed p53
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mutations have been correlated with de novo resistance to doxoru-
bicin treatment in patients with advanced breast cancer, as well
as resistance to anthracyclines in a mouse sarcoma tumor model
(Aas et al., 1996; Levine, 1997).

Another excellent example of this phenomenon (i.e., synthetic
lethality) is seen in breast and ovarian cancers carrying muta-
tions in the BRCA1 and BRCA2 genes, important mediators of
DNA double-strand break (DSB) repair. When the poly (ADP-
ribose) polymerase (PARP) protein, which is involved in different
cellular processes including DNA repair, was targeted in these
tumors, selective cancer cell toxicity was achieved (Bryant et al.,
2005; Farmer et al., 2005). Several PARP inhibitors (PARPi) are
currently being tested in clinical trials, such as iniparib (phase III
ongoing; Guha, 2011) and veliparib cancer (Trudeau et al., 2006;
Palma et al., 2008, 2009; Kummar et al., 2011), among others.
However, despite the promising results these inhibitors showed,
whether used as a mono- or combinatorial therapy (Juvekar et al.,
2012; Kummar et al., 2012; Riffell et al., 2012), cancer cells once
again were capable of evolving resistance to PARPi in preclinical
and clinical settings (Chiarugi, 2012; Montoni et al., 2013). The
mechanisms of resistance to these inhibitors have been grouped in
to at least four categories, as summarized recently (Montoni et al.,
2013). But perhaps the most distinct of these, was the ability of
cancer cells to revert sensitivity to PARPi by acquiring deletion of
the mutation in BRCA gene, thus restoring its function and the
subsequent repair of DSBs.

DEVELOPMENT OF CROSS RESISTANCE
An important feature of drug resistance, is that development of
resistance to one drug can lead to resistance to other drugs (Ullah,
2008). For instance, loss of a drug transporter can lead to resis-
tance to structurally diverse compounds that utilize it or elevation
of ABC transporters resulting from one therapy will influence the
efficacy of many other compounds. Since this multidrug resis-
tance phenotype correlates with poor chemotherapy response,
drug development strategies to overcome this problem are being
designed. These include drugs that are not recognized by trans-
porters and therefore evade efflux, efflux inhibitors, drugs that
are selectively lethal to P-gp expressing cells, etc. (Hall et al., 2009;
Kelly et al., 2011; Nobili et al., 2012). But, perhaps resistance is
not useless after all, as Hall et al. (2009) proposed. The alterna-
tive strategy to treat the progeny of the drug imposed Darwinian
selection process is to identify their new “Achilles’ heel,” where
resistance to the first given drug conferred a hypersensitivity to an
alternate cytotoxic agent to which parental cells were not sensi-
tive to. A phenomenon referred to as “collateral sensitivity”, which
could be considered as a type of synthetic lethality as well since
the same genetic alteration that rendered the cells resistant to one
drug now sensitizes them to another (Hall et al., 2009; Pluchino
et al., 2012).

WHERE DO RESISTANT CELLS COME FROM?
The development of human cancers is a complex multistage
process involving accumulation of both genetic and epigenetic
alterations over time (Caulin and Maley, 2011). As a consequence,
a single tumor is comprised of heterogeneous populations of cells
with distinct genetic fingerprints (Heppner et al., 1978; Marusyk

and Polyak, 2010; Michor and Polyak, 2010). As the tumor pro-
gresses, some cells undergo genetic alterations, with selection of
those having a superior growth advantage in a given context. An
excellent example of tumor heterogeneity is provided by breast
cancer studies (Schvimer et al., 1995; Shen et al., 2000; Wild et al.,
2000). Wild et al. (2000) demonstrated that about 97% of epithelial
breast carcinomas possess high levels of intra-tumor diverseness.
The relevance of this innate heterogeneity is seen in cancer resis-
tance. Since cancer cell selection obeys the Darwinian law of
evolution, hence, under therapeutic pressure, those populations
that are most adaptive or resistant to treatment will be selected
for. These clones will then dominate and populate the tumor ren-
dering it highly resistant to the given therapy (Williams and Nesse,
1991; Nesse, 2001; Breivik, 2005; Crespi and Summers, 2005; Licht-
enstein, 2005; Monceviciute-Eringiene, 2005; Greaves, 2007). The
selection process can be rationalized by, at least, two mechanisms.
First, the emergence of a dominant cellular population after drug
selection since it possesses some favorable characteristics such as
a mutated drug binding site (Zhang et al., 2006; O’Brien et al.,
2007; Ricci-Vitiani et al., 2007). The second mechanism involves
the acquisition of stochastic alterations within the cancer cells
which provide a survival advantage (Campbell et al., 2008; Stratton
et al., 2009; Negrini et al., 2010; The International Cancer Genome
Consortium, 2010; Shen, 2011). The advantage itself, e.g., a muta-
tion in a drug binding site or alteration in drug transporters (as
just two examples) could be the same for either of these mecha-
nisms. What is different is the underlying process to generate these
biochemical differences.

Two known models, the cancer stem cell (CSC) model, and the
environment-mediated drug resistance (EMDR) model, which are
not mutually exclusive, could explain the origin of resistant cells.
In the CSC model, rare populations of cancer stem cells possess
tumor-initiating properties (Teicher, 2006; Nguyen et al., 2012).
It is thought that CSCs diverge from normal tissue stem cells or
from more-differentiated progenitor cells through dysregulation
of self-renewal pathways. Beside modulation of molecular mech-
anisms, such as increased efficiency of DNA repair (Potten et al.,
2002; Cai et al., 2004; Park and Gerson, 2005), changes in cell cycle
parameters (Venezia et al., 2004), overexpression of anti-apoptotic
proteins (Wang et al., 2003) or drug transporters (Gottesman et al.,
2002; Krishnamurthy et al., 2004), etc., resistance of CSCs could
be due to their quiescent nature (Teicher, 2006). Thus, in this case,
the cell population is present and is difficult to target using tradi-
tional chemotherapy strategies many of which depend on active
cell cycling.

In the EMDR model, resistance emerges as the cancer cells
use their interactions with the surrounding microenvironment
to enter into a quiescent or dormant state as a means of cir-
cumventing the effects of the given therapy. Under the drug
imposed selection pressure, these cells remain in their protective
shelter, undergoing genetic changes until they ultimately reach
a more permanent acquired resistance phenotype and in turn,
alter their surrounding microenvironment (Braun et al., 2000;
Meads et al., 2009). These surviving populations, which may
or may not be CSCs, can contribute to minimal residual dis-
ease (MRD) and cancer relapse (Matsunaga et al., 2003; Bidard
et al., 2008; Meads et al., 2009). The EMDR model is relevant
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to both hematopoietic and metastatic epithelial malignancies.
EMDR could be mediated by either soluble or cell adhesion-related
microenvironmental factors. Soluble factor-mediated drug resis-
tance occurs through induction of gene transcription within the
tumor cells by cytokines, chemokines, or growth factors secreted
by neighboring stroma-like fibroblasts (Meads et al., 2009). One of
the known mediators of this resistance mechanism is interleukin-6
(IL-6), whose increased secretion has been correlated with resis-
tance to various cytotoxins both in in vitro and in vivo models.
This includes, for instance, resistance to bortezomib in multiple
myeloma and to etoposide and cisplatin in hormone-independent
prostate carcinomas (Borsellino et al., 1995, 1999; Frassanito et al.,
2001; Voorhees et al., 2007). Further, cell adhesion-mediated drug
resistance is triggered by the adhesion of integrins from tumor
cells to stromal fibroblasts or to components of the surround-
ing extracellular matrix. Molecularly, this process could be due to
many scenarios including (i) degradation of apoptotic proteins or
(ii) enhanced stability or altered subcellular distribution of anti-
apoptotic proteins and cell cycle regulators (Hazlehurst et al., 2001,
2007; Shain et al., 2002, 2009; Lwin et al., 2007). One example is
provided by studies into melphalan resistance. In this case, the
cancerous cells tend to use their adhesion to fibronectin in the sur-
rounding microenvironment to reduce the endogenous levels of
the proapoptotic BH3-only Bcl-2 family member, Bim1, thus con-
ferring resistance by disabling apoptosis (Hazlehurst et al., 2003;
Hanahan and Weinberg, 2011). From a clinical point of view, it
is thought that combining current therapies with inhibitors of
EMDR pathways could enhance the effectiveness of the treat-
ment (Croix et al., 1996; Weaver et al., 1997; Hazlehurst et al.,

2000; White et al., 2004; Lwin et al., 2007). A proof-of-principle
example was demonstrated by the combination of melphalan, a
DNA alkylating agent used in the treatment of multiple myeloma
and ovarian carcinomas, with an anti-integrin α-4 antibody
(natalizumab) which significantly inhibited myeloma growth and
reduced tumor burden in patients (Mori et al., 2004; Engelhardt
and Kappos, 2008).

CONCLUSION
Resistance to drugs continues to be a major problem in oncology
affecting the majority of cancer patients. Here we provide many
examples of how cells become resistant to various drugs includ-
ing alteration in drug metabolism, modification of drug targets,
and genetic rewiring of cells to bypass targeted pathways. A better
understanding of oncogene networks and oncogene cooperativity
will likely improve therapeutic strategies by identifying optimal
combinations based on the genetic lesions in the tumors. Impor-
tantly, tumors are highly heterogenous and this heterogeneity may
well substantially contribute to primary or acquired resistance.
Armed with a greater understanding of the mechanisms of drug
resistance will undoubtedly lead to more long term remissions and
hopefully cures.
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