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Background
Liver steatosis is the buildup of triglycerides in the form of lipid droplets in liver which 
can be a result of several causes such as alcohol consumption, viral hepatitis or meta-
bolic dysfunction [1, 2]. When the fat proportion of liver is larger than 5–10%, it is con-
sidered as fatty liver disease that with further progress associated with inflammation 
may irreversibly result in severe conditions such as hepatocellular carcinoma, diabetes 
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mellitus or other metabolic complications [1, 3]. The prevalence of fatty liver disease is 
estimated as high as around 30% of the population [4]. An accurate and efficient method 
to diagnose liver fat extent is important for the clinical practice.

To quantitatively evaluate liver fat fraction nowadays, liver biopsy can be used which 
is essential for the diagnosis of non-alcoholic steatohepatitis (NASH) and is the only 
reliable procedure that differentiates non-alcoholic fatty liver (NAFL) from NASH, 
despite limitations due to sampling variability [5]. However, such invasive approach 
may encounter the problem of limited tissue sampling, serious complications and the 
low acceptance for patients [6]. Magnetic resonance imaging-based proton density fat 
fraction (MRI-PDFF) quantification is a procedure to non-invasively quantify liver fat 
extent by providing high-quality fat fraction maps of the entire liver. It is considered to 
be even more accurate than liver biopsy for the liver fat quantification [5]. MR mDIXON 
quantification is one of such technique specifically for Philips MRI system [7]. But the 
lack of accessibility due to the expensive cost of MRI systems significantly restricts the 
use of this technique in clinical practice. Medical ultrasound imaging is widely used and 
experienced doctors may qualitatively diagnose fatty liver disease based on ultrasound 
images. However, such diagnosis is subjective, operator-dependent and not quantitative 
[8].

Quantitative ultrasound demonstrates the capability to some extent for the diagnosis 
of fatty liver disease. The estimation of fundamental acoustic parameters such as echo 
attenuation and backscatter coefficient (BSC) were developed for liver fat quantification 
to characterize the tissue microstructure [9]. Some study has been published with a good 
result with a correlation between them and the result of MRI-PDFF as 0.79 [10]. Many 
previous studies also have evaluated the parameters such as echo attenuation, elasticity, 
viscosity (dispersion slope) and shear wave attenuation, respectively, for liver fat quan-
tification [11–14]. However, to simultaneously evaluate different parameters and make 
the comparison for liver fat quantification, it is required to design a specific ultrasound 
transmitting and receiving sequence to realize the multiple parameter estimation simul-
taneously. One aim of our study is for this purpose. Meanwhile, we theoretically derive 
and further introduce the parameter estimation of shear wave absorption by the use of 
the designed ultrasound shear wave sequence. For all the estimated parameters, the per-
formance of each one is evaluated on liver fat quantification with the results from MR 
mDIXON quantification as the ground truth. We further explores the use of the combi-
nation of all quantitative parameters on liver fat quantification by introducing a learn-
ing-based model, which achieves a significant improvement on performance and might 
provide a new direction for ultrasound tissue characterization in clinical application.

Results
Subjects

The study included the patients who underwent routine ultrasound examination for 
the evaluation of the degree of hepatic steatosis from the physical examination center 
of Shanghai Public Health Clinical Center. Meanwhile, anthropometric measurement 
was performed and fasting venous blood samples were obtained for the determination 
of blood routine, liver function and hepatitis virus indication. Subjects were eligible for 
our study if they had no other known liver disease and did not have contraindications to 
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MRI examination. Table 1 shows the complete inclusion and exclusion criteria [15] for 
which the assessment is mainly based on blood test and medical history of the patients. 
Based on these criteria, totally 60 participants who completed the ultrasound scan-
ning for the data acquisition of multiple parameter estimation with the use of Philips 
EPIQ ultrasound system and the Philips MR mDIXON quantification examinations on 
the same day were selected for the study. An example is demonstrated for the acquired 
ultrasound and MR imaging data as in Fig. 1. The appropriate ultrasound imaging plane 
should mainly contain the liver parenchyma region at the depth from 3 to 5  cm by 
avoiding vessel or any other structural objective and the acquired ultrasound data for 
one patient should cover the patient’s liver parenchyma region as much as possible. The 
corresponding estimation results may thus represent the situation of the patient’s liver 
parenchyma region.

The population of our study consisted of 22 women and 38 men for which the age 
ranged from 19 to 69  years old and the body mass index (BMI) ranged from 18.3 to 
34.9  kg/m2. Hepatic fat proportion quantified by MR mDIXON quantification ranged 
from 2.0 to 47.2% with the average value as 9.1%. Table 2 shows the details of the related 
information. All patient data are available from the Department of Radiology in Shang-
hai Public Health Clinical Center affiliated Fudan University.

Phantom results

The sampling rate for the acquired ultrasound radiofrequency data is 40 MHz. The three 
push focus depths of the designed specific ultrasound shear wave sequence are 0.03 m, 
0.04  m and 0.05  m, respectively. After engineer optimization, the spacing values used 
for the shear wave measurement points are correspondingly 0.0012  m, 0.0013  m and 
0.0015 m.

Experiments on the 040GSE phantom (CIRS Inc., USA) were first performed to vali-
date the parameter estimation methods. Table 3 shows the related results. The ground 
truth of echo attenuation was known for the phantom and it can be seen that the cor-
responding estimation results are well consistent with the ground truth. Meanwhile, 
the standard deviation of the results is small, which denotes the robustness of the echo 
attenuation estimation method and the signal stability of tracking echo. For the elasticity 
results, it can be seen that they are in the acceptable range of the designed 24 kPa for the 

Table 1  Inclusion and exclusion criteria of patients for the study

Inclusion criteria

 Age > 18 years

 With a negative hepatitis B virus surface antigen and hepatitis C virus antibody

 Willingness to undergo ultrasound and magnetic resonance examinations

 Signed informed consent form

Exclusion criteria

 With a history of other liver disease or diabetes

 Excess alcoholic drinking [15] (≥ 20 g/day for men and ≥ 10 g/day for women)

 Taking hypolipidemic drug, liver protectant, or drugs that could cause steatosis

 With clinical symptoms or signs of other liver disease

 MR examination contraindications (such as claustrophobia, cardiac pacemakers or metal implants)

 Pregnant patients
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Zerdine material of the CIRS phantom. Since there is no ground truth for the estimated 
parameters except echo attenuation, a house-made oil phantom was constructed to fur-
ther evaluate the 040GSE phantom results. Compared with the 040GSE phantom, the 
house-made oil phantom was made with 20% gelatin and 20% animal oil (bovine) to sim-
ulate the situation with a relatively large extent of fat fraction. It can be seen that the dis-
persion is much larger than the one from the 040GSE phantom, which is as expected for 
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Fig. 1  Demonstration of the acquired data in the study. a denotes the interface of the ultrasound data 
acquisition based on the designed ultrasound sequence. b, d The direct logarithmic results of the envelope 
of the corresponding raw radiofrequency ultrasound data. c, e The MRI fat quantification results. b, c are from 
the patient with liver fat fraction as 2.56%. d, e are from the patient with liver fat fraction as 29.45%. The scale 
bar in ultrasound images denotes the intensity and the one in MRI images denotes the percentage of fat 
fraction
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a larger viscosity and validates the estimation algorithm to some extent. For the results 
of shear wave attenuation and shear wave absorption, their values change and manifest 
as negative correlation with the increase of fat fraction, which indicate their connection 
between the parameters and fat fraction and could be referred for the following experi-
ments on patient data.

Patient results

The result distributions of the estimated parameters and the learning-based model’s 
output for different fat proportion segments were demonstrated in the second part 
of Table 2. Figure 2 further demonstrates the correlation distributions of the results 
for all 60 patient data with the MR mDIXON quantification results. To quantitatively 
evaluate the different methods, the correlation coefficient (CC) values are applied 
between the estimation results and the liver fat proportion from MR mDIXON quan-
tification [16]. The details of the related CC values are shown in Table 4. Among the 
individual parameter estimation, echo attenuation achieves the best performance. 
Compared with echo attenuation, shear wave absorption and shear wave attenuation 

Table 2  Characteristics of the study patients

MR mDIXON quantification hepatic fat content (%)

< 5 5–10 10–20 > 20 Total

Characteristic

 Number of participants 26 18 11 5 60

 Age (year) 36 (23–67) 43 (19–69) 49 (27–68) 32 (26–42) 41 (19–69)

 Sex (male/female) 20/6 9/9 5/6 4/1 38/22

Anthropometric measures

 Weight (kg) 64.9 ± 11.1 68.3 ± 8.1 73.7 ± 13.2 78.8 ± 11.9 68.8 ± 11.5

 Height (cm) 168.5 ± 6.2 165.5 ± 5.4 164.3 ± 6.2 169.8 ± 5.2 167.0 ± 6.1

 BMI (kg/m2) 22.9 ± 3.1 25.0 ± 2.4 27.2 ± 3.2 27.4 ± 2.8 24.7 ± 3.4

Ultrasound parameter estimated results

 Echo attenuation (dB/MHz/cm) 0.654 ± 0.132 0.713 ± 0.059 0.791 ± 0.117 0.832 ± 0.046 0.706 ± 0.121

 Elasticity (kPa) 9.45 ± 3.90 9.75 ± 5.33 8.62 ± 2.41 10.3 ± 4.50 9.46 ± 4.15

 Dispersion slope (m/s/Hz) 3.27 ± 10.2 5.54 ± 4.17 2.62 ± 10.1 2.97 ± 6.55 3.82 ± 8.48

 Shear wave attenuation (Neper/m) 183.1 ± 57.9 178.7 ± 24.7 161.6 ± 41.3 138.7 ± 19.6 175.2 ± 46.3

 Shear wave absorption (Neper/m) 61.1 ± 16.8 59.6 ± 11.3 55.3 ± 14.5 49.3 ± 9.55 58.9 ± 14.6

 Model by using the combination 
of all parameters (%)

4.5 ± 4.3 7.8 ± 2.4 13.1 ± 4.3 25.9 ± 2.4 8.3 ± 6.7

Table 3  Experimental results on phantoms

Estimated parameter Phantom

040GSE
0.5 dB region

040GSE
0.7 dB region

House-made oil phantom

Echo attenuation (dB/MHz/cm) 0.5132 ± 0.0367 0.7018 ± 0.0373 0.7563 ± 0.1605

Elasticity (kPa) 22.1111 ± 8.5971 17.8650 ± 5.1068 51.6250 ± 5.8750

Dispersion slope (m/s/Hz) 0.4821 ± 0.2612 0.4518 ± 0.3792 3.5391 ± 2.2279

Shear wave attenuation (Neper/m) 65.9084 ± 4.0722 74.8187 ± 18.3371 51.9126 ± 17.4872

Shear wave absorption (Neper/m) 53.6819 ± 1.4880 61.9683 ± 3.8338 38.4690 ± 5.1999
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are less effective. They demonstrate as negative correlation with liver fat fraction, 
which is consistent with the observation from the phantom results. Low-correlation 
coefficients with liver fat proportion are manifested for elasticity and viscosity, which 
denotes their limited capability on quantifying liver fat proportion individually. How-
ever, the performance significantly improves for the learning-based model by com-
bining all the parameters together and the CC value achieves as high as 0.83. The 
detailed regression results of the model are further analyzed by comparing it with 
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Neper/m Fat Frac�on

Fig. 2  The experimental results of all 60 patient data denoting the relationship between the estimated 
parameters and the liver fat proportion from MR mDIXON quantification, which are a echo attenuation, 
b elasticity, c dispersion slope, d shear wave attenuation, e shear wave absorption and f model using the 
combination of all parameters
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the MR mDIXON quantification results. The root mean square error is only 4.47% for 
liver fat proportion estimation, which achieves state-of-the-art for ultrasound liver fat 
quantification [3].

We further perform the statistical analysis to investigate the experimental results. 
Since the percentage values of liver fat proportion is the liver fat quantification results 
of MR mDIXON quantification, it is needed to apply a thresholding value as a certain 
percentage to identify the patient label for the discrimination of fatty liver disease to 
evaluate different methods. In our study, the thresholding value was chosen as 5% for 
the detailed evaluation, which is based on the previous clinical studies [1, 3]. Sen-
sitivity (SEN), specificity (SPC), positive predictive value (PPV), negative predictive 
value (NPV), accuracy (ACC) and the area under the receiver operating character-
istic (AUC) are the detailed evaluation criteria. The receiver operating characteristic 
(ROC) curves of different methods are demonstrated in Fig. 3. It can be observed that 
the result of the established model using all the estimated parameters outperforms 
the ones of individual parameters obviously. The optimal cut-off values from the ROC 
curves are determined based on Youden’s index [17] and based on them, the detailed 
statistical results are shown in Table 5. From the quantitative evaluation results, echo 
attenuation achieves the best performance among the individual parameters. This 
is consistent with the information from the structure of the established regression 

Table 4  The correlation coefficients between  the  estimation results and  the  liver fat 
proportion from MR mDIXON quantification

Methods Correlation coefficients P value

Echo attenuation 0.4594 (95% CI 0.2327 to 0.6388) 0.00022

Elasticity 0.0283 (95% CI -0.2273 to 0.2802) 0.83

Dispersion slope 0.0447 (95% CI -0.2116 to 0.2953) 0.73

Shear wave attenuation − 0.2542 (95% CI − 0.4773 to − 0.0003) 0.050

Shear wave absorption − 0.2599 (95% CI − 0.4820 to − 0.0064) 0.044

Model using the combination of all 
parameters

0.8305 (95% CI 0.7306 to 0.8956) < 0.00001

Fig. 3  The receiver operating characteristic (ROC) curves of different methods for the discrimination of fatty 
liver disease
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tree model in which echo attenuation plays a significant role as the fundamental node 
shown as in Fig. 4. For echo attenuation to discriminate fatty liver disease, the optimal 
cut-off value is 0.69 dB/MHz/cm in our study and it is consistent with the previously 
reported work [18]. Furthermore, Table  5 clearly manifests the significant improve-
ment from the model by combining all the parameters. The accuracy as 76% for echo 
attenuation increased to 90% as for the established model. Since echo attenuation is 
comparable with the B-mode assessment by experienced doctors [18], the proposed 
learning-based model can help significantly increase the accuracy of the diagnosis of 
fatty liver disease for clinical practice. For the outputs of the established model, the 
optimal cut-off value is 6.6%. It is close to the selected 5% for the discrimination of 
fatty liver disease.

To further validate the effectiveness of the proposed method, we randomly use a small 
proportion of the entire patient data as the independent testing data and the rest of the 
data is correspondingly used for the establishment of the machine-learning model. To 
observe the performances of the established models under various conditions of clinical 
data availability, the proportion for the independent testing data varies as 5%, 10% and 

Table 5  The statistical analysis of  the  experimental results of  different methods 
regarding the discrimination of fatty liver disease

Method Statistical results with the corresponding optimal cut-off values from ROC 
curves for different methods

SEN (%) SPC (%) PPV (%) NPV (%) ACC (%) AUC​

Echo attenuation 84.38 67.86 75.00 79.17 76.67 0.73

Elasticity 78.13 32.14 56.82 56.25 56.67 0.51

Dispersion slope 90.63 39.29 63.04 78.57 66.67 0.60

Shear wave attenuation 84.38 32.14 58.70 64.29 60.00 0.54

Shear wave absorption 78.13 46.43 62.50 65.00 63.33 0.60

Model by using the combina-
tion of all parameters

87.50 92.86 93.33 86.67 90.00 0.93

Fig. 4  The details of the established regression tree model by combining all the parameters where ×1, 
×2, ×3, ×4 and ×5 denote the parameter values of shear wave absorption, echo attenuation, elasticity, 
dispersion slope and shear wave attenuation, respectively
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15%, respectively. The repeated cross-validation number for each value of the propor-
tion is 10 to statistically guarantee the precise evaluation of the established model. The 
results of the validation are demonstrated in Table 6. It can be seen that the performance 
of the proposed method is stable as maintaining CC value around 0.8 with the liver fat 
quantification results of MR mDIXON quantification. Meanwhile, when the proportion 
of the independent testing data increases, the model’s performance manifests a slight 
decrease, which denotes the data size does impact the performance of the model since it 
is a data-based machine-learning model.

Discussion
Ultrasound imaging is widely utilized in clinical practice. However, the conventional 
way highly depends on the operation of physician even just for diagnosing the existence 
of fatty liver disease. It is subjective, qualitative and often leads to the problem of non-
reproducibility and inaccuracy. A previous study [3] attempted to realize the liver fat 
quantification. However, its quantification approach still mainly depended on the appro-
priate acquisition of the hepatic-renal imaging plane, which remains operator-depend-
ent. To solve such problem, our study explored the potential method to only use the 
objective, robust and quantitative parameters for liver fat quantification. It should be 
noted that by intention, any operator-dependent process is excluded in the quantifica-
tion of fatty liver.

From the results of individual estimated parameters, it can be observed that the 
attenuation in the axis-beam direction is positively correlated with the results of MR 
mDIXON quantification and conversely, the parameters of shear wave energy dissipa-
tion are negatively correlated. This interesting phenomenon demonstrates the difference 
between longitudinal ultrasound signal and shear ultrasound signal even based on the 
same characteristic change for the material. It provides the physical evidence regarding 
the characteristics of shear wave signals for the future study.

It can be seen that from our study, the combination of all parameters establishes the 
foundation of the excellent performance of the learning-based model for liver fat quan-
tification. First, these parameters should be able to be robustly estimated, which guar-
antees the accuracy of the following established model. Furthermore, these parameters 
are preferable to be supplemented for each other on signal information. For a gener-
ated ultrasound propagation phenomenon, the obtained longitudinal and shear signals 
include all the generated signals. When the estimated parameters represent the entire 
signal information for these two directions, the ultrasound representation of the target 

Table 6  The validation results of  the  proposed method by  randomly using a  proportion 
of the patient data as the independent testing data and using the rest of the patient data 
to establish the corresponding machine-learning model

Proportion of the independent testing 
data in the entire patient data (%)

Correlation coefficients between the model’s 
estimation results and the liver fat proportion 
from MR mDIXON quantification

P value

5 0.8249 (95% CI 0.7223 to 0.8920) < 0.00001

10 0.8049 (95% CI 0.6925 to 0.8791) < 0.00001

15 0.7816 (95% CI 0.7173 to 0.8326) < 0.00001



Page 10 of 15Shi et al. BioMed Eng OnLine          (2019) 18:121 

tissue can be thus considered as well defined. Meanwhile, to use a mechanical model 
to define a target tissue, elasticity and viscosity can well define the mechanical model. 
Based on all the considerations, the five parameters in our study are chosen and applied 
for the related processing of tissue characterization. Such set of parameters is consid-
ered as a “complete” signal set. Here, the “complete” means that once the parameter val-
ues in such parameter set for a target tissue is determined, the target tissue can be well 
characterized and in the high-dimensional space defined by the parameter set, the target 
tissue can be thus well discriminated with other objectives even if the performance of 
individual parameters is limited. Such idea has been preliminarily verified by our study. 
It provides an approach for the research not just for liver fat quantification, but further-
more for the goal of tissue characterization.

Based on the characteristics of relatively simple operation, low examination cost and 
high penetration rate of medical ultrasound imaging, the proposed model by combin-
ing all the estimated parameters demonstrates its high clinical value for liver fat quan-
tification. Compared with MR mDIXON quantification and liver biopsy, it provides a 
relatively better method for liver fat quantification in clinical work. Limitations of the 
present study also need to be mentioned. Subjects in our study were enrolled in a single 
clinical center and the sample size was relatively small, which should be improved in the 
future multi-center study.

Conclusions
Individual ultrasound and shear wave parameters demonstrate limited capability for 
liver fat quantification. However, by combining them together, the established learn-
ing-based model may achieve a good performance. It verifies the idea that in the high-
dimensional space defined by the proposed ultrasound parameter set, the target tissue 
can be well defined and discriminated with other objectives. It provides an approach 
not just for liver fat quantification, but furthermore for the goal of ultrasound tissue 
characterization.

Methods
Ultrasound multiple parameter estimation

When transmitting an ultrasound push at a focus in the longitudinal direction (through 
the beam axis), the shear wave signal resulting from the generated acoustic radiation 
force can be observed through the shear direction at the focus using tracking-echo 
beams adjacent to this push beam. For one measurement of all the ultrasound param-
eters in our study, the designed specific ultrasound shear wave sequence consists of 
three ultrasound pushes and each push focuses at a different depth. The tracking-echo 
signals with the format as raw radiofrequency (RF) data are correspondingly obtained 
after each push. Based on the received signals from such single ultrasound sequence, 
the methods for simultaneously estimating all the ultrasound parameters in our study 
are correspondingly proposed to be performed, for which the main consideration is the 
robustness of estimation.

Conventional echo attenuation is directly estimated from the tracking-echo RF signals. 
A least-squares method is applied with the learning-based optimization for its param-
eters [18]. The power spectrum of the backscattered echo signals can be described as
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where Sp is the power spectrum of the backscattered echo signal with f  as frequency 
and z as the depth. G represents the combined effects from the settings of system and 
beamforming. A represents the total attenuation through the path from the transducer 
surface to the depth of interest, which is defined as A

(

f , z
)

= exp(−4βfz) where β is 
the effective attenuation coefficient of the conventional echo. B denotes the backscatter 
coefficient in the region of interest that is defined as B

(

f
)

= bf n where b is a constant 
coefficient and n represents the dependence with frequency. By obtaining the echo signal 
with the same setting for system and beamforming from a reference phantom, the ratio 
of the echo signal’s power spectrums from the target to that from the reference phantom 
at the same depth can be expressed as

where the subscripts of tar and ref  represent the target tissue and the reference phantom, 
respectively. The natural logarithm of both sides of Eq. 2 is performed and the equation 
can be further expressed as

A least-squares fitting process can be thus applied over the band of frequencies that 
are contained in the echo signals by Eq.  3 based on the known acoustic properties of 
the reference phantom. The conventional echo attenuation can be thus obtained for the 
target tissue.

For the shear wave signals at certain depths, elasticity can be robustly estimated with 
the method by measuring the shear time-to-peak displacement [19, 20]. For shear wave 
signals, it can be proven that in nearly incompressible soft tissues such as liver paren-
chyma in our study,

where E is the elasticity also known as Young’s modulus. ρ is the liver density that is 
assumed as 1.0  g/cm3 [19] here. cshearwave is the shear wave propagation speed. With 
tracking-echo RF signals, the tissue displacement caused by shear wave propagation 
can be estimated and manifest the location change of the peaks of shear wave displace-
ments from different tracking beams. Therefore, the shear wave propagation speed can 
be obtained by equivalently measuring the peak propagation speed. The elasticity can be 
thus estimated based on Eq. 4.

Since the shear wave dispersion slope is positively correlated with the viscosity, the 
shear wave dispersion slope is practically and robustly estimated with the obtained shear 
wave signals to represent the related tissue characteristics of viscosity in our study [12, 
13, 20, 21]. The shear wave velocity vshearwave can be defined as

(1)Sp
(

f , z
)

= G
(

f , z
)

· A
(

f , z
)

· B
(

f
)

(2)RS
(

f , z
)

=
Btar

(

f
)

Bref

(

f
) ·

Atar

(

f , z
)

Aref

(

f , z
) =

btarf
ntar

breff
nref

exp
(

−4(βtar − βref)fz
)

(3)ln
{

RS
(

f , z
)}

= ln
btar

bref
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where f  is the frequency component. �d is the distance between two adjacent tracking 
beams for which �ϕ denotes the corresponding phase shift due to the stimulated shear 
wave propagation. It is noted that no rheological model is assumed in our study and only 
a linear model is applied for the shear wave dispersion estimation. Based on Eq. 5, the 
shear wave dispersion slope SDS can be thus defined as

for which the practical estimation from Eq. 6 is to calculate the slope of a linear fitting of 
shear wave velocities versus different frequency components with the range from 50 to 
300 Hz.

Based on the shear wave signals from all the locations of tracking-echo beams, 
shear wave attenuation can be robustly estimated with a model-free method [14]. The 
maximum values of shear wave displacements are estimated for each tracking-echo 
beam. The ratios between these maxima and the one from the first tracking-echo 
beam are further calculated. These ratios are assumed as exponentially depending on 
the propagation distance of tracking-echo beams that can be written as

where MDRi denotes the ratio of maximum shear wave displacements between the ith 
and the first tracking-echo beams. di denotes the distance between the ith and the first 
tracking-echo beams. The estimation of shear wave attenuation is realized by calculat-
ing the slope α from the fitting of the Eq. 7. It is noted that the estimation of shear wave 
attenuation was performed only in the near region of every push focus in our study. The 
diffraction related to the acoustic radiation force [22, 23] could be thus negligible to 
some extent for the estimation.

It is hypothesized in our study that the energy dissipation in tissue could be an 
important bio-marker for liver lipid content. Therefore, the estimation of shear wave 
absorption is further introduced for liver fat quantification and it emphasizes the 
energy that is absorbed and transferred for the generation of shear wave phenom-
enon. Theoretically, for shear wave signals, it can be proven [24–26] that

where x represents the beam axis. t is time. Sx denotes the shear wave displacement 
along the x direction. cshearwave is the shear wave propagation speed. γ denotes the shear 
viscosity. �lp denotes the Laplacian operator. Fx represents the radiation force that stim-
ulates the shear wave phenomenon. Based on Eq. 8 and with the further assumption of 
pulsing modulation, it can be theoretically derived [24–26] that

(5)vshearwave
(

f
)

=
2π f ·�d

�ϕ

(6)SDS =
∂vshearwave

(

f
)

∂f

(7)MDRi = e−α·di

(8)
∂2Sx

∂t2
−

(

c2shearwave + γ
∂

∂t

)

�lpSx = Fx
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where Sxfocus,max denotes the maximum displacement of the generated shear wave at the 
focus depth xfocus . a is the aperture size. t0 denotes the initial time. c is the ultrasound 
speed that could be assumed as 1540 m/s. ρ is the liver density assumed as 1.0 g/cm3 
here [19]. σ denotes the shear wave absorption coefficient. I0 is the acoustic intensity of 
the initial ultrasound wave on the beam axis that is defined as

where P0 represents the initial acoustic pressure.
For the details about the related theory of shear wave absorption coefficient, the work 

by Rudenko et al. [24] was well performed for the related theoretical derivations. Based 
on them, we propose an approach to practically realize the estimation of shear wave 
absorption coefficient. It can be seen that according to Eq.  9, Sxfocus,max , I0 and xfocus 
are the only parameters that require to know their values for the practical estimation 
of shear wave absorption coefficient σ . Therefore, the approach for shear wave absorp-
tion estimation was to first obtain the maximum displacements of the generated shear 
waves focused at the three focus depths in our designed specific ultrasound shear wave 
sequence. Then, for every acoustic push, the applied voltage V0 on the transducer ele-
ments was recorded since P0 could be considered as proportional to the applied voltage 
V0 of the transducer elements. Thus I0 based on Eq.  10 could be considered as pro-
portional to the value of V

2
0

2cρ , which is utilized as the practical value to compensate the 
difference for the initial intensities I0 of the three different acoustic pushes. Since the 
ultrasound system is exactly the same one for different acoustic pushes, this approxima-
tion would not affect the shear wave absorption coefficient estimation at all. After com-
pensating the initial intensities I0 and obtaining the values as Sxfocus,max

I0
 , a curve fitting was 

simply performed with an exponential form in which the focus depth was the variable. 
The shear wave absorption coefficient σ can be directly and conveniently calculated from 
this fitting.

Model by using the combination of all parameters

Each of the above estimated parameters may represent some aspect of the physical 
characteristics of target tissue (as liver fat in our study). Therefore in our study, it was 
hypothesized that by simultaneously considering the entire set of these robustly esti-
mated parameters, the target tissue should be able to be better represented and iden-
tified compared with using one individual parameter. In other words, the target tissue 
could be well characterized in the high-dimensional space defined by all the estimated 
parameters. To verify this hypothesis, a machine-learning method was applied in our 
study to establish the model in such high-dimensional space. However, to avoid the over-
fitting for the learning-based model since the sample number in our study was as small 
as 60, we should select the model that is relatively simple compared with the state-of-
the-art ones. Based on such consideration, the regression tree was applied as the learn-
ing-based model in our study [27]. Figure 4 demonstrated the details of the established 

(9)Sxfocus,max =
√
πσa2t0I0

8cργ
· e−2σ ·xfocus ∝ I0 · e−2σ ·xfocus

(10)I0 =
P2
0

2cρ
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regression tree in which ×1, ×2, ×3, ×4 and ×5 denote the parameter values of shear 
wave absorption, echo attenuation, elasticity, dispersion slope and shear wave attenua-
tion, respectively. This model is for the purpose to investigate the potential connections 
for the physical characteristics represented by the different estimated parameters. The 
hierarchical structure of the model approximates the non-linearity in the parameter 
space while maintaining the low-computational complexity that is specifically appropri-
ate for clinical practice.
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