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Abstract: Dissipative particle dynamics simulations were performed to investigate the self-assembly
of dipalmitoylphosphatidylcholine (DPPC) as a model lipid membrane on the surface of carbon
nanotubes (CNTs). The influence of surface curvature of CNTs on self-assembly was investigated by
performing simulations on solutions of DPPC in water in contact with CNTs of different diameters:
CNT (10, 10), CNT (14, 14), CNT (20, 20), and CNT (34, 34). DPPC solutions with a wide range of
concentrations were chosen to allow for formation of lipid structures of various surface densities,
ranging from a submonolayer to a well-organized monolayer and a CNT covered with a lipid
monolayer immersed in a planar lipid bilayer. Our results are indicative of a sequence of phase-
ordering processes for DPPC on the surface of CNTs. At low surface coverages, the majority of
hydrocarbon tail groups of DPPC are in contact with the CNT surface. Increasing the surface
coverage leads to the formation of hemimicellar aggregates, and at high surface coverages close to
the saturation limit, an organized lipid monolayer self-assembles. An examination of the mechanism
of self-assembly reveals a two-step mechanism. The first step involves densification of DPPC on the
CNT surface. Here, the lipid molecules do not adopt the order of the target phase (lipid monolayer on
the CNT surface). In the second step, when the lipid density on the CNT surface is above a threshold
value (close to saturation), the lipid molecules reorient themselves to form an organized monolayer
around the tube. Here, the DPPC molecules adopt stretched conformations normal to the surface, the
end hydrocarbon groups adsorb on the surface, and the head groups occupy the outermost part of
the monolayer. The saturation density and the degree of lipid ordering on the CNT surface depend
on the surface curvature. The saturation density increases with increased surface curvature, and
better-ordered structures are formed on less curved surfaces.

Keywords: carbon nanotubes; dissipative particle dynamics; lipids; self-assembly

1. Introduction

Understanding the self-assembly rules of lipid molecules plays a key role in life
sciences. Among the lipid molecules, phospholipids, which are the main components
of biological membranes, are of particular importance. In this respect, self-assembly
of phospholipids from aqueous solution to form structures ranging in complexity and
morphology from spherical vesicles [1] to nanotubes [2] has been widely studied. Such
investigations have a diverse range of applications in many areas of science and technology,
such as the design of nanomaterials, drug delivery, and controlled release [3].

Inspired by the unique physical properties of carbon nanotubes (NCTs), such as
their excellent mechanical strength and chemical stability, light weight, and high thermal
conductivity [4,5], researchers have taken advantage of the physical and chemical properties
of CNTs in biomedical applications. The hydrophobicity-induced aggregation of CNTs, on
the other hand, prevents their applications for such purposes. Over the past two decades,
scientists have found that covalent and/or noncovalent surface modification of CNTs
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prevents their aggregation [6,7]. The noncovalent strategy preserves the inherent properties
of nanotubes and is therefore preferable over the covalent alternative. This method employs
the hydrophobic interactions between amphiphilic molecules and the CNT surface, as well
as the hydrophilic interactions between water and amphiphiles, to dissolve the CNT, i.e., to
stabilize the aqueous dispersion. Among possible amphiphiles, phospholipids are regarded
as an interesting class of material with respect to formation of supramolecular complexes
with CNTs. The resulting supramolecular assemblies take advantage of the physical and
chemical properties of the constituent components, i.e., lipids and CNTs. The combination
of lipid–lipid, lipid–CNT, and lipid–water interactions guides the self-assembly toward
the formation of structures that cannot be obtained in the absence of CNTs. Furthermore
surface coating by lipids makes the CNTs biocompatible [8,9].

Experimental investigations have addressed the adsorption of surfactants and lipid
molecules dissolved in aqueous solutions on CNTs [10–14]. Transmission electron mi-
croscopy experiments have shown that single-tailed phospholipids form supramolecular
complexes on the surface of CNTs [10,15]. Recently, self-assembly of phospholipids on
CNTs has been shown to result in the formation of double-helical phospholipid-modified
nanotube structures [16,17]. Such experimental findings are remarkable in view of the
types of structures formed on the surface of CNTs and the potential applications of lipid–
CNT hybrids. However, a molecular-level understanding of the adsorption process and
the mechanism of structural formation of lipids on the surface of CNTs cannot easily be
obtained from experimental results. Computer simulations, on the other hand, allow for
a detailed investigation of the mechanism of aggregate formation and the dynamics of
self-assembly at the molecular level.

To date, a number of atomistic simulations [18–20] have addressed the mechanism
of adsorption of single- and double-tailed lipids on CNTs. Owing to the complexity and
size of the systems under investigation, coarse-grained simulations [20–22] have also been
performed to elucidate the mechanism of lipid self-assembly on the surface of CNTs.

In this work, in order to simulate larger systems over longer time scales than are
achievable in atomistic simulations, we employ dissipative particle dynamics (DPD) simu-
lations. DPD is a coarse-grained method, which, upon careful parametrization, can provide
meaningful results. Because phosphatidylcholines are the most important component of
living organisms, we perform our simulations on a model membrane, dipalmitoylphos-
phatidylcholine (DPPC). DPPC is known as a useful model for understanding the physical
properties of biological membranes [23,24]. We examine the effects of lipid concentration
and surface curvature of CNTs on the structural evolution of lipid aggregates at the CNT
interface and investigate the mechanism of self-assembly.

2. Model and Simulation Details

We employ a coarse-grained (DPD) model to describe lipid molecules, the solvent
(water), and CNTs. DPD is a particle-based simulation scheme in which the motion of
particles is governed by Newton’s law. There are three components of force considered
in this method [25]: a pairwise, nonbonded, conservative force; a random force; and a
dissipative force. The conservative force between two DPD beads, i and j, reads as:

FC
ij = aij

(
1 −

rij

rC

)
^
rij (1)

where rC is the cutoff distance, rij is the distance between beads i and j,
^
rij = rij/ rij is a unit

vector, and the aij is the maximum repulsion. The expressions for random and dissipative
forces are as follow:

FR
ij = σ

(
1 −

rij

rC

)
θij∆t−1/2^

rij (2)
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and

FD
ij = −γ

(
1 −

rij

rC

)2(
^
rij·vij

)
^
rij (3)

where σ is the noise strength, θij is a random variable with a Gaussian distribution and
unit variance, ∆t is the time step, γ is the dissipation strength, and vij is the relative
velocity vector between i and j. Whereas random force heats up the system, the dissipative
force cools it down. In other words, the combination of random and dissipative forces
acts as the DPD thermostat. According to the fluctuation–dissipation theorem, noise and
dissipation strengths are linked by the relation σ2 = 2γkBT (kBT being the thermal energy
per bead) [25]. Owing to its computational efficiency, the DPD method has been widely
employed for simulation of fluids of a variety of molecular shapes and complexities [26,27].

In our model, a combination of four water molecules is regarded a single DPD bead.
The volume of four water molecules corresponds to 0.12 nm3. We performed our DPD
simulations at a reduced density of ρ = 3. This means that there are three water molecules
in a cube of volume (r3

C); therefore, in our simulations, rC = 0.71 nm. In this work, the
parameters rC and kBT are used to reduce the length and energy parameters, respectively.

The DPD model for DPPC is shown in Figure 1. Each lipid molecule consists of
12 DPD beads (4 head-group and 12 tail-group beads). The DPPC beads are connected by
harmonic bonds:

ubond =
1
2

kbond

(
r − r0

ij

)2
(4)

where ubond is the bond potential, kbond is the force constant, and r0
ij is the equilibrium

bond length for the bond between beads i and j. The angle potential, uangle, is expressed as:

uangle =
1
2

kangle

(
1 − cos

(
θijk − θ0

ijk

))
(5)

where kangle is the force constant, and θ0
ijk is the equilibrium angle.
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Figure 1. The mapping scheme adopted in this work for (a) dipalmitoylphosphatidylcholine 
(DPPC) and (b) carbon nanotubes. Each DPPC molecule is lumped into 12 beads: four head groups 
(h1, h2, and h3) and eight tail groups (t). The black points in panel (b) represent the centers of beads. 

Figure 1. The mapping scheme adopted in this work for (a) dipalmitoylphosphatidylcholine (DPPC)
and (b) carbon nanotubes. Each DPPC molecule is lumped into 12 beads: four head groups (h1, h2,
and h3) and eight tail groups (t). The black points in panel (b) represent the centers of beads.

The DPD interaction parameters for DPPC were recently parameterized in Ref. [24].
The mapping scheme for CNT is based on a previously developed coarse-grained model of
graphene [28,29], in which eight C atoms are regarded as a single bead.

The DPD repulsion parameter for water in the present four-to-one mapping, aww = 100,
reproduces the compressibility of water at room temperature. Therefore, all DPD repulsion
parameters for beads of the same type were set to 100, and the cross-interaction parameters
were determined according to the Flory−Huggins χ-parameter. In order to avoid dealing
with explicit electrostatic interactions in DPD [30], we slightly increased the repulsion
strength between the similarly charged head groups of DPPC (ah1h1 = ah2h2 = 110) to
compensate for electrostatic repulsion [24]. The DPPC bilayer model was previously vali-
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dated [24] by simulating a DPPC bilayer immersed in pure water and comparing the area
per lipid molecule and the bilayer thickness against experiment and existing atomistic
simulation results in the literature [23]. The DPD repulsion parameters (aij), as well as the
parameters for bonded potentials, are reported in Table 1.

Table 1. DPD parameters for DPPC, water, and carbon nanotubes (CNTs).

(a) Bonded potential

bond type i-j kij (kBT/r2
C) r0

ij (rC)
h1–h2 512 0.47
h2–h3 512 0.47
h3–h3 512 0.31
h3–t 512 0.59
t–t 512 0.59

(b) Angle-bending potential

angle type i-j-k kkangle
(kBT) θ0

ijk(degree)
h2–h3–h3 6 120.0
h2–h3–t 6 180.0
h3–t–t 6 180.0
t–t–t 6 180.0

(c) Repulsion parameters, aij, for all bead types

h1 h2 h3 t w CNT
h1 110 100 102 130 98 130
h2 100 110 102 130 98 130
h3 102 102 100 110 102 110
t 130 130 110 100 130 100

w 98 98 102 130 100 130
CNT 130 130 110 100 130 100

We simulated 44 systems, the details of which are tabulated in Table 2. Initial so-
lutions of DPPC in water were placed in contact with CNTs of varying diameters. The
number of DPPC molecules ranged from 10 to 500. In all samples, the number of water
beads was 20,000. In order to study the effect of surface curvature on self-assembly, we
simulated DPPC–water systems containing CNT (10, 10), CNT (14, 14), CNT (20, 20), and
CNT (34, 34) with diameters of ≈ 1.97, ≈2.67, ≈3.94, and ≈6.2, respectively. The tube
length in all simulations was ≈ 15.5, and the DPD tube beads were fixed in position during
the simulations. The tube was aligned along the y axis, and the box size along the y axis
(Ly) was kept close to 22.5 (larger than the tube length) in all simulations. All simulations
were performed in an isothermal–isobaric ensemble. The simulation box size in the x and z
directions (perpendicular to the tube axis) was allowed to change independently to keep
the perpendicular components of pressure fixed. All simulations were performed at 323 K
above the gel-to-liquid crystalline temperature of the DPPC model membrane (315 K) [24]
using the YASP simulation package [31]. All the starting configurations were established by
randomly inserting lipid molecules and water in a large simulation box containing a single
CNT, with no overlap between lipid, water, and CNT beads. No water or lipid beads were
allowed to be inserted inside the CNT. A wide range of concentrations of DPPC in water
were chosen (see Table 2). We performed long DPD simulations (1.3 × 105, corresponding
to 500 ns) to achieve equilibration. Equilibration was monitored as the stage where the
number of DPPC molecules in the solution becomes constant (close to zero).
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Table 2. Details of the systems simulated in this work.

Substrate Number of DPPC Lipid Molecules Equilibrium Box Size

CNT (10, 10) 10 17.56 × 22.53 × 17.39
50 17.66 × 22.55 × 17.68

100 17.89 × 22.52 × 17.93
150 18.20 × 22.53 × 18.10
200 18.38 × 22.53 × 18.39
250 18.66 × 22.55 × 18.56
300 18.95 × 22.55 × 18.73
350 18.51 × 22.56 × 19.62
400 18.99 × 22.41 × 19.72
450 18.91 × 22.48 × 20.18
500 19.03 × 22.56 × 20.44

CNT (14, 14) 10 17.49 × 22.55 × 17.52
50 17.72 × 22.55 × 17.69

100 17.91 × 22.53 × 17.97
150 18.17 × 22.53 × 18.18
200 18.41 × 22.52 × 18.42
250 18.65 × 22.55 × 18.66
300 18.93 × 22.45 × 18.88
350 19.08 × 22.58 × 19.07
400 19.27 × 22.65 × 19.28
450 19.62 × 22.49 × 19.51
500 19.70 × 22.56 × 19.79

CNT (20, 20) 10 17.73 × 22.53 × 17.41
50 17.65 × 22.55 × 17.86

100 17.96 × 22.55 × 18.03
150 18.32 × 22.59 × 18.14
200 18.41 × 22.59 × 18.51
250 18.70 × 22.55 × 18.66
300 18.92 × 22.45 × 18.99
350 19.08 × 22.59 × 19.15
400 19.31 × 22.66 × 19.31
450 18.44 × 22.51 × 20.83
500 18.37 × 22.58 × 21.31

CNT (34, 34) 10 17.76 × 22.55 × 17.56
50 18.15 × 22.55 × 17.56

100 18.19 × 22.53 × 17.99
150 18.32 × 22.53 × 18.32
200 18.58 × 22.52 × 18.52
250 18.66 × 22.53 × 18.90
300 18.97 × 22.55 × 19.08
350 18.90 × 22.59 × 19.49
400 19.66 × 22.44 × 19.31
450 19.41 × 22.52 × 19.91
500 19.80 × 22.59 × 19.89

3. Results and Discussion
3.1. Clustering and Surface Adsorption of DDPC

With the shrinkage of box size during the course of simulation, the DPPC molecules in
the solution form dimers, trimers, and larger aggregates. Aggregate formation is interpreted
in terms of higher concentrations of DPPC in solution in our samples than the critical micelle
concentration of DPPC (0.5 nM) [20]. A snapshot of simulation box showing aggregate
formation in DPPC is shown in Figure 2.



Nanomaterials 2022, 12, 2653 6 of 13

Nanomaterials 2022, 12, x FOR PEER REVIEW 6 of 14 
 

 

3. Results and Discussion 
3.1. Clustering and Surface Adsorption of DDPC 

With the shrinkage of box size during the course of simulation, the DPPC molecules 
in the solution form dimers, trimers, and larger aggregates. Aggregate formation is 
interpreted in terms of higher concentrations of DPPC in solution in our samples than the 
critical micelle concentration of DPPC (0.5 nM) [20]. A snapshot of simulation box 
showing aggregate formation in DPPC is shown in Figure 2. 

 
Figure 2. Snapshot of the simulation box, indicating clustering of DPPC molecules in the solution. 
Both free DPPC molecules (monomers) and clusters adsorb on the surface of CNT (14, 14). Water 
molecules are not shown. 

Owing to the favorable hydrophobic interactions between the tail groups of DPPC 
and the CNT, as well as the hydrophilic head group-water interactions, the DPPC 
hydrocarbon tails adsorb on the surface of the CNT. Both monomers and larger 
aggregates adsorb on the CNT surface, and the lipid molecules reorient on the CNT 
surface to form stable configurations, depending on the DPPC concentration and the 
CNT diameter. We have shown the time-dependence of the fraction of initial DPPC 
molecules in the solution, which are adsorbed on the surface of CNT (10, 10), CNT (14, 
14), CNT (20, 20), and CNT (34, 34), as shown in Figure 3. A lipid molecule is defined as 
adsorbed on the surface of the CNT if at least one of its constituent beads is within a 
distance of 1.06 from the surface. The monotonic increase in the fraction of 
surface-adsorbed lipid molecules with time indicates one-by-one addition of lipids from 
the solution to the CNT surface. However, the jump in the fraction of surface-adsorbed 
lipids indicates joining of the large clusters to the surface. As larger-diameter CNTs 
provide a larger surface area, the rate of surface adsorption is higher on the surface of 
larger-diameter CNTs. Fluctuations in the fraction of adsorbed lipid molecules in 
equilibrium reveals that some of the surface-adsorbed molecules are exchanged between 
the solution and the CNT surface. Expectedly, larger fluctuations are observed on the 
surface of more curved CNTs, which provide less attraction for lipid adsorption than less 
curved surfaces [32,33].  

Figure 2. Snapshot of the simulation box, indicating clustering of DPPC molecules in the solution.
Both free DPPC molecules (monomers) and clusters adsorb on the surface of CNT (14, 14). Water
molecules are not shown.

Owing to the favorable hydrophobic interactions between the tail groups of DPPC and
the CNT, as well as the hydrophilic head group-water interactions, the DPPC hydrocarbon
tails adsorb on the surface of the CNT. Both monomers and larger aggregates adsorb
on the CNT surface, and the lipid molecules reorient on the CNT surface to form stable
configurations, depending on the DPPC concentration and the CNT diameter. We have
shown the time-dependence of the fraction of initial DPPC molecules in the solution, which
are adsorbed on the surface of CNT (10, 10), CNT (14, 14), CNT (20, 20), and CNT (34, 34),
as shown in Figure 3. A lipid molecule is defined as adsorbed on the surface of the CNT
if at least one of its constituent beads is within a distance of 1.06 from the surface. The
monotonic increase in the fraction of surface-adsorbed lipid molecules with time indicates
one-by-one addition of lipids from the solution to the CNT surface. However, the jump in
the fraction of surface-adsorbed lipids indicates joining of the large clusters to the surface.
As larger-diameter CNTs provide a larger surface area, the rate of surface adsorption is
higher on the surface of larger-diameter CNTs. Fluctuations in the fraction of adsorbed
lipid molecules in equilibrium reveals that some of the surface-adsorbed molecules are
exchanged between the solution and the CNT surface. Expectedly, larger fluctuations
are observed on the surface of more curved CNTs, which provide less attraction for lipid
adsorption than less curved surfaces [32,33].

3.2. Surface Saturation of CNTs with DPPC

The number of lipid molecules in the solution (see Table 2) varies over a wide range. At
the low-concentration limit, only a submonolayer lipid forms on the CNT surface. However,
at the highest concentrations investigated in this work, a complete monolayer forms around
the CNT (the CNT surface saturates with DPPC), and some excess lipid molecules form a
bilayer in contact with the surface-coated CNT in the solution. Figure 4 shows snapshots of
a simulation box, revealing CNT surface saturation with DPPC and formation of a planar
bilayer in the solution. This indicates that at concentrations higher than the saturation
limit, formation of a planar bilayer in the system is more favorable than formation of a
second layer (bilayer) around the tube. This is in agreement with simulation results of the
penetration of CNTs in DPPC [34]; parallel (to the bilayer) insertion of the CNT does not
affect the bilayer stability, as the bilayer is able to self-seal. In the systems containing CNT
(34, 34), owing to the large diameter of tube, the lipid molecules also adsorb on the inner
surface (inside) of the tube.
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Based on the examined DPPC concentrations and the types of CNTs in the solution,
we calculated the amount of DPPC needed to saturate the surface of the CNT. The results
in Figure 5 show that at saturated coverage, the surface density increases with decreased
tube diameter. The head groups of DDPC are larger than the tail groups. There is more
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space on the outer surface of more curved (smaller diameter) tubes to accommodate larger
head groups, which occupy the outermost part of the monolayer. This explains the increase
in the surface density of DPPC with increased surface curvature of the CNT.
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3.3. Ordering of DPPC Molecules on the CNT Surface

At concentrations lower than the saturated coverage conditions, the CNT surface is
not fully covered by DPPC molecules. At low surface coverages, the favorable tail-group–
CNT attractions cause parallel (to the CNT surface) orientations of DPPC molecules. In
such conformations, the hydrophobic tail groups of DPPC attach to the CNT surface. and
its hydrophilic head groups orient away from the surface (see Figure 6a) to be hydrated
by the surrounding water molecules. Increasing the DPPC concentration in the solution
increases the CNT surface coverage. The adsorbed DPPC molecules on the surface of
the CNT adopt conformations in which the lipid tail groups are in contact with the CNT,
whereas the head groups are in contact with each other and with the aqueous solution.
This structure is similar to that of hemimicelles in solution [30]. In the hemimicellar
structures on the CNT surface, an almost random orientation of lipid molecules is observed
(Figure 6b). However, at densities close to saturation limit, the DPPC molecules adopt
ordered conformations normal to the CNT surface (see Figure 6c,d). This reveals that the
self-assembly of lipid molecules on the surface of CNTs involves a sequence of processes.
At low surface coverages, the surface-adsorbed lipid molecules adopt extended structures
on the surface; increasing the surface coverage leads to the formation of hemimicellar
aggregates; finally, at high surface coverages, an organized lipid monolayer self assembles.
To reveal the nature of this transition in detail, in the following, we quantified the order as
a function of surface density.

Figure 7 shows the (number) density profile of DPPC molecules adsorbed on the
surface of CNT (34, 34) as a function of distance from the surface. We discuss the results
in terms of the saturation density (ρs =1.074). At low surface densities (≈0.5ρs), the
lipid molecules adsorbed on the CNT surface are found in close vicinity of the surface.
With increased surface density, some DPPC molecules stretch away from the CNT surface.
However, the effect becomes more pronounced at densities close to the saturation (>0.9ρs).
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Our findings show that the self-assembly of lipid molecules into an organized mono-
layer structure, such as the structure shown in Figure 6d, only occurs at high surface cover-
ages (close to saturation). The first stage of self-assembly involves accumulation/aggregation
of lipid molecules on the CNT surface. However in this stage, the lipid molecules do not
adopt an orientation (normal to the CNT surface), in accordance with an organized mono-
layer. Only at high surface densities does the packing entropy cause lipid chains to stretch
away from the CNT surface, i.e., to self-assemble into an organized monolayer.

3.4. Mechanism of Lipid Ordering on the CNT Surface

Figure 8 shows the quantified order of lipid molecules adsorbed on the surface of
CNT (20, 20) immersed in aqueous solutions containing 100, 200, 300, 400, and 500 DPPC
molecules. The order is quantified in terms of the angle, θ, between two unit vectors: a
unit vector along the hydrocarbon tail groups of each chain and a unit vector normal to the
CNT surface. Here, θ = 0

◦
corresponds to the perpendicular alignment of DPPC molecules

around the tube, and θ = 90
◦

is tangent to the CNT surface orientations. The order for
two hydrocarbon chains of each lipid molecule is averaged. The normalized probability
distribution functions for the orientation of DPPC molecules adsorbed on the CNT surface
(see Figure 8) show that at low surface coverages (≈0.5ρs), a fraction of lipid molecules
adopt tilted conformations around the tube. Increasing the surface density improves the
lipid ordering around the tube, although a noticeable order is observed at high surface
densities, i.e., above 0.9ρs (see Figure 8 at ρ ≥ 1.19). With a further increase in the surface
density, highly ordered lipid chains form around the tube.
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Figure 8. Surface density dependence of the orientation of lipid molecules adsorbed on the surface of
CNT (20, 20). The CNT is immersed in solutions initially containing 100, 200, 300, 400, and 500 lipid
molecules. The orientation angle is defined as the angle between a unit vector parallel to the tail-group
beads and a unit vector normal to the CNT surface.

This is reminiscent of a two-step mechanism of nucleation/solidification previously
described in phase ordering of colloidal particles [35]. The first step of this two-step
mechanism involves densification. In this step, the lipid molecules occupy the CNT surface,
but they do not adopt the order of the target phase (lipid monolayer on the CNT surface).
In other words, during this step, the positional ordering (densification) occurs prior to
orientational ordering. Entropically, it is more favorable for the low-density lipid chains to
adopt random orientations on the CNT surface. When the density increases to a threshold
value close to that of the target phase, the lipid molecules reorient themselves to form an
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ordered structure on the CNT surface. In this second step, the density does not increase
noticeably; rather, the change in orientational ordering is the dominant process. This phase
ordering at high densities increases the packing entropy [35,36] of lipid chains.

4. Conclusions

We performed dissipative particle dynamics (DPD) simulations to investigate the
self-assembly of dipalmitoylphosphatidylcholine (DPPC) as a model lipid membrane on
the surface of carbon nanotubes (CNTs). The DPD interaction parameters were well-tuned
against bilayer thickness and surface area per lipid molecule for a DPPC bilayer immersed
in pure water [24]. We simulated a number of systems, each with a single CNT immersed
in solutions of DPPC in water. The concentration of DPPC in water was varied over a
wide range to allow for a wide range of CNT surface coverages: from a submonolayer to
a well-organized monolayer and a lipid-covered CNT immersed in a planar lipid bilayer.
This allowed us to study the mechanism of the phase-ordering process, depending on the
surface density of the lipid. Moreover, in order to study the effect of surface curvature on
self-assembly, we simulated systems containing CNTs of varying diameters: CNT (10, 10),
CNT (14, 14), CNT (20, 20), and CNT (34, 34).

The DPPC molecules in the solution form dimers, trimers, and larger aggregates. The
favorable hydrophobic interactions between the hydrocarbon tails of DPPC and CNT, as
well as hydrophilic head-group–water interactions lead to surface adsorption of DPPC. In
the early stages of self-assembly, aggregates of all size may adsorb on the CNT surface.
The adsorbed lipid molecules then adopt an equilibrium surface packing/orientation,
depending on the degree of surface coverage. At the low concentration (of DPPC in
solution) limit, only a submonolayer lipid forms on the CNT surface. However, at high
concentrations, the CNT surface is fully covered with an organized DPPC monolayer. This
saturation surface density depends on the CNT diameter (surface curvature); it increases
with increased surface curvature. This is interpreted in terms of the larger size of DPPC
head groups compared to tail groups. A larger space is accessible to larger head groups
on more curved surfaces. With a further increase in the initial concentration of DPPC
in solution (above the saturation density of the CNT surface), the excess lipid molecules
form a bilayer in contact with the surface-coated CNT in the solution. This finding is in
agreement with previous simulation results of the penetration of CNTs in DPPC [34], where
the bilayer remains stable upon parallel (to the bilayer) insertion of a CNT.

Depending on the initial concentration of DPPC in the solution (surface coverage), a
sequence of phase-ordering processes occurs on the CNT surface. At low surface coverages,
the favorable tail-group–CNT attractions cause parallel (to the CNT surface) orientations
of DPPC molecules. The majority of hydrophobic tail groups of DPPC attach to the CNT
surface, and the hydrophilic head groups orient away from the surface. With increased
surface coverage, DPPC hemimicellar structures with an almost random orientation of lipid
molecules with respect to the CNT surface form on the surface. However, at densities close
to the saturation limit, the DPPC molecules form an organized monolayer around the tube.
Here, the DPPC molecules adopt stretched conformations normal to the surface, the end
hydrocarbon tails adsorb on the CNT surface, and the head groups occupy the outermost
part of the monolayer.

Our findings are indicative of a two-step mechanism of self-assembly of lipids on
the CNT surface. In the first step, dense DPPC aggregates form on the CNT surface. In
this stage, the adsorbed lipid molecules do not adopt the order of the target phase (lipid
monolayer on the CNT surface). In the second step, wherein the lipid density on the
CNT surface is above a threshold value (close to saturation), the lipid molecules reorient
themselves to form an ordered monolayer around the tube. In this step, the density does
not increase noticeably; rather, the change in orientational ordering is the dominant process.
This phase ordering at high densities increases the packing entropy [35,36] of lipid chains.
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