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Abstract

A dendritic spine is a very small structure (,0.1 mm3) of a neuron that processes input timing information. Why are spines so
small? Here, we provide functional reasons; the size of spines is optimal for information coding. Spines code input timing
information by the probability of Ca2+ increases, which makes robust and sensitive information coding possible. We created
a stochastic simulation model of input timing-dependent Ca2+ increases in a cerebellar Purkinje cell’s spine. Spines used
probability coding of Ca2+ increases rather than amplitude coding for input timing detection via stochastic facilitation by
utilizing the small number of molecules in a spine volume, where information per volume appeared optimal. Probability
coding of Ca2+ increases in a spine volume was more robust against input fluctuation and more sensitive to input numbers
than amplitude coding of Ca2+ increases in a cell volume. Thus, stochasticity is a strategy by which neurons robustly and
sensitively code information.
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Introduction

A dendritic spine is a small structure on the dendrites of a

neuron that processes input timing information from other

neurons, and typically, tens to hundreds of thousands of spines

are present on a neuron [1,2]. Small volumes and large numbers

are representative characteristics of spines. For example, the

volume of the spines at the parallel fibre (PF)-cerebellar Purkinje

cell synapse is approximately 0.1 mm3 [3], which is 104-fold

smaller than the cell body (5,000 mm3) [4,5], and 175,000 spines

are present on a single neuron (Fig. 1A) [1]. Cerebellar Purkinje

cells receive two inputs: PF inputs from granular neurons that are

thought to code sensorimotor signals and a climbing fibre (CF)

input from inferior olivary nucleus that is thought to code error

signal [6–8]. The timing between the PF-CF activation has been

shown to be important for associative eyelid conditioning in

cerebellar learning [9,10]. Coincident PF and CF inputs but not

PF or CF inputs alone to spines at the PF-Purkinje cell synapse

induce large Ca2+ increases via IP3 (inositol trisphosphate)-induced

Ca2+ release (IICR) from intracellular Ca2+ stores, such as the

endoplasmic reticulum (ER) [11,12] (Fig. 1B). Large Ca2+

increases subsequently trigger long-term decreases of synaptic

strength that are known as cerebellar long-term depression (LTD)

[13], which is thought to be the molecular and cellular basis of our

motor learning [7].

Ca2+ increases depend on the relative timing of the PF and CF

inputs, and the time window between PF and CF inputs that

produces Ca2+ increases has been experimentally determined

(Fig. 1C) [12]. Large Ca2+ increases occur only when PF and CF

inputs are coincident at a given synapse within a 200 msec time

window. We previously developed a deterministic kinetic model of

PF and CF inputs-dependent Ca2+ increases based on experimen-

tal findings and reproduced the time window curve of the Ca2+

increase [14]. However, in a spine, the number of signaling

molecules is limited to tens to hundreds (Fig. 1B); thus, the

number of molecules should fluctuate due to stochastically

occurring reactions. Indeed, experimentally, the same coincident

PF and CF inputs do not always induce similar large Ca2+

increases; in some cases, large Ca2+ increases are observed,

whereas in other cases, they are not (Fig. 1C) [12]. How can a

spine robustly and sensitively code input timing information under

such stochastic conditions with limited numbers of molecules [15–

17]? To address this issue, we created a stochastic simulation

model of input-timing-dependent Ca2+ increase in a spine volume

based on the deterministic kinetic model of Ca2+ increase in a

spine at the PF-Purkinje cell synapse [14] that incorporated

stochastic reactions due to the small number of molecules.
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Results

Stochastic simulation of Ca2+ increase in a spine at the
PF-Purkinje cell synapse

We used the same kinetic framework and parameters of PF and

CF inputs-dependent Ca2+ increase in the stochastic simulation

used in our previous deterministic model [14]: the PF inputs

presynaptically released glutamate (Fig. 1B). Glutamate binds and

activates metabotropic glutamate receptors (mGluRs), which leads

to an increase in IP3. Glutamate also binds and activates a-amino-

3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AM-

PARs), which leads to an increase in Ca2+ influx through indirect

activation of voltage-gated Ca2+ channels (VGCC). The CF input

causes Ca2+ influx through VGCCs. The IP3 receptor, an

intracellular Ca2+ channel, is activated only when it binds

simultaneously with both IP3 and Ca2+. When the ternary

complex of Ca2+?IP3?IP3 receptor is formed by the PF input, the

Ca2+ influx via CF input triggers a positive feedback loop of Ca2+-

dependent Ca2+ release that leads to a large Ca2+ increase from

intracellular Ca2+ stores, such as the ER. This large Ca2+ increase

induces a delayed negative feedback inhibition of Ca2+ release

from the stores at higher levels of Ca2+. Therefore, PF and CF

inputs-dependent Ca2+ increase is generated by positive- and

delayed negative-feedback loops. This forms a single, large and

transient Ca2+ increase, depending on the relative timing of the PF

and CF inputs.

Figure 1. Ca2+ increase in cerebellar Purkinje cells. A, Cerebellar Purkinje cells. Male mouse cerebellar Purkinje cells were doubly stained with
anti-calbindin antibody to visualize whole cells (green) and with anti-mGluR (metabotropic glutamate receptor) antibody to specifically visualize the
spines of the PF-Purkinje cell synapses (red). The inset in the left image is magnified in the right panel. The average volume of spines in cerebellar
Purkinje cells has been reported to be 0.1 mm3, which is 104-fold smaller than a cell body (5,000 mm3). White circles in the left and right panels
indicate a typical soma and spine, respectively. B, Schematic representation of PF and CF inputs-dependent Ca2+ increase in the simulation model
[14] (Materials and Methods). Abbreviations: Glu; glutamate, mGluR; metabotropic glutamate receptor, IP3; inositol trisphosphate; AMPAR; a-amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid receptor, VGCC; voltage-gated Ca2+ channels. Parentheses indicate initial numbers of the indicated
molecules in the stochastic model. C, Ca2+ responses along the PF-CF interval in the experiments (black circles) [12], and mean Ca2+ responses in the
stochastic simulation in a spine volume (0.1 mm3) (solid line) and in the stochastic simulation in a cell volume (5,000 mm3) (dashed line). The Ca2+

response was defined as the average relative change in fluorescence (DF/F0) of Magnesium Green 1, a Ca2+ indicator [14]. Positive sign of the interval
are given to Dt msec when PF inputs precede CF inputs; otherwise, a negative sign is given. Five PF inputs at 100 Hz and a single CF were given.
doi:10.1371/journal.pone.0099040.g001
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We performed stochastic simulation of the Ca2+ increase due to

PF and CF inputs in a spine and in a cell volume (Fig. 2, Fig. S1).

The volumes of spines and cells have been reported to be 0.1 mm3

[3] and 5,000 mm3 [4,5], respectively. We hereafter denote

0.1 mm3 as a spine volume and 5,000 mm3 as a cell volume. In

response to coincident PF and CF inputs (Dt = 160 msec), a large

Ca2+ increase was always observed in a cell volume (Fig. 2A, black

lines). In a spine volume, a large Ca2+ increase was observed in

many (1371 cases in 2000 trials) but not all cases (Fig. 2A, gray

lines). In response to PF and CF inputs with reversed timing

(Dt = 2400 msec), no large Ca2+ increase was observed in a cell

volume (Fig. 2B, black lines). In a spine volume, however, a large

Ca2+ increase was observed in some cases (690 cases in 2000 trials),

but not in many cases (Fig. 2B, gray lines). In both timing, the

amplitudes of the Ca2+ increases fluctuated between trials in a

spine volume, but not in a cell volume. Regardless of the input

timing, Ca2+ increase occurred only once. In order to quantify the

large Ca2+ increase, we measured the response of Ca2+ increase by

logarithm of temporally integrated Ca2+ subtracted by the basal

Ca2+ concentration (Materials and Methods). The probability

distribution of the Ca2+ response in a spine volume appeared

bimodal (Fig. 2C). The narrow mode on the left corresponds with

trials of no Ca2+ increase, and the wide mode on the right

corresponds with the trials with large Ca2+ increases. In response

to coincident PF and CF inputs, the height of the right mode

increased and that of the left mode decreased. The mean of each

mode appeared similar, regardless of the timing between the PF

and CF inputs. This finding suggests that in a spine volume, the

timing information is encoded by the probability of a large Ca2+

increase (fraction of trials) rather than the amplitude of Ca2+

increase.

Probability coding of Ca2+ increase in a spine
We next examined the distribution of the Ca2+ response in

every 20 msec PF-CF intervals between 2400 msec and 600 msec

in a spine volume (Fig. 3A, left panel). In all PF-CF intervals, the

probability distribution of the Ca2+ response appeared bimodal. In

the time window between 0 msec and +340 msec PF-CF intervals,

the upper mode of the distribution appeared dominant. Outside of

this time window, the lower mode of the distribution appeared

dominant. Such bimodality was not observed at all in the

distribution in a cell volume, where unimodality was always

observed regardless of the PF-CF interval (Fig. 3B, left panel). In

both a spine and a cell volume, however, the mean Ca2+ response

showed similar graded bell-shaped curves (Fig. 1C). These results

suggest that information of the PF-CF interval is coded by the

probability of a large Ca2+ increase in a spine volume, and by the

amplitude of a large Ca2+ increase in a cell volume.

Therefore, we examined whether the probability or amplitude

of the Ca2+ increase codes the information on PF-CF interval by

decomposing the distribution of the Ca2+ response into the

probability and amplitude components (Fig. 2D, Materials and

Methods). First, we determined the threshold between the two

peaks of the marginal distributions (Fig. 3, arrowheads in left

panels). Then, we divided the distribution by the threshold (i.e.

distributions above or below the threshold). The probability

component of the distribution was defined as the frequencies of the

Ca2+ response in each divided distribution (Fig. 2D, middle

panel). The amplitude component was defined as the distribution

of the Ca2+ response in each divided distribution (Fig. 2D, bottom

panel). The total distribution of the Ca2+ response (Fig. 2D, top

panel) is the sum of the amplitude components weighted with the

probability components (see Materials and Methods).

In a spine volume, the probability component of the Ca2+

response was graded bell-shaped curves along the PF-CF interval

(Fig. 3A, middle panel), whereas the amplitude component of the

Ca2+ response was similar regardless of the PF-CF interval

(Fig. 3A, right panel). This result indicates that in the stochastic

model in a spine volume, timing information between PF and CF

inputs is coded by the probability component of the Ca2+ response

rather than the amplitude component of the Ca2+ response.

In contrast, in a cell volume, the amplitude component of the

Ca2+ response showed a graded bell-shaped curve along the PF-

CF interval (Fig. 3B, right panel). However, the probability

component of the Ca2+ response was a rectangular curve along the

PF-CF interval (Fig. 3B, middle panel), meaning that the

probability component can be used only to detect the binary

input timing information on whether the input timing was inside

or outside the time window; it cannot be used for the detection of

the small input timing difference. In an intermediate volume, both

the probability and amplitude components showed intermediate

property between those of the spine and cell volume (Fig. 3C,

middle and right panels). These results suggest that the probability

and amplitude components of the Ca2+ response are the dominant

factor in the distribution of the Ca2+ response in a spine volume

and in a cell volume, respectively.

We next quantified the input timing information coded by the

distribution of the Ca2+ response, the probability components, and

the amplitude components in a volume-dependent manner

(Fig. 3D, Fig. S2). We first measured the total input timing

information coded by the distribution of the Ca2+ response by

mutual information between the Ca2+ response and PF-CF

interval (Fig. 3D, black line). Then, we calculated the distribution

without the probability component or amplitude component from

the original distribution of the Ca2+ response (Fig. S2, Materials
and Methods). We measured the information coded by the

probability component by the Kullback–Leibler (KL) divergence

of the probability component-removed distribution from the

original distribution of the Ca2+ response (Fig. 3D, red line).

Similarly, we measured the information coded by the amplitude

component by the KL divergence of the amplitude component-

removed distribution from the original distribution of the Ca2+

response (Fig. 3D, blue line). The input timing information coded

by the probability component, amplitude component, and original

distribution increased monotonically as the volume became larger

(Fig. 3D). As the volume increased, the information coded by the

probability component gradually increased and converged to 1bit

in a cell volume, indicating that a cell can discriminate binary

information with the probability component (Fig. 3D, red line).

The information coded by the amplitude component was lower

than that coded by the probability component in a spine volume,

and became larger than that coded by the probability component

in the volume larger than 10 mm3 (Fig. 3D, blue line). The total

information on input timing in a cell volume was larger than that

in a spine volume; however, a spine is much smaller than a cell in

the first place. To fairly compare the information coding capability

across volumes, we divided the mutual information by the volume

and obtained the mutual information per volume (Fig. 3E). The

mutual information per volume was the largest in a volume of

0.5 mm3, which suggests that a spine has the nearly optimal

volume for the information coding in terms of the input timing

information per volume. In other words, input timing information

is coded most efficiently in the volume around a spine volume if

given the fixed amount of materials and space.

Next, we examined the relative contribution of the probability

or amplitude component to the total information (Fig. 3F). We

divided the information coded by probability or amplitude

Probabilistic Coding of Ca2+ Increase in Spines
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component by the sum of them, which is equal to the total

information. The contribution of the probability component was

larger than that of amplitude component in the volume smaller

than 8 mm3. This indicates that the probability coding was

dominant in a spine. Together with the result of efficient

information coding per volume in a spine, the probability coding

in this study could be one of stochastic facilitation, the

phenomenon in which information transmission is enhanced by

stochasticity [18]. In contrast, in the larger volume, the relative

contribution of the amplitude component became larger than that

of the probability component, indicating that amplitude coding is

dominant. Thus, a spine codes input timing information by the

probability component of the distribution of the Ca2+ response by

utilising its stochasticity which derives from its smallness, and a cell

codes input timing information by the amplitude component of the

distribution. In addition, this suggests that the same IICR system,

a Ca2+ increase generator, can switch between probability coding

and amplitude coding for input timing detection depending on the

volume. As volume in the stochastic simulation increased, the

behaviour of the stochastic model became similar to that of the

deterministic model, which has a volume that can be regarded as

infinity. Indeed, the stochastic simulation in a cell volume

(5,000 mm3) showed almost the same response as the previous

deterministic model (Fig. 2A, B, Fig. S1) [14]. Therefore, we

hereafter used the deterministic model as the model in a cell

volume.

Robust and sensitive information coding in a spine
Since glutamate release from PFs fluctuates between trials in the

physiological condition [19], the Ca2+ increase should be affected

by the fluctuation of the amplitude of PF inputs (PF amplitude).

We simulated the Ca2+ increase with the fluctuation of PF

amplitude between trials, and asked whether the probability

coding in spines are advantageous for robust information coding

on input timing against fluctuation of PF amplitude (Fig. 4A, B).

Here we use the term ‘‘robustness’’ of information coding as

invariability of input timing information against the increase of the

fluctuation of PF amplitude. The distributions of Ca2+ response in

a spine volume were similar regardless of the coefficient of

variation (CV) of the PF amplitude (Fig. 4A, upper panels).

However, the distribution of Ca2+ response in a cell volume

appeared to be affected by the CV of the PF amplitude (Fig. 4A,

lower panels). In a cell volume, distribution of Ca2+ response

showed larger variance if CV of PF amplitude were increased from

0.1 (Fig. 4A, lower left panel) to 0.5 (Fig. 4A, lower right panel).

These results suggest that input timing information coding is more

robust in a spine volume than in a cell volume. Indeed, the input

timing information coded by the Ca2+ response in a spine volume

remained almost constant regardless of the CV of the PF

amplitude (Fig. 4B, red line). The input timing information

decreased only by 14.3% when the CV of the PF amplitude

increased from 0.05 to 0.5 (Table 1). In contrast, the input timing

information in a cell volume largely decreased as the CV of the PF

amplitude increased (Fig. 4B, black line); it decreased by 76.9%

when the CV of the PF amplitude increased from 0.05 to 0.5

(Table 1). These results indicate that spines utilize their smallness

for the robust input timing information coding. The fluctuation in

the amplitude of EPSPs has been reported to be 50% [19], which

corresponds with a CV of 0.5. This fluctuation may be

overestimated due to the inclusion of postsynaptic fluctuation;

therefore, we used a CV of 0.1 for further study.

We also examined the sensitivity of the input timing information

to the number of PF inputs in spines and in a cell (Fig. 4C, D).

Here we use the term ‘‘sensitivity’’ of information coding as

invariability of input timing information against the decrease of

the number of PF inputs. In response to a single PF input, large

Ca2+ increase was not observed both in a spine and cell volume

(Fig. 4C, left panels). In response to three PF inputs, large Ca2+

increase appeared in a spine volume with PF-CF intervals around

200 ms, whereas large Ca2+ increase was not observed at all in a

cell volume (Fig. 4C, middle panels). In response to seven PF

inputs, large Ca2+ increase was observed both in a spine and cell

volume (Fig. 4C, right panels). These results suggest that input

timing information coding is more sensitive to the number of PF

inputs in a spine volume than in a cell volume. Indeed, when the

number of PF inputs was decreased from 5 to 3, input timing

information decreased only by 36.1% in a single spine, whereas it

decreased by 40.6% in a cell (Table 1). Taken together,

information coding in a spine volume was more robust against

the fluctuation of the PF amplitude and more sensitive to the small

number of the PF inputs than that in a cell volume.

Testable Prediction
Our results imply that the amplitude of a PF input, which

corresponds to concentration of a glutamate pulse, is coded by the

probability of large Ca2+ increase in a spine volume and the

amplitude of Ca2+ in a cell volume. This indicates that the

concentration of a glutamate pulse should be observed by the

number of spines with large Ca2+ increases in spines, whereas they

should be observed by large Ca2+ response in a soma whose

volume corresponds to a cell volume. Based on this, we propose

the following testable prediction (Fig. S4). Based on the simulation

results, we provided one of the predicted examples. With repetitive

application of a glutamate pulse with the same concentration, a

similar level of Ca2+ increase is always expected in a soma,

whereas a similar number of spines with large Ca2+ increase is

expected in spines (Fig. S4A). Importantly, the spines with large

Ca2+ increases and the amplitudes of Ca2+ increases in each spine

are different between trials. This result will support the idea that

generation of large Ca2+ increases in spines is stochastic rather

than deterministic. Upon repetitive application of glutamate pulses

of various concentrations, the number of spines with large Ca2+

increase and the amplitude of Ca2+ response in soma are predicted

to increase as the concentration of glutamate increases (Fig. S4B).

The spines with large Ca2+ increases are different between trials,

even at the same concentration of glutamate. Thus, repetitive

application of glutamate pulses at various doses to a Purkinje cell

will reveal the distinct characteristics of Ca2+ increases in spines

Figure 2. Ca2+ increases in the stochastic model. A, B, Ca2+ increase due to stimulation of PF and CF inputs with Dt = 160 msec (A) and Dt = 2
400 msec (B) in the stochastic model in a spine volume (gray lines, n = 2,000 for each timing, 20 examples are shown) and in a cell volume (black lines,
n = 20 for each timing). C, Distributions of the Ca2+ response in a spine volume with Dt = 160 msec (solid line) and Dt = 2400 msec (dashed line).
Black and white arrowheads indicate the means of the Ca2+ response in a cell volume with Dt = 160 msec and Dt = 2400 msec, respectively. Note
that Ca2+ increases in a cell volume were almost the same between trials, leading to the overlap of the time courses (A, B). D, The distribution of the
Ca2+ response (upper panel) was divided into the distribution with Ca2+ spikes (s = 1, black) and the distribution without Ca2+ spikes (s = 0, gray with
dashed line). Then, each right (s = 1) and left (s = 0) distribution is decomposed into the probability components, which is probability of Ca2+ spiking
(middle panel), and amplitude components, which is distribution of the Ca2+ response conditioned by Ca2+ spiking (lower panel). See materials and
methods for the detailed descriptions.
doi:10.1371/journal.pone.0099040.g002
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and the soma. Importantly, at lower doses of glutamate, large Ca2+

increases were observed in spines but not in the soma, indicating

that spines are more sensitive to glutamate than the soma (Fig.

S4C). This will support our finding of increased sensitivity of

spines to input (Fig. 4C, D).

Figure 3. Volume-dependent time window of Ca2+ increases. A–C, Distributions of the Ca2+ response along the PF-CF interval (left) in 0.1 mm3

(a spine volume) (A), in 5,000 mm3 (a cell volume) (B), and in 10 mm3 (C). The probability components (middle) and the amplitude components (right)
are also shown. The colors in the left and right panels code the probability of the Ca2+ response at the indicated PF-CF interval. Arrowheads in the left
panels indicate the thresholds between two peaks of the bimodal marginal distributions. The probability components denote the frequencies of the
Ca2+ response above/below the thresholds (solid/dashed lines, respectively), and the amplitude components denote the Ca2+ response above/below
the thresholds (indicated by solid/dashed braces, respectively). The PF-CF interval was defined by the time difference between the first PF and CF
inputs. D, Volume-dependency of the input timing information coded by the total distribution of the Ca2+ response (black), by the probability
component (red), and by the amplitude component (blue). E, Volume-dependency of the input timing information per volume. F, Relative
contribution of the probability (red) and amplitude (blue) component to the input timing information.
doi:10.1371/journal.pone.0099040.g003
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Figure 4. Robust and sensitive probability coding in the stochastic model. A, Distribution of the Ca2+ response in a single spine (upper
panels) and in a cell (lower panels) due to stimulation of PF and CF inputs with fluctuating the PF amplitudes. CVs of the PF amplitudes were 0.1 (left
panels) and 0.5 (right panels). B, Input timing information per volume, coded by the Ca2+ response, in a spine (red) and in a cell (black). C, Distribution
of the Ca2+ response in a single spine (upper panels) and in a cell (lower panels) with a single PF input (left panels), three PF inputs (middle panels),
seven PF inputs (right panels). In a spine, large Ca2+ increase were observed in a few trials in response to three PF inputs (white arrowhead). CV of the
PF amplitudes was 0.1. D, Input timing information per volume in a spine (red) and in a cell (black).
doi:10.1371/journal.pone.0099040.g004
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Discussion

One of the features of our stochastic model is that the reactions

and parameters of the deterministic model, which were estimated

from experimental data [14], were directly used. Importantly, we

created the stochastic model without changing any reactions or

parameters of the deterministic model and obtained the result that

the volume of real spines in Purkinje cells is nearly optimal for

information coding. Although the information per volume in a

spine volume was not the largest, it was almost the same as the

largest value in a volume of 0.5 mm3 and far larger than that in a

cell volume. Thus, our results suggest that spines can code input

timing information most efficiently if given the fixed amount of

materials and space. This supports the idea that the small volume

of spines has been evolutionally selected based on biochemical

reactions and kinetic parameters.

We provided a functional reason for the small size of spines.

The smallness of spines was optimal for maximising input timing

information per volume, and spines were more robust and

sensitive to input than a cell. In this study, the source of

fluctuation was derived from stochasticity in the number of

molecules. As the number of molecules in a spine becomes smaller,

the fluctuation in the number becomes larger. For example, the

CVs of the Ca2+ indicator in a cell volume and in a spine volume

are 0.003 and 0.72 at 160 msec PF-CF interval, respectively.

Indeed, it has been reported that CV of the peak amplitude of

dendritic Ca2+ transient in cerebellar Purkinje cells in vivo was 0.4

[20]. The fluctuation of the number of molecules is very large in a

spine, suggesting that the number of molecules (amplitude) is not

suitable as an information carrier. Such small numbers of

molecules in a spine suggest that there may be many defective

spines that do not contain essential molecules, and the reliability of

a single spine is very low compared with that of a cell that contains

huge numbers of molecules. Despite the low reliability of a single

spine, summation of the probability of large Ca2+ increases in

many spines may overcome the amplitude of Ca2+ in a cell in

terms of the reliability of information coding. Thus, the smallness

and numerosity of spines may be a unique strategy for robust and

sensitive information coding in neurons. Spines in other types of

neurons, and small and numerous organelles may employ a similar

strategy using probability coding. Our finding also raises the

caution that in contrast to experiments at the scale of the cell, in

experiments at the scale of a spine, the probability of signaling

activities over many trials or in many spines should be measured

and interpreted rather than measuring only the amplitude in a

single trial in a single spine. Note that the term ‘probability coding’

has the different meaning from that used in the field of neural

dynamics of decision-making, in which it is used as the coding of

the probability of expected event such as reward by neural

dynamics [21,22].

In this study, the input timing information was encoded into the

probability of Ca2+ increases. The next question is how timing-

information across the spines is decoded to the final output,

cerebellar LTD? Experimentally, cerebellar LTD is induced by

conjunctive activation of a PF bundle and CFs, and the responses

from many PF synapses are simultaneously observed [13]. As it has

recently been reported that all-or-none LTD at many synapses can

show a graded response in a stochastic situation [19,20], it is likely

that cerebellar LTD show a graded bell-shaped time-window

curve. Similar phenomenon has been observed in synaptic

plasticity at hippocampal synapses experimentally [23–25].

Furthermore, the input timing information can be decoded even

in LTD at a single synapse Induction of cerebellar LTD has been

reported to be regulated by a positive feedback loop between PKC

and MAP kinase [26] and modelled all-or-none deterministic

models [27]; however, it has recently been reported that cerebellar

LTD in a single spine can show a graded response rather than an

all-or-none response in a stochastic situation [28,29]. It is likely

that cerebellar LTD show a graded bell-shaped time-window

curve, indicating that cerebellar LTD can decode input timing

information from the frequency of Ca2+ increases.

The large Ca2+ increases are generated by the IICR system in

cerebellar Purkinje cells [30–32]. The IICR system is an excitable

system with a positive feedback loop (in which gain is controlled by

IP3) and delayed negative feedback (Fig. 1B) [14]. The IICR

system switches information-coding modes depending on volume;

probability coding is used at spine volumes, and amplitude coding

is used at cell volumes. We examined a mechanistic insight of the

IICR system that generates stochastic facilitation (Fig. S3).

Blocking the interaction of IP3 with the IP3 receptor, which

controls the feedback gain of the regenerative cycle of Ca2+,

resulted in disappearance of the large Ca2+ increases above the

threshold and decrease of the amplitude of Ca2+ below the

threshold (Fig. S3B). Blocking the interaction of Ca2+ with the IP3

receptor, which triggers the regenerative cycle of Ca2+, resulted in

disappearance of the large Ca2+ increases above the threshold

(Fig. S3C). Blocking Ca2+ influx through the IP3 receptor, which

is responsible for regenerated increase of Ca2+, resulted in the

disappearance of the large Ca2+ increases above the threshold and

decrease in the amplitude of Ca2+ below the threshold (Fig. S3D).

Thus, the regenerative positive feedback loop in which gain is

controlled by IP3 appeared to be an essential mechanism for

probability coding.

The IICR system is an excitable system, but its mechanism is

different from that of conventional excitable systems, such as the

relaxation oscillator [33]; the relaxation oscillator has a fixed

threshold and stable point, whereas the IICR system has a

controllable threshold and stable point. This may make a

difference in a stochastic situation; however, this possibility

remains to be elucidated. This makes a difference in a

deterministic situation. The relaxation oscillator shows an all-or-

none response with a fixed amplitude, whereas the IICR system

shows a graded response with a controllable amplitude. The

relaxation oscillator can transform input strength into oscillation

frequency [33] rather than amplitude, whereas the IICR system

can transform input strength into amplitude of Ca2+ increase in a

cell volume.

Table 1. Decrease of the input timing information with the change of the CV of PF amplitude from 0.05 to 0.5 and the number of
PF inputs from 5 to 3.

CV of PF amplitude from 0.05 to 0.5 # of PF inputs from 5 to 3

spine 14.3% 36.1%

cell 76.9% 40.6%

doi:10.1371/journal.pone.0099040.t001
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It has recently been shown that the IICR system may use

probability coding of Ca2+ increases even in a cell volume [34–37].

Such probabilistic Ca2+ increase may arise from stochastic

individual Ca2+ release through Ca2+ channels in microdomains

[35–37]. Even in a cell volume, probabilistic coding due to small

numbers of molecules can be realized. This may contribute to

efficient information coding in a cell volume.

Noise-dependent enhancement of the detection of weak

information-carrying signals in a threshold system is known as

stochastic resonance. Stochastic resonance in a narrow sense, or

classical stochastic resonance, is a phenomenon in which detection

of weak periodic signals by nonlinear threshold systems is

enhanced by exogenous additive white noise [18]. IICR system

is similar to the classical stochastic resonance; however, it has

different characteristics; the source of noise is different. In classical

stochastic resonance, noise is exogenous and not correlated with

the signal amplitude. In contrast, in the IICR system, noise is

produced by the intrinsic stochasticity of chemical reactions and

correlated with the number of molecules. Thus, efficient informa-

tion coding in IICR system can be referred as stochastic resonance

in a broad sense. As a generalized concept of the classical

stochastic resonance, or stochastic resonance in a broad sense, the

term ‘‘stochastic facilitation’’ has been recently proposed [18].

Stochastic facilitation is a concept in which biologically relevant

noise enhances the efficiency and/or effectiveness of the system.

Therefore efficient information coding in the IICR system is one

of the example of stochastic facilitation.

Materials and Methods

Stochastic model
We created a stochastic simulation model of input timing-

dependent Ca2+ increases based on the deterministic kinetic model

of Ca2+ increases in cerebellar Purkinje cells [14]. We used the

following molecules, reactions and parameters for the stochastic

model (which were identical to those used for our previous

deterministic model): 56 molecules, 43 reactions and 96 param-

eters (Tables S1 & S2). Among the 96 parameters, 60 parameters

were determined by experiments in the deterministic kinetic model

[14]. The rest of the parameters were estimated by fitting the

model to the experimental data that contain information

concerning the parameters [12]. Thus, the parameters in the

model are likely to be biologically plausible. All enzymatic

reactions based on the Mechaelis-Menten formulation was

decomposed into three elementary one-way reactions with the

parameters k1, k21, and kcat, and k1 was assumed to be four times

larger than kcat [14]. This model has two types of inputs: a CF

input and 5 PF inputs, which lead to activation of AMPARs and

VGCCs. Instead of modeling the kinetics of AMPARs and

VGCCs, a rectangular Ca2+ pulse was applied to the cytosol to

achieve a Ca2+ influx as a result of VGCC opening, because the

period of VGCC opening is known to be very short, less than

Dt = 20 msec [38]. The CF input give a pulse of Ca2+ influx

(83.3 mM/msec for 2 msec) as Ca2+ influx through VGCCs. The 5

PF inputs give 5 pulses of glutamate influx (5 mM/msec for 1 msec

for each pulse) and 5 pulses of Ca2+ influx (25 mM/msec for

1 msec for each pulse) at 100 Hz, the latter of which were

regarded as Ca2+ influx through VGCCs activated by AMPARs.

Numerical simulation
In the deterministic model, each reaction was represented as an

ordinary differential equation (ODE) as was conducted in the

previous model [14]. The ODEs were numerically solved by the

Bogacki–Shampine method [39], a variation of Runge-Kutta

method, with adaptive time step control ranging from 0.1 to

10 msec. In the stochastic model, we discretized the number of

molecules in the ODE model. The initial numbers of molecules in

the stochastic model were determined as integers based on the

initial concentrations in the deterministic model.

In general, surface area of the membrane is proportional to the

order of the square of length, whereas cell volume is proportional

to the cube of that, which means that, as a system size increases,

the increase rate of number of membrane molecules becomes

smaller than that in cytoplasm. Hence, in the cases of larger

systems than the spine, the number of membrane molecules that

can activate the cytosolic molecules is so small that most of

substrates are not activated by the stimulation. Actually, when a

volume was 8- or 125-fold larger than a spine volume, large Ca2+

increase did not occur any more at any PF-CF intervals (Fig. S7).

In order to uncover the simple influences of the smallness of a

spine and the number of molecules, it is required that the effect of

the stimulation for a cell on the cytosolic molecules through the

membrane protein is transferred as well as that for a spine.

Therefore, we assumed that the number of membrane proteins is

proportional to the volume, i.e. the cube of length, throughout this

study.

Another reason for this assumption is that, if the number of

membrane proteins is to be set proportional to the surface area,

the unknown parameters whose values were determined by fitting

the simulation outputs to the experimental results in the previous

deterministic model [14] must be re-determined in each volume.

This makes the comparison of results across the volume unfair.

Therefore, since in this study we wanted to focus only on the

effects of the volume itself, we set the number of all molecules

proportional to the volume.

To solve the stochastic model numerically, we utilized the

modified tau-leaping method, which is an approximation of the

stochastic simulation algorithm (SSA) [40]. Despite the simplicity

of the method by Cao et al. [37], their method provides good

approximations in the cases of the low-order-reaction-systems like

this study [38]. We validated the use of modified tau-leaping

method by comparing the results derived from modified tau-

leaping method (Fig. 2A–C) with that derived from SSA (Fig.
S5A–C). We repeated the same simulation with different random

seeds. The number of simulation trials were as follows: 8,000 trials

in the volume of 0.05 mm3, 2,000 trials in the volume of 0.1 mm3,

1,000 trials in the 0.5 mm3, 0.8 mm3, and 1 mm3 volumes, 100

trials in the 10 mm3, 12.5 mm3, and 100 mm3 volumes, and 20

trials in the 1,000 mm3 and 5,000 mm3 volumes. The simulation

for the testable prediction was conducted 100 times. The numbers

of trials were confirmed to be sufficient by resampling the

simulated data (Fig. S5D). The simulation result in a cell volume

was nearly identical to that in the previous deterministic model,

supporting the validity of the stochastic model.

Decomposition of probability and amplitude
components from the distribution of Ca2+ response

We measured the response of Ca2+ increase, Cares, by logarithm

of temporally integrated Ca2+ subtracted by the basal Ca2+

concentration:

Cares~log10½
1

2

ð1:5

{0:5

(½Ca2z�(t){½Ca2z�basal)dt�, ð1Þ

where [Ca2+](t) and [Ca2+]basal denote intracellular Ca2+ concen-

tration at time t and basal Ca2+ concentration, respectively. We
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used logarithmic scale for Ca2+ concentration assuming that

downstream molecules of Ca2+ respond linearly to the log-scaled

stimulus. This assumption is justified by the fact that serially

diluted solution is often used as stimulus in experiments. The

probability distribution of Cares over trials was expressed by

P(CaresDDt) where Dt denotes the PF-CF interval and the time

difference between the first PF and CF inputs. The marginal

distribution over PF-CF interval, P(Cares), was bimodal. There-

fore, we set a threshold at the minimum between the two peaks of

the marginal distribution (Fig. 3A–C, left panels).

We decomposed the distribution of Cares into the amplitude and

probability components:

P(CaresjDt)~

P(s~0jDt)P(Caresjs~0,Dt)zP(s~1jDt)P(Caresjs~1,Dt),
ð2Þ

where s = 1 represents that Cares exceeded the threshold, and s = 0

otherwise (Fig. 2D). In this representation, P(sDDt) and

P(CaresDs,Dt) corresponds to the probability and amplitude

component, respectively. The probability component, P(sDDt),
gives the probabilities of the Cares above/below the threshold, and

the amplitude component, P(CaresDs,Dt), gives the probability

distributions of Cares, partitioned by the threshold.

Calculation of input timing information
We measured the input timing information coded by the Ca2+

response as mutual information (MI) between the Cares and PF-CF

interval:

Itotal~
X
Dt

P(Dt)

ð

Cares

P(CaresDDt)log2

P(CaresDDt)

P(Cares)
dCares: ð3Þ

Here, P(Dt) follows the uniform distribution, and Dt denotes the

PF-CF interval (Dt = 2400, 2380, 2360,…,+600 msec). We used

the uniform distribution for P(Dt) because, in physiological or

behavioral experiments, P(Dt)totally depends on the experimental

conditions, and P(Dt) largely differ depending on task, situation,

and many other factors. Therefore, optimal P(Dt) cannot be

uniquely determined. We computed the mutual information with

P(Dt) of Gaussian distribution, and confirmed that changing

P(Dt) does not affect the results qualitatively (Fig. S8). In the

calculation of the MI, we divided the entire range of Cares from

minimum to maximum into 50 bins, where the intervals were

determined based on the method described in Cheong et al. [ref],

who estimated the MI taking the limit as the sample number

approaches infinity. Note that for the probability density function,

the MI (and also Kullback-Leibler (KL) divergence) is invariant

under the any transformation of random variables. In this study,

we estimated the MI by the abovementioned method, therefore,

we could obtain almost the same value of MI for any

transformation of Cares (Fig. S6).

We also measured the information coded by the probability

component by use of the KL divergence:

Iprob~
X
Dt

P(Dt)

ð

Cares

P(CaresDDt)log2

P(CaresDDt)

P{prob(CaresDDt)
dCares, ð4Þ

where P{prob(CaresDDt) denotes the distribution of Cares without

the probability component, which was calculated by marginalizing

Dt out of the probability component P(sDDt) in P(CaresDDt):

P{prob(CaresjDt)~

P(s~0)P(Caresjs~0,Dt)zP(s~1)P(Caresjs~1,Dt):
ð5Þ

Further, we measured the information coded by the amplitude

component:

Iamp~
X
Dt

P(Dt)

ð

Cares

P(CaresDDt)log2

P(CaresDDt)

P{amp(CaresDDt)
dCares, ð6Þ

where P{amp(CaresDDt) denotes the distribution of Cares without

the amplitude component, which was calculated by marginalizing

Dt out of the amplitude component P(CaresDs,Dt) in P(CaresDDt):

P{amp(CaresjDt)~

P(s~0jDt)P(Caresjs~0)zP(s~1jDt)P(Caresjs~1):
ð7Þ

Here, the sum of Iprob and Iamp is equal to Itotal because P(Caresv

threshold Ds~1,Dt)~0 and P(CareswthresholdDs~0,Dt)~0 can be

naturally assumed.

The relative contributions of the probability and amplitude

components to the input timing information were defined by

Iprob

�
Itotal and Iamp

�
Itotal , respectively.

Fluctuation of PF input amplitude
For fluctuation of PF input amplitudes, the concentration of 5

glutamate pulses and 5 Ca2+ pulses fluctuated between trials under

the fixed mean concentration (5 mM). The fluctuation of PF input

amplitudes follows the zero-truncated normal distribution with a

given coefficient of variation where the PF input amplitude must

be over zero.

Supporting Information

Figure S1 Time courses of concentrations of inositol
trisphosphate (IP3) and Ca2+ in the endoplasmic retic-
ulum (ER). A, B, Time courses of concentrations of IP3 in

response to PF and CF inputs with Dt = 160 msec (A) and Dt = 2

400 msec (B) in the stochastic model in a spine volume (gray lines,

n = 2,000 for each timing, 20 examples are shown) and in a cell

volume (black lines, n = 20 for each timing), respectively. C, D,

Time courses of concentrations of Ca2+ in the ER in response to

PF and CF inputs with Dt = 160 msec (C) and Dt = 2400 msec (D)

in the stochastic model in a spine volume (gray lines, n = 2,000 for

each timing, 20 examples are shown) and in a cell volume (black

lines, n = 20 for each timing), respectively.

(TIF)

Figure S2 Distribution of Ca2+ response and that
without the probability and/or amplitude components.
A, Distribution of Ca2+ response. B, C, Distribution of Ca2+

response without probability (B) or amplitude (C) component. D,

Distribution of Ca2+ response without both components. Input

timing information coded by the probability and amplitude

component was calculated by the Kullback–Leibler (KL) diver-

gence of the distribution of B and C from that of A, respectively.

Input timing information coded by the distribution of Ca2+

response was calculated by the mutual information between Ca2+

response and PF-CF interval, which is equal to the KL divergence

of the distribution of D from that of A, and also equal to the sum of
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the input timing information coded by probability and amplitude

component.

(TIF)

Figure S3 Mechanism of probability coding. A, Schematic

representation of the pathway deleted in the following figures. B–
D, Distribution of Ca2+ response along the PF-CF interval in a

spine volume with blocking of the interaction of IP3 with the IP3

receptor (B), with blocking of the interaction of Ca2+ with the IP3

receptor (C), and with blocking of Ca2+ influx through the IP3

receptor (D) in the stochastic simulation. E, Distribution of Ca2+

response without deletion (control).

(TIF)

Figure S4 Possible experimental tests of probability
coding in spines and amplitude coding in a soma. A, Ca2+

increase in response to repetitive addition of glutamate pulses with

the same concentration in the stochastic model (spines) and in the

deterministic model (soma). Colours code the concentration of

Ca2+. Darker colours indicate higher concentrations of Ca2+. The

time course of Ca2+ increase in the deterministic model and

stochastic model are shown. B, Ca2+ increases in response to

glutamate pulses of various concentrations in the stochastic model

(spines) and the deterministic model (soma). Darker colours

indicate higher concentrations of Ca2+. The time course of Ca2+

increase in the deterministic model and stochastic model are

shown. C, Glutamate dose-responses curves of the fraction of

spines with large Ca2+ increase above the threshold in the

stochastic model (solid lines) and Ca2+ response in the determin-

istic model (dashed lines). Note glutamate inputs with amplitude

CVs of 0.1 were used.

(TIF)

Figure S5 Validation of the numerical simulation. A, B,

Ca2+ increase due to stimulation of PF and CF inputs with

Dt = 160 msec (A) and Dt = 2400 msec (B) by the stochastic

simulation algorithm (SSA) (gray lines, n = 2,000 for each timing,

20 examples are shown). C, Distributions of the Ca2+ response in a

spine volume with Dt = 160 msec (solid lines) and Dt = 2400 msec

(dashed line) by the modified tau-leaping method (black lines,

same as Fig. 2C) and SSA (red lines). The correlation coefficients

(CCs) of the red and black lines were calculated. The large CCs

demonstrates the validity of the modified tau-leaping method.

(TIF)

Figure S6 Input timing informations calculated in
normal scale. Here we calculated the input timing informations

in normal scale of Ca2+ response, and compared them with the

input timing information calculated in logarithmic scale (Fig. 3
and 4). Their similarity demonstrates that the results were

qualitatively not affected whether they were calculated in

logarithmic scale or normal scale. A, Volume-dependency of the

input timing information coded by the total distribution of the

Ca2+ response (black), by the probability component (red), and by

the amplitude component (blue). B, Volume-dependency of the

input timing information per volume. C, Relative contribution of

the probability (red) and amplitude (blue) component to the input

timing information. D, Input timing information per volume,

coded by the Ca2+ response, in a spine (red) and in a cell (black). E,

Input timing information per volume in a spine (red) and in a cell

(black). Fig. S6A, B, and C correspond to Fig. 3D, E, and F,

respectively. Fig. S6D and E correspond to Fig. 4B and D,

respectively.

(TIF)

Figure S7 Results of simulation under the condition
that the numbers of membrane molecules were propor-

tional to the surface area. In this study, we assumed that the

numbers of membrane molecules were proportional to the volume

of the system. Here, to check the results of the simulation with the

numbers of membrane molecules proportional to the surface area,

we changed the model and performed the stochastic simulation. In

this model, we altered the following three types of parameters: (i)

initial numbers of the membrane molecules, (ii) membrane

permeability coefficients, and (iii) constants for the propensity

functions of the bimolecular and trimolecular reactions occurring

on the membrane. (i) Initial numbers of the membrane molecules

were set proportional to the surface area, thus they were multiplied

by the surface-to-volume ratio (1/4 and 1/25 for the volume of

0.8 mm3 and 12.5 mm3, respectively). (ii) Membrane permeability

coefficients were also set proportional to the surface area, and thus

they were multiplied by the surface-to-volume ratio. (iii) Original-

ly, in the tau-leaping method, constants for the propensity

functions of bimolecular reactions are proportional to the inverse

of the system volume. Thus, in this model, to set them

proportional to the inverse of the surface area, constants for the

propensity functions of the bimolecular reactions occurring on the

membrane were divided by the surface-to-volume ratio. Likewise,

the constants for the propensity functions of the trimolecular

reactions were divided by the square of the surface-to-volume

ratio. Surface molecules in this model are metabotropic glutamate

receptor (mGluR), IP3 receptor (IP3R), plasma membrane Ca2+-

ATPase (PMCA), sacro- and endoplasmic reticulum Ca2+-ATPase

(SERCA), Na+/Ca2+ exchangers (NCX), and their complexes with

other moleucles. Reactions occurring on the membrane were all

reactions which involve the surface molecules. As a result, if the

numbers of the membrane molecules are set proportional to the

surface area, large Ca2+ increase did not occur at any PF-CF

intervals. A, B, Time courses of the concentrations of Ca2+ in the

volume of 0.8 mm3 (A) and 12.5 mm3 (B) in response to PF and CF

inputs with Dt = 160 msec. Results of 20 trials of simulation with

the numbers of membrane proteins set proportional to the surface

area (red lines) and to the cytosolic volume (black lines) were

shown. C, D, Distribution of Ca2+ response in 0.8 mm3 (C) and

12.5 mm3 (D) under the condition that the numbers of membrane

proteins were set proportional to the surface area. The numbers of

membrane proteins were set 4/8 = 0.5 times in 0.8 mm3 and 25/

125 = 0.2 times in 12.5 mm3 as large as those in (E) and (F). E, F,

Distribution of Ca2+ response in 0.8 mm3 (E) and 12.5 mm3 (F)

under the condition that the numbers of membrane proteins were

set proportional to the cytosolic volume.

(TIF)

Figure S8 Input timing informations calculated on the
assumption that the distribution of PF-CF interval
follows Gaussian distribution. Here we calculated the input

timing informations on the assumption that the distribution of PF-

CF interval follows Gaussian distribution, and compared them

with the input timing information calculated on the assumption

that the distribution of PF-CF interval follows uniform distribu-

tion. Their similarity demonstrates that the results were qualita-

tively not affected by the distribution of PF-CF interval. PF-CF

intervals were assumed to follow Gaussian distribution with mean

of 0 ms and half-width of 300 ms (dashed lines with triangles),

Gaussian distribution with mean of 200 ms and half-width of

300 ms (dotted lines with squares), and uniform distribution (solid

lines with circles). A, Volume-dependency of the input timing

information coded by the total distribution of the Ca2+ response.

B, Volume-dependency of the input timing information per

volume. C, Relative contribution of the probability component to

the input timing information. D, Input timing information per

volume, coded by the Ca2+ response, in a spine (red) and in a cell
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(black). E, Input timing information per volume in a spine (red)

and in a cell (black). Fig. S8A, B, and C correspond to Fig. 3D,
E, and F, respectively. Fig. S8D and E correspond to Fig. 4B
and D, respectively.

(TIF)

Table S1 Molecules and their initial number. This model

consists of 56 molecules. Each of them is assumed to exist in one of

the following compartment: cytosol, postsynaptic density (PSD),

endoplasmic reticulum (ER), or extracellular space, with volumes

of 0.1 mm3, 0.02 mm3, 0.002 mm3, and 10 mm3 in a spine

respectively. The initial number of the molecules and the volumes

of the compartments are the same as the previous deterministic

model.

(PDF)

Table S2 Reactions and their parameters. This model

consists of 43 reactions, one decay (decay of glutamate), one

channel permeation (Ca2+ permeation through IP3R), two

diffusions (Ca2+ and IP3 diffusions between cytosol and PSD),

and two membrane permeations (Ca2+ permeation through the

membrane of the cell and that through the membrane of the ER).

In the stochastic model, decay of glutamate, two diffusions, and

two membrane permeations were implemented as unimolecular

reactions. Ca2+ permeation through IP3R was implemented as

bimolecular reaction between Ca2+ and IP3R. All parameters are

the same as the previous deterministic model.

(PDF)

Acknowledgments

We thank Keiko Tanaka (KIST, Korea) for providing the image of

cerebellar Purkinje cells and critically reading this manuscript. We also

thank our laboratory members for critically reading this manuscript and

their technical assistance with the simulation. The stochastic and

deterministic models have been placed on our website (?http://

wwwkurodalab.org/info/Ca_Increases).

Author Contributions

Conceived and designed the experiments: TK HU KO MF SK. Performed

the experiments: TK. Analyzed the data: TK. Contributed reagents/

materials/analysis tools: TK HU MF. Contributed to the writing of the

manuscript: TK HU KO MF SK.

References

1. Napper RM, Harvey RJ (1988) Number of parallel fiber synapses on an

individual Purkinje cell in the cerebellum of the rat. J Comp Neurol 274: 168–

177.

2. Stuart G, Spruston N, Ha\usser M (1999) Dendrites. Oxford: Oxford University

Press.

3. Harris KM, Stevens JK (1988) Dendritic spines of rat cerebellar Purkinje cells:

serial electron microscopy with reference to their biophysical characteristics.

J Neurosci 8: 4455–4469.

4. Rapp M, Segev I, Yarom Y (1994) Physiology, morphology and detailed passive

models of guinea-pig cerebellar Purkinje cells. J Physiol 474: 101–118.

5. Takacs J, Hamori J (1994) Developmental dynamics of Purkinje cells and

dendritic spines in rat cerebellar cortex. J Neurosci Res 38: 515–530.

6. Ito M (1970) Neurophysiological aspects of the cerebellar motor control system.

Int J Neurol 7: 162–176.

7. Kawato M (1999) Internal models for motor control and trajectory planning.

Curr Opin Neurobiol 9: 718–727.

8. Kawato M, Kuroda S, Schweighofer N (2011) Cerebellar supervised learning

revisited: biophysical modeling and degrees-of-freedom control. Curr Opin

Neurobiol 21: 791–800.

9. Mauk MD, Garcia KS, Medina JF, Steele PM (1998) Does cerebellar LTD

mediate motor learning? Toward a resolution without a smoking gun. Neuron

20: 359–362.

10. Steinmetz JE (1990) Classical nictitating membrane conditioning in rabbits with

varying interstimulus intervals and direct activation of cerebellar mossy fibers as

the CS. Behav Brain Res 38: 97–108.

11. Miyakawa H, Lev-Ram V, Lasser-Ross N, Ross WN (1992) Calcium transients

evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig

cerebellar Purkinje neurons. J Neurophysiol 68: 1178–1189.

12. Wang SS, Denk W, Hausser M (2000) Coincidence detection in single dendritic

spines mediated by calcium release. Nat Neurosci 3: 1266–1273.

13. Ito M (2002) The molecular organization of cerebellar long-term depression. Nat

Rev Neurosci 3: 896–902.

14. Doi T, Kuroda S, Michikawa T, Kawato M (2005) Inositol 1,4,5-trisphosphate-

dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje

cells. J Neurosci 25: 950–961.

15. Bhalla US (2004) Signaling in small subcellular volumes. II. Stochastic and

diffusion effects on synaptic network properties. Biophys J 87: 745–753.

16. Bhalla US (2004) Signaling in small subcellular volumes. I. Stochastic and

diffusion effects on individual pathways. Biophys J 87: 733–744.

17. Komorowski M, Costa MJ, Rand DA, Stumpf MP (2011) Sensitivity, robustness,

and identifiability in stochastic chemical kinetics models. Proc Natl Acad Sci

USA 108: 8645–8650.

18. McDonnell MD, Ward LM (2011) The benefits of noise in neural systems:

bridging theory and experiment. Nat Rev Neurosci 12: 415–426.

19. Barbour B (1993) Synaptic currents evoked in Purkinje cells by stimulating

individual granule cells. Neuron 11: 759–769.

20. Kitamura K, Hausser M (2011) Dendritic calcium signaling triggered by

spontaneous and sensory-evoked climbing fiber input to cerebellar Purkinje cells

in vivo. J Neurosci 31: 10847–10858.

21. van Duuren E, van der Plasse G, Lankelma J, Joosten RN, Feenstra MG, et al.
(2009) Single-cell and population coding of expected reward probability in the

orbitofrontal cortex of the rat. J Neurosci 29: 8965–8976.
22. Thomas J, Vanni-Mercier G, Dreher JC (2013) Neural dynamics of reward

probability coding: a Magnetoencephalographic study in humans. Front
Neurosci 7: 214.

23. Enoki R, Hu YL, Hamilton D, Fine A (2009) Expression of long-term plasticity

at individual synapses in hippocampus is graded, bidirectional, and mainly
presynaptic: optical quantal analysis. Neuron 62: 242–253.

24. O’Connor DH, Wittenberg GM, Wang SS (2005) Graded bidirectional synaptic
plasticity is composed of switch-like unitary events. Proc Natl Acad Sci USA 102:

9679–9684.

25. Petersen CC, Malenka RC, Nicoll RA, Hopfield JJ (1998) All-or-none
potentiation at CA3-CA1 synapses. Proc Natl Acad Sci USA 95: 4732–4737.

26. Tanaka K, Augustine GJ (2008) A positive feedback signal transduction loop
determines timing of cerebellar long-term depression. Neuron 59: 608–620.

27. Kuroda S, Schweighofer N, Kawato M (2001) Exploration of signal transduction

pathways in cerebellar long-term depression by kinetic simulation. J Neurosci 21:
5693–5702.

28. Antunes G, De Schutter E (2012) A stochastic signaling network mediates the
probabilistic induction of cerebellar long-term depression. J Neurosci 32: 9288–

9300.
29. De Schutter E (2012) The importance of stochastic signaling processes in the

induction of long-term synaptic plasticity. Neural Netw.

30. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21: 13–26.
31. Finch EA, Augustine GJ (1998) Local calcium signalling by inositol-1,4,5-

trisphosphate in Purkinje cell dendrites. Nature 396: 753–756.
32. Inoue T, Kato K, Kohda K, Mikoshiba K (1998) Type 1 inositol 1,4,5-

trisphosphate receptor is required for induction of long-term depression in

cerebellar Purkinje neurons. J Neurosci 18: 5366–5373.
33. Tsai TY, Choi YS, Ma W, Pomerening JR, Tang C, et al. (2008) Robust,

tunable biological oscillations from interlinked positive and negative feedback
loops. Science 321: 126–129.

34. Thomas AP, Bird GS, Hajnoczky G, Robb-Gaspers LD, Putney JW, Jr. (1996)
Spatial and temporal aspects of cellular calcium signaling. FASEB J 10: 1505–

1517.

35. Skupin A, Kettenmann H, Winkler U, Wartenberg M, Sauer H, et al. (2008)
How does intracellular Ca2+ oscillate: by chance or by the clock? Biophys J 94:

2404–2411.
36. Skupin A, Kettenmann H, Falcke M (2010) Calcium signals driven by single

channel noise. PLoS Comput Biol 6.

37. Thurley K, Smith IF, Tovey Stephen C, Taylor Colin W, Parker I, et al. (2011)
Timescales of IP3-Evoked Ca2+ Spikes Emerge from Ca2+ Puffs Only at the

Cellular Level. Biophys J 101: 2638–2644.
38. Eilers J, Callewaert G, Armstrong C, Konnerth A (1995) Calcium signaling in a

narrow somatic submembrane shell during synaptic activity in cerebellar
Purkinje neurons. Proc Natl Acad Sci U S A 92: 10272–10276.

39. Bogacki P, Shampine LF (1989) A 3(2) pair of Runge - Kutta formulas. Appl

Math Lett 2: 321–325.
40. Cao Y, Gillespie DT, Petzold LR (2006) Efficient step size selection for the tau-

leaping simulation method. J Chem Phys 124: 044109.

Probabilistic Coding of Ca2+ Increase in Spines

PLOS ONE | www.plosone.org 12 June 2014 | Volume 9 | Issue 6 | e99040


