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Abstract: This paper mainly demonstrates an advanced type of the vaporizing foil actuator welding
(VFAW) process between GPa-grade steel (TRIP1180) and aluminum alloy (AA5052-H32) without
applying standoff. To secure a flying distance during the VFAW process, the preformed target sheet
shaped like a circular indentation has been utilized. It is necessary to optimize process parameters
integrated with geometrical design of the preform since the welding strength can be decreased
beyond the optimum input energy in the standoff-free VFAW process. The welded surface was
evaluated by SEM-EDS, XRD, EBDS, and TEM to analyze the welding mechanism and composition
at the welding interface. The diffusion zone including the AlFe3 phase was observed at the welded
interface which has high grain density due to the high-speed impact by increasing the welding
strength, which leads to the perfect welding between the dissimilar materials.

Keywords: vaporizing foil actuator welding; standoff-free; dissimilar materials welding; impact
welding; lap shear test; metallic bonding

1. Introduction

There is an increasing demand for a lightweight design in the body structure of the
transportation vehicles, especially for electric and hybrid cars to achieve high energy
efficiency [1,2] and decrease gas emissions [3,4]. It is the one of the best strategies for
lightening body weight with joining and welding different grades of materials such as
GPa grade steel and Al alloy with each other, which makes it possible to have a strength
gradient in the single panel. In order to weld dissimilar materials, different types of welding
processes such as fusion and solid-state welding [5] have been developed depending on
whether it involves melting and subsequent solidification or does not. Even though fusion
welding such as arc welding [6,7], gas welding [8,9], and power beam welding [10,11]
has been widely applied to various industries, there are several issues related with defect
formation around a welded interface since they tend to induce local melting with phase
transition at the interface during the welding process in which large variation in mechanical
and thermal properties such as strength, elongation, and thermal expansion ratio, etc. are
able to cause residual stress along the interface.

The solid-state welding applies a sufficient external force or pressure to induce plastic
deformation at the interface, which can be divided into hot pressure welding including resis-
tance spot welding [12,13] and cold pressure welding such as friction stir welding [14–17]
explosion welding [18], and self-piercing riveting (SPR) [19,20] according to the heat genera-
tion at the interface to facilitate bonding. Although solid-state welding has been considered
as a potential method due to its reduced effect on the thermal fractures, the welding
strength is subjected to be influenced by the quality of welding interface at the preparation
stage in terms of the amount of the oxide layer or surface cleaning with degreasing or
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brushing, etc. [19]. Additionally, the excessive physical deformation at the welded sheets
can cause the fracture or delamination at the interface [20,21].

The vaporizing foil actuator welding (VFAW) is the one of the explosion welding,
which does not involve the conventional full melting of the materials being joined. It
applies substantially high pressure to the bottom of a flyer sheet as depicted in Figure 1a to
make it collide with a target sheet, which tends to induce metallic bonding [22–24] at the
interface for permanent welding. When a high current is instantly applied to the aluminum
foil, it is vaporized from solid to gas, directly, which tends to generate tremendously high
pressure as shown in Figure 1b. The generated explosive pressure sharply pushes the flyer
sheet with substantially high velocity, and it distributes along the welding interface, which
tends to induce an oblique angle between the target and flyer sheets as shown in Figure 1c.
This explosive pressure ejects oxides and other contaminants on the interface with leaving
behind fresh metal surfaces, which leads to the formation of a metallic bond between the
two sheets by attaching clean metallic surfaces [25,26].
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pressure distribution.

Chen et al. [26] and Liu et al. [27,28] have demonstrated the VFAW process to weld
dissimilar materials such as various grades of steel with light-weight alloys including
aluminum and magnesium alloys. Vivek et al. [29,30] successfully carried out the welding
between the titanium–copper alloy and the BMG (Bulk Metallic Glass)-Cu110 alloy in which
they observed the morphology of welded interface with respect to the impact velocity of
the flyer sheet. Liu et al. [22] have investigated AlxFey phases at the welded interface with
supported by EDS-SEM, EBSD, and TEM analyses. It has also been researched to optimize
the process parameters such as impact angle, standoff distance, and input energies, etc.
during the VFAW process. Vivek et al. [29] have examined the effect of impact angle and
velocity on weldability by controlling the amount of input energy and standoff distance.
However, the usage of standoff causes lots of problems from the practical aspect in the
industrial process even though it tends to secure an allowable distance for the flyer sheet
to guarantee the desired impact speed. It does not only increase the weight of the welded
part due to redundant additional standoff, which has nothing to do with the two target
materials, but also requires an undesirable secondary process to eliminate this part if it
is necessary. In addition, since a slight misalignment between target, flyer sheets, and
standoff at the initial set-up when stacking up with each other is able to induce strength
variation in the welding interface, it tends to require a high level of tolerance control in
the process. Under these circumstances, it is required to eliminate the standoff during the
VFAW process for enhancing manufacturing efficiency.

In this paper, we have proposed a standoff-free VFAW process without applying a
conventional standoff that is replaced by a pre-deformed target sheet with support by a
simple stamping process. To optimize the preform shape, FEM analysis has been carried
out, which was confirmed by experiments for perfect welding between a TRIP1180 steel
sheet and an AA5052 sheet. In order to validate the sufficient welding strength in terms
of mechanical properties and metallurgical aspects, a lap shear test and microstructure
investigation with SEM-EDS and TEM along the interface have been conducted.
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2. Experimental Procedure

Figure 2 shows the initial set-up for the conventional VFAW process which consists
of flyer sheet, standoff, and target sheet, which is sequentially stacked on the Al foil as
depicted in Figure 2b. Figure 3 demonstrates the dimensional specification of the Al foil in
which an actuating area is designed to be narrow for concentrating a high current to activate
a local evaporation [23]. The actuating length of 2 mm has been applied to the experiment
to increase the impact velocity since it tends to influence the amount of vaporizing pressure
directly. To guarantee the uniform contact pressure in between specimens and experimental
safety against explosive pressure during the VFAW test, the top and bottom surface of
the stacked specimens are tightened by a back-up die set. In addition, Kapton film has
been utilized to insulate the Al foil from the die set and the other welding specimens,
which tends to prevent a current loss [23]. After an initial set-up, a target current from the
capacitor bank directly flows to the Al foil through the copper plate as shown in Figure 4.
The specifications of the capacitor bank for VFAW test are the maximum voltage of 8 kV,
maximum energy of 12.8 kJ, and a capacitance of 200 µF.
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To demonstrate practical welding between GPa grade steel and Al alloy, TRIP1180
and AA5052-H32 sheets with a length, width, and thickness of 100 mm × 50 mm × 1.2 mm,
and 200 mm × 50 mm × 1.0 mm, respectively, have been applied to the VFAW process as a
target and flyer sheet, respectively. The tensile tests for the initial mechanical properties
were conducted with the ASTM-E8 standard [31] specimen as represented as Figure 5, in
which they show the ultimate tensile strength of 1218.65 MPa and 221.51 MPa for TRIP1180
and AA5052-H32, respectively.

Figure 5. Stress–strain curves at the quasi-static state for TRIP1180 and AA5052.

To validate the welding strength, a lap shear test has been carried out in the universal
testing machine (UTM) with the cross-head speed was 0.1 mm/s. The welded TRIP1180 and
AA5052 specimen were gripped at the UTM and pulled toward the test direction. Figure 6
demonstrates the schematic design of the lap shear test in which the welded interface
coincides with the centerline of the test set-up for inducing pure shear deformation along
the interface [25,29].

Figure 6. Schematic design of the lap shear test.

For the microscopic investigation at the welded interface, cross-sections of the welded
surface were prepared, first, by mechanical grinding using a SiC girt paper (400 grit to
2400 grit (8 µm grain size)), then polished with suspensions of 1 and 0.25 µm diamond
polishing solution, and finished with further polishing using 0.05 µm colloidal silica sus-
pension to obtain the required surface finish. The sample surface after final polishing was
cleaned under running water, followed by ethanol, and dried. After surface preparation,
the microstructure and elemental composition of the joints were examined using scanning
electron microscopy (SEM, JSM-5800 JEOL, Tokyo, Japan) coupled with energy dispersive
spectroscopy (EDS) and electron backscatter diffraction (EBSD) operated at an accelerat-
ing voltage of 20 kV. The TSL OIM Analysis v8 software was used to process EBSD data
and generate inverse pole figure (IPF), image quality (IQ), and phase maps. Microbeam
X-ray diffraction (XRD) analysis was carried out using a Rigaku D/Max Rapid-S with
CuK radiation to identify the phases in the narrow joints. Transition electron microscope
(TEM) analyses were carried out on the cross sections of the joint interface using the Cs-
corrected scanning transmission electron microscope (STEM, Hitachi-HF5000 instrument,
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Amsterdam, Netherland) operated at 200 kV. The specimen used in the TEM analysis was
prepared by lifting the joint interface using a focused ion beam (FIB, FEI Helios Nano-Lab
600, Hillsboro, OR, USA).

3. Standoff-Free Vaporizing Foil Actuator Welding
3.1. Preform Design of the Target Sheet

It has been proposed to perform the VFAW test with the application of a preformed
target sheet instead of utilizing a conventional standoff. To secure a sufficient flying
distance, the TRIP1180 target sheet with a thickness of 1.2 mm has been stamped to have
an indentation along the circular boundary as depicted in Figure 7, which is applied to the
initial stacking for the standoff-free VFAW test. The preform die set is designed to impress
a circular indentation [32] on the target sheet with a diameter and height of 30 mm and
1.6 mm since it has been validated in the conventional VFAW experiments [23–25,29,30]
for guaranteeing the optimum welding area and flying distance. The design variables in
the specification of the die set are represented in Figure 8. For the various combinations of
design variables as shown in Table 1, the final dimensions for R1 and R2 have been selected
as 1.5 mm, respectively, not to induce material failure during the stamping process. Figure 9
demonstrates the FE analysis results with ABAQUS/Standard [33], which represents
uniform strain distribution without inducing strain localization around the corner when R1
and R2 have been selected as 1.5 mm. Figure 10 demonstrates the preform die set based on
the optimal design variables, which is installed in a 100-tonf servo press for carrying out
the preforming process. It is able to produce the desired preform shape without inducing
material failure as depicted in Figure 10b.
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Table 1. Design variables in the preforming process.

Unit: mm Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Punch radius (R1) 0.6 0.6 0.6 0.6 0.9 1.2 1.5

Die radius (R2) 0.6 0.9 1.2 1.5 0.6 0.6 0.6

Figure 9. Simulation results for design variables in preforming process for the target sheet.
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3.2. Lap Shear Test for a Welded Specimen

With applying the preformed target sheet, the standoff-free VFAW test has been
performed with respect to the increase of the input energy from 4 kJ to 12 kJ to examine
the effect of the input energy on the welding strength between TRIP1180 and AA5052.
Figure 11 shows the experimental results of lap shear test, which has been conducted until
the final fracture occurs. Three experiments were conducted under the same input energy
conditions for repeatability evaluation. Since the delamination occurs due to imperfect
welding between the target and flyer sheets, it is not able to sustain sufficient reaction force
compared with the flyer sheet made of AA50502 as shown in Figure 12 when the input
energy of 4 and 6 kJ is applied. However, it is noted that the welded specimen with the
input energy of 8 kJ shows an early fracture during the lap shear test in the vicinity of
the welding zone as depicted in Figure 12 since it tends to induce undesirable thickness
reduction around the corner of circular welded region even though it the delamination
does not occur. When the input energy increases to 10 kJ, there is no other early fracture
and delamination due to a perfect welding at the interface as depicted in Figure 11d, which
results in the final fracture at the flyer sheet itself instead of the circular welded region as
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shown in Figure 12. To confirm the thickness distribution with respect to the input energy,
the welded specimen is sectioned in half by waterjet cutting as shown in Figure 13. Since the
thickness reduction has occurred in both of sheets with similar ratios such as 5–11.6% in the
target sheet and 8–12% in the flyer sheet during the VFAW, the early fracture is attributed
to the localization in the flyer sheet with relatively low strength at the x-coordinate of
16.5 mm. It is interesting to note that the thickness of the flyer sheet has only increased a
lot in case of 10 kJ as depicted in Figure 14b while it decreased when the input energy of 6,
8, 12 kJ has been applied compared with the initial sheet thickness. This is why the welded
specimen with applying the input energy of 10 kJ tends to exhibit comparable tensile
strength to the AA5052 without showing delamination and early fracture at the interface.
It is noteworthy that it is necessary to take into consideration optimum process parameters
with correlating the amount of input energy, simultaneously, since the weldability between
dissimilar materials from the VFAW test is not proportionally influenced by the amount of
input energy only [24,26].
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Figure 13. Preparation of the welded specimen from the VFAW test for thickness measurement.
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3.3. Microstructure Investigation in the Welding Interface

The welding interface between TRIP1180 and AA5052 sheets has been investigated
with SEM-EDS, micro XRD, EBSD, and TEM. Four specimens were extracted from the
perfect welded specimen for the microstructure investigation by wire cutting as shown in
Figure 15 and polished using up to 4000 grit sandpaper.
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Figure 15. Preparation for microstructural investigation in the welded VFAW specimen.

There is a compositional diffusion zone between the TRIP1180 and AA5052 interface,
which was generated by excessive plastic deformation by high-speed impact as depicted
in Figure 16. Since there is no mechanical interlocking force due to the flat interface
morphology, it appears that the metallic bonding is formed at the welding interface. The
detailed investigation to find out metallic bonding at the diffusion zone was implemented
using micro XRD. Figure 17 shows the results of the micro XRD measurements of the
aluminum, steel, and interface. Even if the intensity peak at the interface is different
with the steel and aluminum phase, it is difficult to confirm the formation of Al-Fe phase
because the intensity peak of the Al-Fe phase is very close to those of the Al and Fe phases.
EBSD measurements were conducted further to identify the potential phase formation
at the interface. Figure 18 shows the results of the EBSD measurements at the interface
where the potential Al-Fe phase was observed. In the image quality (IQ) mapping, very low
confidential index was noted at the interface due to the very large plastic deformation which
results in lattice distortion. In the inverse pole figure (IPF) image, a random crystallographic
orientation of the constituent crystals was noticed. The phase map demonstrated that the
interface zone mostly consists of the Al-Fe phase while the Al side was populated with FCC
crystals and the Fe side with BCC crystals. In the kernel average misorientation (KAM),
many misorientation levels at the interface were high compared with those of parent material
regions. From these results, the new phase of Al-Fe was formed at the interface, which has a
very dense grain structure because of the high-speed impact. In order to characterize the
phase more precisely, TEM work has been performed around the interface region.
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Figure 17. Micro XRD analysis at flyer (Al sheet), interface (#1), and target sheet TRIP1180 sheet).

Figure 18. EBSD investigation in the welded VFAW specimen.

Figure 19a indicates the TEM observation area of the FIB sample. Figure 19b,d shows
typical FFT patterns of Al and Fe. In contrast, an SAED pattern obtained at the interface
revealed a ring pattern indicating the amorphous formation or a very fine nano-grain
structure. The SAED ring pattern was well indexed to the AlFe3 with a space group
of Fm3m, which is thermodynamically stable [34,35]. Liu et al. [22,27] also observed
complex intermetallic AlFe phases at the interface zone such as AlFe, AlFe3, Al5Fe2, and
Al3Fe. Perhaps, meta-stable intermetallics such as Al2Fe with low symmetry would be
transformed to a high-symmetry phase [36]. From these results, it seems that the driving
force of the high weldability between the two materials resulted from the metallic bonding,
as observed in the microstructural analysis.

When the flyer sheet collides with the target sheet with high speed and high pressure,
the local temperature of the surface around the impact region should be high enough to
form metallic bonding, eventually resulting in the formation of the AlFe3 intermetallic
phase that is hard and brittle in nature. Generally, the existence of such kind of intermetallic
phases is not preferable for enhanced joint strength and ductility. The crack found in
Figure 18 indicates the brittleness around the region. However, even with this AlFe3
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intermetallic phase, very high joint strength could be achieved due to metallic bonding
between Al and Fe sheets.
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4. Conclusions

In this paper, the VFAW welding of dissimilar materials between TRIP1180 and
AA5052-H32 has been conducted by substituting a standoff with the preformed shape in
the target sheet to increase the efficiency of the VFAW process. The design parameters of
the preformed shape were optimized through the FEM analysis considering the restriction
conditions from the geometrical limit of the preformed shape, which makes it possible to
have a perfect welding between TRIP1180 and AA5052-H32 by applying the input energy of
10 kJ. It has been concluded that it is substantially necessary to optimize process parameters
integrated with the geometrical design of the preform since the welding strength can
be decreased beyond the specific input energy due to the nonlinearity of the process
parameters in the standoff-free VFAW process. Many microstructural observations have
been conducted to identify the composition and phase at the welding interface. From the
SEM-EDS and micro XRD results, diffusion between the aluminum and steel was observed,
but it was not confirmed that the new phase was formed at the interface. Like the results of
the EBSD and TEM analysis, the AlFe3 phase was observed at the interface which has a
very fine grain structure because of the high speed impact. It can be concluded that the
metallic bonding occurred at the interface during the VFAW process by forming the AlFe3
phase, which results in high welding strength between the dissimilar materials.
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