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Abstract: Current prognostic risk scores for transcatheter aortic valve implantation (TAVI) do not
benefit yet from modern machine learning techniques, which can improve risk stratification of one-
year mortality of patients before TAVI. Despite the advancement of machine learning in healthcare,
data sharing regulations are very strict and typically prevent exchanging patient data, without
the involvement of ethical committees. A very robust validation approach, including 1300 and
631 patients per center, was performed to validate a machine learning model of one center at the other
external center with their data, in a mutual fashion. This was achieved without any data exchange
but solely by exchanging the models and the data processing pipelines. A dedicated exchange
protocol was designed to evaluate and quantify the model’s robustness on the data of the external
center. Models developed with the larger dataset offered similar or higher prediction accuracy on
the external validation. Logistic regression, random forest and CatBoost lead to areas under curve
of the ROC of 0.65, 0.67 and 0.65 for the internal validation and of 0.62, 0.66, 0.68 for the external
validation, respectively. We propose a scalable exchange protocol which can be further extended on
other TAVI centers, but more generally to any other clinical scenario, that could benefit from this
validation approach.

Keywords: aortic valve disease; machine learning; inter-center cross-validation; one-year mortality
prediction; outcome prediction; prognosis; TAVI; transcatheter aortic valve implantation

1. Introduction

Aortic valve stenosis (AS) is one of the most common valve diseases in the developed
world, primarily impacting the elderly population [1]. When symptomatic, the disease
has a devastating impact when left untreated, rapidly increasing the risk for heart failure,
which can lead to death in many cases. The most common cause of AS is calcification,
resulting from a network of pathological processes such as endothelial dysfunction and
injury, inflammation, synthetic and osteogenic dedifferentiation, pro-fibrotic response of
valvular interstitial cells and degradation of the extracellular matrix by proteolytic enzymes.
The calcium deposits on the valve leaflets result in impaired leaflet motion and subsequent
obstruction and/or regurgitation of blood flow. Another common cause is cardiac fibrosis
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which leads to heart valve thickening which decisively contributes to heart valve failure in
addition to calcification. As a consequence, the left ventricle tries to compensate for the
reduction in cardiac output by hypertrophy. Progressive narrowing of the valve will result
in symptoms while conducting daily activities, like angina, dizziness and dyspnoea.

Traditional treatment of severe AS consists of surgical aortic valve replacement (SAVR).
However, in the past decades, a less invasive and more innovative approach has been
developed and approved, initially for use only in high surgical-risk AS, and later extended
to mild- and moderate-risk AS (risks calculated according to the established surgical
risk scores). This approach is a minimally invasive heart procedure which requires the
implantation of an artificial valve, as shown in Figure 1. The procedure is known as
transcatheter aortic valve implantation (TAVI) or transcatheter aortic valve replacement
(TAVR), and has currently become a routine treatment worldwide.
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Figure 1. Illustration of the three phases of Transcatheter Aortic Valve Implantation intervention.
Originally the catheter crosses the native valve trough transfemoral access (a), follows the deployment
and expansion of the valve (b) and finally the expanded valve replaces the native valve (c).

Strict patient selection is performed by a multi-disciplinary team to select patients best
suited for TAVI. The selection is achieved by exploiting both current imaging technologies
and recent clinically related research, which are jointly discussed in an inter-disciplinary
meeting with medical experts and by using modern planning and treatment support
tools [2–4].

The global objective of the research in this paper is to improve on the prediction of
possible benefits for TAVI patients (further information is available in the Supplementary
Materials), such that unnecessary treatment and reduction of the quality of life is avoided
for patients not benefiting from TAVI, while giving more certainty to the benefiting patients
by the confirmation of the prediction of improvements. A second reason for this research is
found in the use of the mortality prediction. If the prediction score is high, the medical team
of experts can discuss alternative treatments or medications and maintain the quality of life
and life expectancy as high as possible. Alternatively, if the score is low, the medical team
can use this as a confirmation to further proceed with TAVI and stimulate the patients for
further motivation of treatment. Whereas the previous motivations are mostly related to the
patient, the proposed study also provides benefits to the medical centers by facilitating the
patient selection, reducing waiting lists, optimizing the use of the resources and improving
the clinical workflow [1].

Research on mortality prediction and risk models has been addressed in literature.
However, current risk models have only limited accuracy in predicting TAVI outcomes [5].
Several models originally intended for SAVR, thus not specifically intended for TAVI,
have been developed in recent decades and are currently used for risk assessment. It is
noteworthy and important to mention EuroSCORE, EuroSCORE II and the STS (Society
of Thoracic Surgery) scores [6–9], since they are in widespread use worldwide. More
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specific TAVI predictors are also available, of which a relevant example is the TAVI-specific
TVT registry score [10–12]. Considering that these are procedural, in-hospital or 30-day
mortality predictors, the time interval is not clinically relevant to establish whether the
TAVI procedure is suited for long-term patient survival. In fact, one-year mortality has been
identified by the medical experts as the life expectancy threshold, above which the TAVI
procedure is appropriate to be performed. However, one-year mortality for patients treated
with TAVI is even more challenging [13] and current predictors [14,15] have not been
extensively validated across multiple centers, reaching a validation sufficient to be used
for the clinical decision-making. Furthermore, external validations are therefore needed to
assess the predicting potential of one-year mortality for TAVI and this is a challenging task,
as will become evident from this study.

The previously mentioned clinical risk scores and predictors for one-year mortality
rely on conventional statistical regression approaches [16]. However, in recent years,
more advanced machine learning techniques (ML) have shown competitive predictive
value [17]. Especially when data complexity arises and a large amount of data are involved,
ML techniques can outperform conventional regression models [18]. Recently, two ML
methods have been developed and published, exploiting gradient boosting on a decision
tree algorithm (GBDT) [19,20], to predict one-year mortality for patients treated with
TAVI. The GBDT techniques were validated on retrospective patient data from single
centers. However, external validations were not performed. The research we performed
in this manuscript is meant as a natural consequence and continuation of these single-
center researches previously mentioned. This cross-validation study was facilitated by the
ongoing collaboration between the two medical and technical universities.

External validations are necessary to assess the generalization capabilities of a predic-
tion model on other similar populations, albeit belonging to different centers. Most often
this validation process requires the involvement of specific ethical committee protocols
to permit the exchange of the patient data specifically for validation purposes. This in-
volves long administrative procedures that are difficult to implement, especially in those
scenarios where data sharing policies are intrinsically limited (e.g., General Data Protection
Regulation).

An alternative solution to the data sharing limitations is exchanging the model and
recreating the same data processing pipeline to perform the model validation, without any
need of data sharing, as shown in Figure 2. In this research, a model-exchange approach
has been adopted to avoid the exchange of any patient data, which would have otherwise
delayed and hindered the validation process. The value of such a validation approach is
considerable both from a perspective of robustness and for thoroughly testing the models.
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Figure 2. Diagram of the inter-center cross-validation. The entire exchange process is obtained
by organizing a cross-validation protocol in three main stages, which requires the exchange of the
models and their evaluation. Each model is validated on the initial center and on the validation
center. Finally, a comparison between the internal validation and the external validation results is
performed to evaluate the performance of each model on an unseen external center dataset.
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To the best of our knowledge, this is the first extended cross-validation for predicting
TAVI outcomes, performed across centers while not involving any data exchange. Some studies
have been performed on national registries containing multiple-center data [21–23], however,
data exchange was required and cross-validations to evaluate each model robustness across
multiple centers were not performed. Summarizing, the clinical and technical relevance
of what is presented in this study is remarkably important for the TAVI procedure and
for further studies that will require external validations across multiple centers with
insurmountable data privacy restrictions. This study is not meant to be a comparison
between the models of both centers, since clinical features, data processing and classifiers
optimization were commonly adopted to guarantee the highest similarity across the center’s
experiments. In fact, the performance of various models which are later validated on data
of other centers can also be highly influenced by population differences and different
data distributions. This study aims also to analyze this problem, for dedicated models for
the TAVI procedure, by performing several experiments with different machine learning
classifiers, in order to quantify their robustness and identify the classifier with the lowest
performance drop caused by data of another center.

This work has multiple clinical and technical contributions.

• First, we create multiple different mortality prediction models for the TAVI procedure
per center, based on state-of-the-art machine learning techniques.

• Second, we optimize the TAVI models to better perform on the validation set and we
evaluate their predicting potential on the test set of each original center.

• Third, we cross-validate all TAVI models, involving the two centers with different
populations and we compare their predicting capability with respect to their internal
evaluation.

• Ultimately, this study proposes an exchange protocol which can be extended to be
used in further clinical use cases that can benefit from external validations or cross-
validations.

2. Materials and Methods

In this section, details about the dataset, the inter-center cross-validation protocol, and
the experimental setup are provided.

2.1. Datasets

The dataset available at the Eindhoven University of Technology (Technische Univer-
siteit Eindhoven, TU/e) was obtained from the Catharina Hospital of Eindhoven (Catharina
Ziekenhuis Eindhoven, CZE) and consisted of 631 consecutive TAVI procedures that were
performed between January 2015 and December 2018. From this point onwards, the col-
laboration, based on the Eindhoven MedTech Innovation Center (e/MTIC) consortium,
between TU/e and CZE is referred to in this work as CZE-TU/e. The dataset available at
the Amsterdam UMC-Location AMC (Amsterdam University Medical Center, Location
AMC) consisted of 1300 TAVI procedures performed between October 2007 and April 2018.
Most procedures were performed by using the following models of artificial aortic valves:

• SAPIEN XT and SAPIEN 3, Edwards LifeSciences (Irvine, CA, USA);
• CoreValve and CoreValve Evolut, Medtronic (Minneapolis, MN, USA).

Transfemoral access was the most widely used access site to perform the procedures.
However, a portion of the procedures, for both CZE and AMC, were performed by using
an alternative access site. As later discussed, valve type and manufacturer and the access
site have not been included as clinical features for this analysis study, since they are
not considered patient data but procedure-related data, which are more important in
procedural mortality than for one-year mortality. In recent years, procedural mortality
significantly dropped and, in this study, the procedural time intervals of the two centers
is substantially different (2007–2018 against 2015–2018). Furthermore, clinical protocols
for patient selection and for the procedure also changed over time and across different
centers. For these reasons, we have chosen to leave out any procedural data to obtain
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a fairer comparison [24]. For instance, the artificial aortic valve is itself also subject to
changes due to the research which leads to technical advancements, whereas physiological
information is less prone to changes across time and across multiple centers.

Prior to performing any analysis, datasets of both centers were divided into two
different groups, representing two different categories of the population. For each group,
an identification class (or label) was assigned accordingly to the patient survival after one
year from the date of the TAVI procedure. The two main groups were identified as:

• Survived at one year (1171 patients for AMC and 564 patients for CZE-TU/e),
• Non-survived at one year (129 patients for AMC and 67 patients for CZE-TU/e).

The mortality information was collected after one year from the procedure through the
census of the national population of the Netherlands for CZE-TU/e and during a follow-up
study for AMC. Time-to-event has a median value of 55 days (IQR = 153 days) for AMC
and of 93 days (IQR = 176 days) for CZE-TU/e.

The reporting of this paper adheres to the “transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis” (TRIPOD) guidelines [25]. The
TRIPOD statement can be found in the Supplementary Materials.

2.2. Clinical Data Processing

Clinical data are harmonized, imputed, pre-processed and in some cases oversampled
before being used to train the classifiers. In this section all the steps are discussed with
reference to Figure 3.
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Figure 3. Detailed diagram of the inter-center cross-validation. Training, validation and evaluation are shown in yellow
color, while data harmonization, imputation, pre-processing and class-balancing strategy steps are shown in grey color.
The inter-center cross-validation protocol is organized in three stages: internal evaluation, external evaluation and final
evaluation. The first two stages share a common clinical data processing, a common validation order and evaluation metrics.
The internal evaluation stage (left) and the external evaluation stage (right) share a common processing chain including
imputation and pre-processing steps. The final evaluation stage (bottom) is the last stage which is necessary to compare the
internal validation results with the external validation results. At the first two stages, each model is evaluated, while at the
final stage, both internal and external validation results are compared for a final performance assessment.

2.2.1. Data Harmonization

The data-harmonization stage is a preliminary yet important and extensive step that
implements the alignment of the dataset to a common representation. In fact, only patient
data that was common (cross-available) to both centers was included in the study. When
the clinical data was represented in a different form, the harmonization step was required
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to match the different data representations to realize a common one. Clinical data are both
represented as numerical and as categorical information. Whereas numerical data can be
represented in different units easily convertible and interchangeable, categorical data can
be expressed with a different number of instances. In case the number of categories were
different, we reduced the number of categories to an amount common to both datasets.
The main harmonization steps that were performed at this preliminary stage are explained
in detail in Table A2 (Appendix B). As a natural consequence, each dataset during its
collection process is afflicted with a certain number of missing values. In this research, we
initially discarded all features that had 80% or more missing values, for at least one of the
two centers. Missing values for all the features that were included in the study (therefore
with a percentage of missing values lower than 80%) were imputed, as explained in the
next section. This threshold was jointly chosen by the two centers to guarantee that an
adequate number of important features were available, despite the amount of missing
information. The main reasons why data was missing is because of random events leading
to the data not being collected, but also because of non-random events [26,27]. For this
last scenario, a dependency between the data collection and clinical protocols can exist,
which can affect the collection of that type of data, not considering it of crucial importance
for the decision making of a specific patient. This type of missing information can be very
center dependent since clinical hospitals and academic medical centers often do not share
the same clinical protocols.

A total of 16 clinical features were used in the study and are all listed in alphabetical
order in Table A3 (Appendix B). Further information about quantity of missing values are
shown in Figure A2 (Appendix B).

2.2.2. Data Imputation

Missing values were then imputed with the mean value for numerical features and
with the mode of the instances for categorical features. The survived and non-survived
classes were not considered for the computation, leading to the consideration of a unique
mean or mode per feature and per center. These unique values per feature and per center
were then used to impute the training, validation and test set of each respective center. As
known, taking the median value is robust to outliers. However, as observed in Figure 4,
data in the survived and non-survived distributions have shown that the median value does
not incorporate a large number of outliers, which represent a large sub-population of both
two centers. This is the reason replacing numerical missing values with a mean value was
preferred, since the mean includes the outliers and has shown a higher consistency in its
value, with respect to the survived and non-survived distributions across the two centers.
This approach was also chosen because of its low computational complexity, but also
because it is a well-known standard approach in the machine learning field. Furthermore,
we considered using imputation values taken from the original center data (center-specific
imputation), since slightly different data distributions over the two centers did emerge. As
specified in the previous section, different clinical protocols are adopted across the two
centers, and also, for this reason, a center-dependent approach was preferred. Further
information about data distributions is listed in Table A3 (Appendix B) and shown in
Figure 4.

2.2.3. Data Pre-Processing

Pre-processing for most of the machine learning classifiers does require two important
distinctions, in case of dealing with categorical or numerical data. Whereas one-hot
encoding is used for categorical features, numerical features are standardized by removing
their mean and by scaling them to unit variance. To perform the standardization, the mean
and the standard deviation values are computed from the training set of the initial center
from a scaling function, which is used to standardize all data of both centers. After one-hot
encoding, the clinical data shown in alphabetical order in Table A3 (Appendix B) resulted
in 22 features.
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It should be noted that not all classifiers are required for one-hot encoding or stan-
dardization. In fact, pre-processing was omitted for XGBoost, since it required only the
replacement of categorical instances with numerical values, and also for CatBoost since it
has internal and dedicated pre-processing for categorical data.

2.2.4. Class-Balancing Strategies and Learning Approaches

The TAVI procedure has a high chance of success and only a small fraction of the
patients have non-favorable outcomes. This results in an imbalanced class problem [28]
which was addressed with three approaches:

(1) Balanced class weighting (as ClassWeight),
(2) Random oversampling of the minority class (as RandomOvers),
(3) SMOTE-NC for the minority class.

Including balanced class weighting [29] for each classifier training was the first so-
lution that was adopted. Random oversampling of the minority class was applied prior
to training each classifier until an equal proportion between classes was reached. Finally,
the SMOTE-NC (synthetic minority oversampling technique for nominal and continuous)
technique [30,31] was tested.

A total amount of six machine learning classifiers (I-VI) have been exploited to generate
different prediction models and will be presented in the following order. (I) Support vector
machine classifier (SVC) and (II) logistic regression (LR) represent the core of ML, since
they are robust and widespread across multiple fields of research. (III) Random forest (RF),
(IV) XGBoost (XGB) and (V) CatBoost (CatB) were included because they are based on
decision trees, which are optimal for dealing with categorical features common in clinical
data. Lastly, (VI) neural networks (NN) are considered for their recent exponential growth
due to the widespread successful use in data and image analysis. An explanation for the
classification algorithm of each classifier is provided in the Supplementary Materials.

2.3. Validation and Evaluation Metrics

Validation of the model has been performed with a stratified twentyfold cross-validation,
so that 5% of the entire dataset was used as test set for internal validation per fold. From
the remaining data (95%), 90% was used as training set and 10% as validation set. The
validation set was employed to perform some work on the optimal hyperparameter setting
to verify optimal convergence of the classifiers during the training process. Therefore, the
validation set (in some cases within a tenfold cross-validation (CV) on the training set as
specified in the section on hyperparameters of the Supplementary Materials) was used to
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find the optimal parameters for each model, to identify the best classifier on the validation
score for each fold individually.

Despite being computationally intensive, this type of validation required three dif-
ferent split sets (training, validation and test set). This approach was chosen to avoid
overoptimistic results, to reduce overfitting and to increase the generalization capabilities
of the classifiers on another center population, guiding the training process to an optimal
convergence.

Once each classifier was trained and tuned on the original center data, to generate the
optimal prediction models for each fold, all models were transferred to the other center to
perform the external validation. The pre-processing stage per fold was also transferred to
guarantee common and identical data processing for the two different datasets.

The external validation was performed with a similar approach; thus, a stratified
twentyfold CV on the other center data was used to assess the performance of each model.
It is worth mentioning that each of the 20 models generated per classifier on the original
center data were validated on one unique fold of the other center data. This approach
was chosen to guarantee a similar validation method and metric to the one used for the
internal validation.

The main purpose of this study was to assess the capability of several classifiers to
discriminate across two groups and two different centers. Proper calibration of the models
was not required, since the development of a risk score was beyond the scope of research.
However, a calibration study was performed to provide insights related to the probability
distributions obtained on the two center populations.

The area under the curve (AUC) of the receiver operating characteristic (ROC) (known
as c-statistic) and Brier loss score were computed and reported for all classifiers, while
calibration curves and ROC curves were reported for the top-three classifiers (based on
AUC of the ROC) of each center and experiments, for both the internal and external
validations results.

2.4. Experimental Setup

Two independent experiments have been performed, one considering CZE-TU/e as
initial center (IC: CZE-TU/e) and AMC as validation center (VC: AMC), and vice versa.
These two experiments were of crucial importance to perform the external validation with
a bi-directional approach to both centers, in other words an inter-center cross-validation.

For each of the two experiments, two evaluations were required. At first, an internal
evaluation of the models was performed to assess the prediction potential of the classifiers
on the initial center data. Second, an external evaluation of the identical models was
required to assess the prediction potential of the classifiers on the external center data.
To provide reliable evaluation scores that could be later compared between both centers,
a specific twentyfold cross-validation approach for both centers was developed. Both
centers’ datasets were split into twenty stratified folds and these folds were used for both
the internal and the external evaluations across both centers’ experiments. A total amount
of twenty AUC values of the ROC were obtained to evaluate and assess the prediction
potential for all the models. Final scores consisted of mean, standard deviation and interval
of confidence of the twenty AUC values per classifier, sub-experiments (class-balancing)
and experiments (cross-validation across centers). All comparisons between the internal
and external validation results were based on these evaluation metrics.

All experiments were performed on Python 3.6.9 using scikit-learn library 0.21.3.

3. Results

In this section the two different populations and all experimental results are presented
in detail. At first, a comparison between the internal validation of the two centers is
performed. Then, the internal and external validation results are compared, considering
CZE-TU/e as initial center and AMC as validation center, and vice versa. All results are
shown in Table A1 (Appendix A), and top-three results per center for both the internal and
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external validations are shown in Figure 5. Figure 6 portrays the distributions of all the
results while Table 1 presents a final evaluation for both centers.

Table 1. Final evaluation, internal and external validation results comparisons based on mean AUC of the ROC curve. AUC
is shown as mean and the improvement or drop in the performance of the classifier (∆) in expressed in percentage with
respect to the mean AUC of the internal and of the external validation.

Class-Balancing Strategy

Balanced-Class
Weighting

Random
Oversampling

Internal
eval.

External
eval. ∆ (%) Internal

eval.
External

eval. ∆ (%)

SVC 1 IC: CZE-TU/e, VC: AMC 0.58 0.55 −5% 0.55 0.59 +7%
IC: AMC, VC: CZE-TU/e 0.63 0.65 +3% 0.57 0.58 +2%

LR 2 IC: CZE-TU/e, VC: AMC *0.65* *0.62* −5% 0.64 0.60 −7%
IC: AMC, VC: CZE-TU/e 0.66 0.65 −2% 0.65 0.64 −2%

RF 3 IC: CZE-TU/e, VC: AMC 0.62 0.58 −7% 0.63 0.58 −9%
IC: AMC, VC: CZE-TU/e *0.67* *0.66* −2% 0.61 0.64 +5%

XGBoost 4 IC: CZE-TU/e, VC: AMC 0.60 0.60 0% 0.58 0.59 +2%
IC: AMC, VC: CZE-TU/e 0.64 0.62 −3% 0.62 0.59 −5%

CatBoost 5 IC: CZE-TU/e, VC: AMC 0.63 0.59 −7% 0.65 0.58 −12%
IC: AMC, VC: CZE-TU/e *0.65* *0.68* +4% 0.61 0.58 −5%

NN small 6 IC: CZE-TU/e, VC: AMC 0.64 0.57 −12% 0.59 0.59 0%
IC: AMC, VC: CZE-TU/e 0.63 0.57 −11% 0.61 0.60 −2%

NN large 7 IC: CZE-TU/e, VC: AMC 0.60 0.55 −9% 0.62 0.54 −15%
IC: AMC, VC: CZE-TU/e 0.60 0.54 −11% 0.58 0.56 −4%

NN deep 8 IC: CZE-TU/e, VC: AMC 0.62 0.55 −13% 0.58 0.52 −12%
IC: AMC, VC: CZE-TU/e 0.61 0.54 −13% 0.58 0.54 −7%

1 Support-vector machine classifier [32], 2 Logistic regression, 3 Random Forest [33], 4 Extreme gradient Boosting [34], 5 CatBoost [35,36],
6 Neural network small 12 neurons-2 layers, 7 Neural network large 140 neurons-2 layers, 8 Neural network deep 84 neurons-3 layers.
Top-three results per center are marked in bold font. The highest AUC results, reported in the abstract, for both the internal and the external
validations are marked between asterisks.
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3.1. Analysis of the Data Distributions across the Centers

An analysis for comparison of the two different center populations was needed for as-
sessing the main differences between the two populations, due to possible variations in the
distribution of the clinical data. The distributions of the numerical and categorical features
for both centers are displayed with boxplots and bars in Figures 4 and A2 (Appendix B),
respectively. Alternatively, category occurrences for each of the categorical features and
missing value information for all clinical features can be obtained for further analysis from
Table A3 (Appendix B).

No major differences were found between the two populations. However, some
numerical and categorical features showed different distributions. The main differences
can be explained by the different standard deviations across the two populations. In some
cases, the quantity of statistical outliers is also different, but in most cases when outliers
are present, they appear to occur for both centers jointly above or below the median value,
therefore not resulting in an asymmetry between the two centers’ distributions. In some
cases, the non-survived group showed a higher or lower median value with respect to the
survived group; these corresponded across both populations. Exceptions are aortic valve
mean gradient, body mass index, creatinine and hemoglobin. However, by including the
outliers and by considering the mean values solely, these differences appear to reduce.
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3.2. Internal and External Validations

The first part of the two experiments consisted in the internal validation of CZE-
TU/e and AMC. The classifiers that showed the highest AUC results for CZE-TU/e were:
Logistic regression (ClassWeight) with 0.65 ± 0.12, Logistic regression (RandomOvers)
with 0.64 ± 0.15 and CatBoost (RandomOvers) with 0.65 ± 0.16. For the AMC, the highest
AUC results were reached by: Random forest (ClassWeight) with 0.67 ± 0.11, Logistic
regression (ClassWeight) with 0.66 ± 0.12 and CatBoost (ClassWeight) with 0.65 ± 0.09.
AUC curves for the classifiers mentioned above can be found in Figure 5 (left). The highest
results were obtained with balanced-class weighting and random oversampling. Therefore,
only these two class-balancing strategies will be further discussed. However, all the AUC
results for each class-balancing strategy can be found in Table A1 (Appendix A).

The second part of the two experiments consisted in the external validation for models
trained on CZE-TU/e data and tested on AMC data, and vice versa. The classifiers that
showed the highest external validation results for models trained on CZE-TU/e were:
XGBoost (ClassWeight) with 0.60 ± 0.09, logistic regression (ClassWeight) with 0.62 ± 0.12
and logistic regression (RandomOvers) with 0.60 ± 0.13. For AMC, the highest external
validation results for models trained on AMC data were reached by: Random forest
(ClassWeight) with 0.66 ± 0.15, Support vector machine classifier (ClassWeight) with
0.65 ± 0.14 and CatBoost (ClassWeight) with 0.68 ± 0.16. AUC curves for the classifiers
mentioned above can be found in Figure 5 (right).

A calibration study was performed for the top-three classifiers shown in Figure 5. The
results of the study can be found in the Supplementary Materials with the Brier Score loss
of each classifier involved in the experiments.

3.3. Final Evaluation

All distributions for all the results collected during the two experiments (both internal
and external validations) that were performed are displayed in Figure 6.

From a first visual inspection of the results, it can be clearly noticed that all the distri-
butions show a high standard deviation. Boxplots results show, as an overall impression,
that when the models are generated by using the dataset of CZE-TU/e, lower results are
observed in the external validation, but when the models are generated by using the dataset
of AMC, more similar and sometimes higher external validation results are observed. These
observations are reflected by both the median value and the interquartile range of the
boxplots. The top-three results per center, shown in Figure 5, and the highest AUC results
for both the internal and the external validations, are marked in Table 1, in bold font and
between asterisks, respectively.

The first experiment with CZE-TU/e as initial center and AMC as validation center has
shown that the best classifiers, based on AUC metrics, were logistic regression (ClassWeight)
with 0.65 ± 0.12 for the internal validation and with 0.62 + 0.12 for the external validation,
and logistic regression (RandomOvers) with 0.64 ± 0.15 for the internal validation and
0.60 ± 0.13 for the external validation. A performance drop at the external validation,
ranging from 5–7%, is observed.

The second experiment with AMC as initial center and CZE-TU/e as validation
center has shown that the best classifiers, based on AUC metrics, were random forest
(ClassWeight) with 0.67 ± 0.11 for the internal validation and with 0.66 ± 0.15 for the
external validation, and CatBoost (ClassWeight) with 0.65 ± 0.09 for the internal validation
and 0.68 ± 0.16 for the external validation. A performance drop of 2% at the external
validation is observed for random forest, while an improvement in the performance of 4%
at the external validation is noticed for CatBoost.

4. Discussion
4.1. Feature Representation and Distributions

The initial setup of two distributions for each center is interesting for comparison
but also invokes some issues. It was seen that missing values, missing features and
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different feature representations are obstacles which can interfere with the inter-center
cross-validation purpose. In some cases, the amount of missing data was too high to
allow data usage but in most of the cases data harmonization was possible. By imposing
some decision rules (if missing data is above 80%, the feature is ignored, with lower
numbers harmonization is typically possible but with a fair weighting of exclusion of
specific cases to avoid penalization of centers). Different feature representations can be
properly harmonized across the two centers to prepare the datasets for an optimal and fair
cross-validation. The possibility to make a center-based comparison makes this effort of
data harmonization worthwhile to perform.

Feature distributions for the two sub-groups of survived and non-survived to one-
year patients should be taken into account before adopting any imputation techniques for
missing values. The imputation can be a unique shared imputation or a center-dependent
imputation, as in this study.

4.2. Dataset and Related Validation Aspects

The metrics that have been provided with this inter-center cross-validation approach
are completely exempt of any information leak that could occur from the test set to the
validation or training set. In fact, in both conducted experiments, both centers were blind
relative to each other, leading to a strict validation approach which is often non-typical
for other studies available in literature [14,15,21–23,37,38]. This makes our inter-center
cross-validation very valuable and unique.

With respect to the TAVI procedure our work has identified the best classifiers for a
center to model their data. These classifiers are then interesting candidates for validation at
other centers. This makes the validation highly interesting for both centers. Furthermore,
it can be noticed that a larger dataset can offer similar and sometimes higher prediction
accuracy with respect to a smaller dataset.

Concerning the class-balancing strategies, random oversampling of the minority class
has shown lower or similar results with respect to the class-balancing strategy for both the
internal and external validations. On the other hand, SMOTE-NC shows poor prediction
accuracy with respect to the other class-balancing strategies, possibly because the data
interpolation is introducing too much variability and redundant information into the data.

4.3. Discussion on the Obtained Results

A high standard deviation in the AUC results is observed. This is mainly due to the
relatively small sample size of the test set. Using a larger dataset or a reduced number
of folds for the k-fold cross-validation would decrease the standard deviation, but most
certainly also the validation results. This is because a lower number of patients would have
been taken into account in the training set to generate the models.

When logistic regression is used on the smaller dataset of CZE-TU/e, it provides
higher prediction accuracy with respect to the one obtained by all the other classifiers.
However, when applying support vector machine, this leads to a low prediction accuracy
when trained on the smaller dataset of CZE-TU/e. XGBoost, Random Forest and CatBoost
have shown similar or better results with respect to logistic regression on the larger dataset
of AMC. In general, neural networks have shown good prediction accuracy on the internal
validations for both centers. However, poor results have been obtained for the external
validations, exhibiting the highest drop in accuracy at the external validation.

The previous discussion on the prediction accuracy with various classifiers is con-
firmed by the presented boxplots results, which show on average, that when the models
are generated using the dataset of CZE-TU/e, somewhat lower results are obtained for
the external validation, while when the models are generated using the dataset of AMC,
more similar or sometimes even higher results are achieved for the external validation.
This phenomenon is related to the amount of available data for machine learning. Lo-
gistic regression (ClassWeight and RandomOvers) shows to be ideal for generating the
models with the small-scale dataset, while random forest (ClassWeight) and CatBoost
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(ClassWeight) seem to be ideal for generating models with the large-scale dataset, proving
to reach high-performance results. This can be explained by the fact that these classifiers
have a tree-based decision structure which can handle categorical features and can capture
non-linear patterns.

4.4. Future Work

Given the results discovered in this inter-center cross-validation study further devel-
opments of this research can be envisioned. A further logical step would be the generation
of a unique model, by combining the two centers data for the development set. This
would lead to the creation of an improved model incorporating a much larger amount of
information. However, this achievement is severely limited by the data-sharing policies of
the medical centers, preventing data combinations of multiple centers. To this end, future
approaches for more general setups could be based on federated (or collaborative) learning
or more specifically distributed (or split) learning for neural networks.

5. Limitation of the Study

The relatively small population size shared between the two centers poses some
constraints on the generalization capabilities of the joint model for larger datasets. The
window time for the data acquisition of the Amsterdam Medical Center is large [24]
compared to lower amount of data available at top-clinical hospitals. However, this benefit
cannot always be fully exploited because if the time window becomes large, developments
in techniques change over time within the data capturing window, which makes the data
exploitation less fitted to the actual problem and technology.

The proposed validation approach does not require data exchange but does imply
a clear and ongoing communication, a good collaboration and a good synchronization
between the two centers, which was fortunately possible in our case but can sometimes be
complicated for other combinations of centers.

6. Conclusions

With this research, we aim to perform an inter-center cross-validation of several
prediction models of one-year mortality for patients who undergo the TAVI procedure,
by exploiting several machine learning classifiers. Despite the advancement of machine
learning in healthcare, data-sharing regulations are very strict and they do not always allow
for exchanging the patient data, without the involvement of specific ethical committees’
protocols for data-sharing approval. In this study, we performed two external validations
for two TAVI centers, which have been achieved by exchanging the models rather than
exchanging the patient data. Multiple and different mortality prediction models have
been developed and optimized on the initial center data, with different populations of
1300 and 631 TAVI patients, based on employing various machine learning techniques.
Assessing missing values and feature distributions is essential for both analyzing the main
differences across the two populations, but also for a careful selection of the clinical features
that can be used in the joint modeling. We have proven that the prediction accuracy of
models generated at one TAVI center can be extended to another TAVI center. Moreover,
training with a larger dataset can offer similar or higher prediction accuracy on the external
validation with a smaller dataset, while training on a smaller dataset offers lower prediction
accuracy on the external validation with a larger dataset. This research study is an extended
cross-validation performed across two TAVI centers and it proposes a unique and scalable
exchange protocol for validation without any data exchange. With respect to the TAVI
procedure, the fact that our work has identified the best classifiers for a center to model
their data and to test that model with the data of another center makes the experiments
mutually highly interesting for both centers. The research can be further extended to larger
datasets for the mortality prediction for TAVI procedure but also to any other clinical
scenario where data sharing is not possible.
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Appendix A

Table A1. Final evaluation, internal and external validation results comparisons based on AUC of the ROC curve. AUC is
shown as mean ± standard deviation, within brackets are the confidence intervals at 95%.

Class-Balancing Strategy

Balanced-Class
Weighting

Random
Oversampling Smote-NC

Internal
eval.

External
eval.

∆
(%)

Internal
eval.

External
eval.

∆
(%)

Internal
eval.

External
eval.

∆
(%)

SVC 1

IC: CZE-TU/e
VC: AMC

0.58 ± 0.14,
[0.51, 0.65]

0.55 ± 0.16,
[0.47, 0.62] −5% 0.55 ± 0.17,

[0.47, 0.63]
0.59 ± 0.09,
[0.55, 0.64] +7% 0.55 ± 0.18,

[0.46, 0.63]
0.57 ± 0.08,
[0.53, 0.60] +4%

IC: AMC
VC: CZE-TU/e

0.63 ± 0.11,
[0.57, 0.68]

0.65 ± 0.14,
[0.59, 0.72] +3% 0.57 ± 0.09,

[0.53, 0.62]
0.58 ± 0.17,
[0.50, 0.66] +2% 0.56 ± 0.10,

[0.51, 0.61]
0.55 ± 0.16,
[0.47, 0.63] −2%

LR 2

IC: CZE-TU/e
VC: AMC

0.65 ± 0.12,
[0.60, 0.71]

0.62 ± 0.12,
[0.56, 0.68] −5% 0.64 ± 0.15,

[0.57, 0.72]
0.60 ± 0.13,
[0.54, 0.66] −7% 0.58 ± 0.12,

[0.52, 0.64]
0.53 ± 0.12,
[0.47, 0.58] −9%

IC: AMC
VC: CZE-TU/e

0.66 ± 0.12,
[0.60, 0.71]

0.65 ± 0.14,
[0.58, 0.71] −2% 0.65 ± 0.11,

[0.59, 0.70]
0.64 ± 0.15,
[0.57, 0.71] −2% 0.57 ± 0.12,

[0.52, 0.63]
0.55 ± 0.21,
[0.45, 0.65] −4%

https://www.mdpi.com/article/10.3390/jcdd8060065/s1
https://www.mdpi.com/article/10.3390/jcdd8060065/s1
https://www.mdpi.com/article/10.3390/jcdd8060065/s1
https://www.mdpi.com/article/10.3390/jcdd8060065/s1
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Table A1. Cont.

Class-Balancing Strategy

Balanced-Class
Weighting

Random
Oversampling Smote-NC

Internal
eval.

External
eval.

∆
(%)

Internal
eval.

External
eval.

∆
(%)

Internal
eval.

External
eval.

∆
(%)

RF 3

IC: CZE-TU/e
VC: AMC

0.62 ± 0.16,
[0.54, 0.70]

0.58 ± 0.11,
[0.53, 0.64] −7% 0.63 ± 0.16,

[0.55, 0.70]
0.58 ± 0.12,
[0.52, 0.63] −9% 0.56 ± 0.14,

[0.49, 0.63]
0.54 ± 0.11,
[0.48, 0.59] −4%

IC: AMC
VC: CZE-TU/e

0.67 ± 0.11,
[0.61, 0.72]

0.66 ± 0.15,
[0.59, 0.73] −2% 0.61 ± 0.13,

[0.55, 0.67]
0.64 ± 0.14,
[0.57, 0.70] +5% 0.59 ± 0.12,

[0.53, 0.65]
0.53 ± 0.15,
[0.46, 0.61] −11%

XGBoost 4

IC: CZE-TU/e
VC: AMC

0.60 ± 0.14,
[0.53, 0.66]

0.60 ± 0.09,
[0.56, 0.65] 0% 0.58 ± 0.18,

[0.50, 0.67]
0.59 ± 0.08,
[0.56, 0.63] +2% 0.60 ± 0.14,

[0.53, 0.67]
0.50 ± 0.09,
[0.46, 0.55] −20%

IC: AMC
VC: CZE-TU/e

0.64 ± 0.12,
[0.59, 0.70]

0.62 ± 0.16,
[0.54, 0.70] −3% 0.62 ± 0.15,

[0.55, 0.69]
0.59 ± 0.19,
[0.50, 0.68] −5% 0.62 ± 0.12,

[0.56, 0.67]
0.50 ± 0.19,
[0.41, 0.59] −24%

CatBoost 5

IC: CZE-TU/e
VC: AMC

0.63 ± 0.15,
[0.56, 0.70]

0.59 ± 0.11,
[0.54, 0.65] −7% 0.65 ± 0.16,

[0.57, 0.72]
0.58 ± 0.10,
[0.53, 0.63] −12% 0.62 ± 0.13,

[0.56, 0.68]
0.53 ± 0.10,
[0.48, 0.58] −17%

IC: AMC
VC: CZE-TU/e

0.65 ± 0.09,
[0.61, 0.70]

0.68 ± 0.16,
[0.60, 0.75] +4% 0.61 ± 0.11,

[0.55, 0.66]
0.58 ± 0.17,
[0.50, 0.66] −5% 0.62 ± 0.11,

[0.56, 0.67]
0.47 ± 0.15,
[0.40, 0.55] −32%

NN small 6

IC: CZE-TU/e
VC: AMC

0.64 ± 0.16,
[0.56, 0.72]

0.57 ± 0.13,
[0.51, 0.63] −12% 0.59 ± 0.16,

[0.51, 0.67]
0.59 ± 0.11,
[0.53, 0.64] 0% 0.58 ± 0.12,

[0.52, 0.63]
0.50 ± 0.14,
[0.43, 0.56] −16%

IC: AMC
VC: CZE-TU/e

0.63 ± 0.10,
[0.59, 0.68]

0.57 ± 0.14,
[0.50, 0.63] −11% 0.61 ± 0.11,

[0.56, 0.66]
0.60 ± 0.18,
[0.52, 0.69] −2% 0.54 ± 0.12,

[0.49, 0.60]
0.53 ± 0.21,
[0.43, 0.63] −2%

NN large 7

IC: CZE-TU/e
VC: AMC

0.60 ± 0.14,
[0.54, 0.67]

0.55 ± 0.11,
[0.50, 0.61] −9% 0.62 ± 0.13,

[0.56, 0.68]
0.54 ± 0.13,
[0.48, 0.60] −15% 0.55 ± 0.15,

[0.48, 0.62]
0.50 ± 0.14,
[0.43, 0.56] −10%

IC: AMC
VC: CZE-TU/e

0.60 ± 0.11,
[0.55, 0.65]

0.54 ± 0.16,
[0.47, 0.62] −11% 0.58 ± 0.12,

[0.52, 0.64]
0.56 ± 0.18,
[0.47, 0.64] −4% 0.53 ± 0.12,

[0.47, 0.59]
0.53 ± 0.20,
[0.43, 0.62] 0%

NN deep 8

IC: CZE-TU/e
VC: AMC

0.62 ± 0.13,
[0.55, 0.68]

0.55 ± 0.12,
[0.49, 0.60] −13% 0.58 ± 0.16,

[0.50, 0.65]
0.52 ± 0.13,
[0.46, 0.58] −12% 0.56 ± 0.18,

[0.48, 0.65]
0.51 ± 0.13,
[0.45, 0.57] −10%

IC: AMC
VC: CZE-TU/e

0.61 ± 0.11,
[0.56, 0.66]

0.54 ± 0.16,
[0.46, 0.62] −13% 0.58 ± 0.12,

[0.53, 0.64]
0.54 ± 0.16,
[0.46, 0.61] −7% 0.53 ± 0.14,

[0.47, 0.60]
0.53 ± 0.21,
[0.43, 0.63] 0%

1 Support-vector machine classifier, 2 Logistic regression, 3 Random Forest, 4 Extreme gradient Boosting, 5 CatBoost, 6 Neural network
small 12 neurons-2 layers, 7 Neural network large 140 neurons-2 layers, 8 Neural network deep 84 neurons-3 layers.

Appendix B

Table A2. Clinical data harmonization stage. Summarized feature detail and difference for the two centers: Amsterdam
UMC (AMC) and Catharina hospital of Eindhoven (CZE-TU/e).

Feature Name
Data Type and Representation

Common Representation
CZE-TU/e AMC

Aortic valve regurgitation Categorical Instances:
[No, mild, moderate, severe]

Categorical Instances:
[No, mild, moderate, severe]

Not included due to the
amount of missing values

Atrio ventricular block *

Categorical Instances:
[No, AV-block I, AV-block II
(Wenckebach), AV-block II

(Mobitz), AV-block III]

Categorical Instances:
[No, AV-block I, AV-block II,

AV-block III]

Not included due to the
amount of missing values

Chronic obstructive
pulmonary disease

Categorical Instances:
[No, GOLD class 1, GOLD

class 2, GOLD class 3, GOLD
class 4, GOLD class unknown]

Categorical Instances:
[No, GOLD class 1, GOLD

class 2, GOLD class 3, GOLD
class 4, GOLD class unknown]

Included,
Categorical Instances:

[No, Yes]

Diabetes

Categorical Instances:
[No, type 1, type 2 (diet),

type2 (oral antidiabetics), type
2 (insulin), type 2

(no treatment)]

Categorical Instances:
[No, type 1, type 2]

Included,
Categorical Instances:

[No, Yes]
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Table A2. Cont.

Feature Name
Data Type and Representation

Common Representation
CZE-TU/e AMC

General health score of the
quality-of-life questionnaire

RAND-36 *

Numerical range:
(0–100) Not available Not included because was

not cross-available

Glomerular filtration rate
(estimated) [eGFR]

Numerical unit:
mL/min/1.73 m2

(estimated with
MDRD formula)

Numerical unit:
mL/min/1.73 m2

(estimated with
CKD-EPI formula)

Not included due to the
amount of missing values

Hematocrit * Numerical unit:
%

Numerical unit:
%

Not included due to the
amount of missing values

Left ventricle function or
qualitative ejection function

Categorical Instances:
[normal (>50%), moderate

(31–50%), poor (21–30%),very
poor (<20%)]

Categorical Instances:
[Mild, moderate,

moderate-severe, severe]

Not included due to the
amount of missing values

Left ventricle quantitative
ejection fraction

Numerical unit:
%

Numerical unit:
%

Not included due to the
amount of missing values

N-terminal fragment pro-brain
natriuretic peptide

[NT-pro-BNP]

Numerical unit:
pico mol/L

Numerical unit:
nano gram/L

Not included due to the
amount of missing values

QRS interval Numerical unit:
10−3 s

Numerical unit:
10−2 s

Included,
Numerical Unit:

10−3 s

* Previous individual center studies [19,20] highlighted relevant clinical features for predicting one-year mortality. However, some features
were not available in both centers, so that their inclusion in this study was not possible.

Table A3. Summarized patient characteristics from Amsterdam UMC (AMC) and Catharina hospital of Eindhoven (CZE-TU/e).

Clinical Name Unit or
Instances

AMC CZE-TU/e

Survived
(at One-Year)

(1171)

Non-Survived
(at One-Year)

(129)

p-
Value

Survived
(at One-Year)

(564)

Non-Survived
(at One-Year)

(67)

p-
Value

Age
(AGE)

[years] 81 ± 7 83 ± 7
0.117

81 ± 6 80 ± 6
0.784(1170) (130) (564) (67)

Aortic Valve Area
(AVA) [cm2]

0.8 ± 0.2 0.8 ± 0.2
0.457

0.7 ± 0.2 0.7 ± 0.2
0.104(949) (111) (148) (18)

Aortic Valve Mean Gradient
(AVMEANGRAD)

[mmHg] 43 ± 16 44 ± 19
0.764

46 ± 16 39 ± 20
0.199(622) (69) (137) (15)

Aortic Valve Peak Gradient
(AVPEAKGRAD)

[mmHg] 68 ± 23 64 ± 26
0.122

77 ± 24 71 ± 32
0.445(956) (117) (172) (19)

Beta Blockers class of medicine
(BETABLOCK)

No 41% (481) 33% (42)
0.044

88% (498) 79% (53)
0.052Yes 56% (651) 67% (86) 12% (66) 21% (14)

Body Mass Index
(BMI) [kg/m2]

28.0 ± 5 27.0 ± 6
0.088

27.1 ± 4.4 26.2 ± 4.5
0.155(1134) (130) (563) (67)

Chronic obstructive pulmonary disease
(COPD)

No 65% (756) 51% (66)
<0.001

82% (464) 72% (48)
0.045Yes 24% (282) 43% (55) 17% (98) 28% (19)

Creatinine
(CREAT) [µmol/L] 98 ± 40 120 ± 55

<0.001
108 ± 62 116 ± 46

0.186(1126) (130) (558) (67)

Diabetes
(DIABETES)

No 61% (720) 61% (79)
0.373

75% (421) 70% (47)
0.502Yes 27% (313) 33% (42) 25% (142) 30% (20)

Hemoglobin
(HEMOGLOB) [mmol/L]

7.8 ± 1.0 7.7 ± 1.2
0.289

7.9 ± 1.0 7.5 ± 0.9
0.005(1123) (129) (358) (45)
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Table A3. Cont.

Clinical Name Unit or
Instances

AMC CZE-TU/e

Survived
(at One-Year)

(1171)

Non-Survived
(at One-Year)

(129)

p-
Value

Survived
(at One-Year)

(564)

Non-Survived
(at One-Year)

(67)

p-
Value

New York Heart Association
Functional Classification

(NYHA)

1 3% (32) 1% (1)

0.001

2% (9) 6% (4)

0.112
2 20% (236) 16% (20) 10% (59) 7% (5)
3 43% (507) 67% (86) 33% (184) 36% (24)
4 7% (80) 17% (22) 9% (49) 13% (9)

Previous Devices (pacemakers)
(PREVDEVICE)

No 83% (970) 81% (104)
0.166

74% (417) 54% (36)
0.011Yes 9% (103) 13% (17) 9% (52) 18% (12)

Previous Myocardial Infarction
(PREVMYOINF)

No 73% (852) 71% (91)
0.091

69% (387) 54% (36)
0.168Yes 16% (187) 23% (30) 19% (105) 24% (16)

QRS complex time
(QRS) [msec] 104 ± 26 107 ± 27

0.424
110 ± 29 121 ± 33

0.014(344) (52) (556) (63)

Sex
(SEX)

Male 44% (514) 50% (65)
0.191

54% (303) 69% (46)
0.028Female 56% (657) 50% (64) 46% (261) 31% (21)

Smoking
(SMOKING)

No 42% (490) 46% (59)
0.675

70% (392) 76% (51)
0.532Former 41% (479) 38% (49) 7% (41) 6% (4)

Yes 9% (104) 10% (13) 23% (131) 18% (12)

Mean ± SD are shown for numerical features while the percentage is shown for categorical features. Population size is shown be-
tween brackets.

Distribution of the patients’ missing values for the two centers population are shown
in Figure A1.
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