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Abstract

What are the fundamental constraints on the precision and accuracy with which nervous systems can process information?
One constraint must reflect the intrinsic ‘‘noisiness’’ of the mechanisms that transmit information between nerve cells. Most
neurons transmit information through the probabilistic generation and propagation of spikes along axons, and recent
modeling studies suggest that noise from spike propagation might pose a significant constraint on the rate at which
information could be transmitted between neurons. However, the magnitude and functional significance of this noise
source in actual cells remains poorly understood. We measured variability in conduction time along the axons of identified
neurons in the cercal sensory system of the cricket Acheta domesticus, and used information theory to calculate the effects
of this variability on sensory coding. We found that the variability in spike propagation speed is not large enough to
constrain the accuracy of neural encoding in this system.
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Introduction

An important problem in neuroscience concerns sensory

coding: how nervous systems represent information about the

sensory environment. What determines the fidelity, specificity, and

reliability with which sensory coding can be accomplished? When

examined more generally, the question becomes: ‘‘How much

information about the sensory environment is represented within

nervous systems?’’

One way that this problem has been approached has been

through the use of information theory. As originally formulated by

Shannon, this approach examines the amount of information that

can be transmitted along a noisy channel [1]. This approach has

been successfully applied to questions in neuroscience for nearly 60

years [2–4].

Most studies employing information theoretic analysis in

neuroscience have relied on measurements of variability in the

spike train at a single location, usually near the spike initiation

zone (SIZ). Implicit in this approach is the assumption that all

noise sources between encoder and decoder act prior to the

conduction of spikes along the axon. However, numerous studies

dating back to the earliest neurophysiological experiments have

established that the axon itself does not act as a deterministic

channel, but is instead subject to several sources of noise, all of

which affect the patterning of spikes [5–18]. This noise accumulates

downstream of the SIZ, prior to contact with postsynaptic neurons.

Recent modeling work has suggested that up to 27% of the

information encoded at the SIZ can be lost during conduction along

the axon [19].

To determine the effects of conduction noise on information

transmission we examined projecting interneurons of the cercal

sensory system of the house cricket, Acheta domesticus [20–23]. We

combined intracellular and extracellular recording techniques to

monitor the neurons’ spontaneous activity as well as their response

to sensory stimulation. We characterized several sources of noise

that arise during action potential (AP) conduction under these

conditions, including temporal uncertainty arising from AP con-

duction (transmission jitter), AP acceleration due to a supernormal

period, AP deceleration due to refractory effects, and AP conduc-

tion failures. We found that the accumulation of noise effects,

though measurable, did not significantly change the quality of

information transmission in this system. Further, modeling of the

information loss as a function of these noise sources revealed that

information transmission remains largely unaffected over a wide

parameter range.

Materials and Methods

Preparation, Electrophysiology, and Stimulation
All experimental animals were of the species Acheta domesticus

obtained from a commercial supplier (Basset’s Cricket Ranch,

Visalia California). Animals were fed cat food and water in the

laboratory, and maintained on a 12 hour light-dark cycle at 21uC.

Experiments were conducted on 8 female crickets that had
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undergone their final molt within the previous 24 hours. Animals

were anaesthetized by placing them on ice for 5-10 minutes, after

which their legs, ovipositor, wings, gut, reproductive organs, and

fatty tissue were removed. The preparation was pinned to a disk of

silicone elastomer, and all incisions were sealed with petroleum

jelly. The abdominal cavity was perfused with hypotonic cricket

saline [24], and a small steel platform was inserted under the ter-

minal abdominal ganglion (TAG) for stability. For dual intracel-

lular recordings (n = 4), a second steel platform was inserted under

the connectives between the metathoracic (T3) ganglion and the

first unattached abdominal ganglion (A3).

Intracellular recordings were made from neurons 10-2a (n = 4)

and 10-3a (n = 4), two bilaterally symmetric pairs of giant

projecting interneurons with cell bodies in the TAG [22]. These

neurons have axons of approximately 10-20 mm diameter extend-

ing the length of the ventral nerve cord to the brain [21–23,25],

with extensive axonal arborizations in the thoracic ganglia [23,25].

Sharp intracellular electrode penetration into the axons of these

neurons was facilitated by first applying protease solution (Sigma-

Aldrich, P5147, St Louis, MO). Axons were impaled at the point

where they exited the TAG in the ventral nerve cord, as well as at

the connective between T3 and A3 for the dual intracellular

experiments. Electrodes were filled with a mixture of 2% Neuro-

biotin (Vector Laboratories, SP1120) and 3M KCl, yielding

electrode resistances between 2 and 10 MV. During neural re-

cordings the Neurobiotin passively entered the neuron, and

following the experiment the neurobiotin in the neuron was

conjugated using an ABC-DAB reaction (DAKOCytomation

K0377, and Vector Laboratories SK4100, respectively) for

morphological identification. Two of the eight neurons were

identified morphologically, while in the other six neurons

identification was based on physiological properties. For intracel-

lular-extracellular experiments, a chlorided silver wire was

fashioned into a hook electrode, and sealed around the connective

between T3 and A3 using a petroleum jelly-mineral oil mixture.

Experiments were performed in a previously described stimula-

tion system [26], in which air particle displacement generated by

stereo speakers stimulated the filiform hairs on the crickets’ cerci.

Each filiform hair is innervated by an afferent neuron that makes

direct excitatory synaptic contact with the giant projecting

interneurons. All stimuli consisted of half-cosine air puffs for

generating tuning curves for the dual intracellular experiments, and

20 repeated presentations of a 10-second, 5–300 Hz band passed

white noise stimuli for the intracellular-extracellular experiments.

Intracellular membrane voltages were sent to an intracellular

amplifier (npi SEC-05L, Tamm, Germany), while extracellular

voltages were sent to a Data model 2124 differential amplifier (Fort

Collins, CO), using gain settings of 300-3000x and band pass

filtering from 200 to 10000 Hz. During experiments the physio-

logical and stimulus voltages were sampled at either 10 (n = 2) or

200 (n = 6) kHz and recorded on a Windows XP computer running

proprietary LabVIEW software.

Quantification of Conduction Noise
Four different noise sources with respect to the velocity of action

potential conduction velocity were characterized. These were the

jitter around mean conduction time for action potentials to reach

the T3 ganglion, expansive and compressive non-linearities

whereby the second action potential of a doublet traveled along

the axon at either a slower or faster velocity, respectively, relative

to the first action potential, and the probability that an action

potential would fail during conduction along the axon (conduction

failure).

Transmission jitter was assessed in two different ways,

depending on whether the recording used two intracellular

electrodes or an intracellular/extracellular electrode combination.

For the dual intracellular recordings, the timing of each action

potential at each recording site was determined by finding the

peak in the intracellular waveform above a user-defined threshold.

The 1 ms waveform surrounding the estimated peak was fit with a

fourth-order polynomial, and the peak of this polynomial function

was used as the sub-sampling precision timing of the action

potential. For recordings in which there was a linear increase in

transmission time throughout the experiment, the linear trend was

removed using the detrend function in Matlab. The transmission

jitter was estimated as the standard deviation in conduction time

between the two electrodes. Note that in order to account for the

observed expansive non-linearity (see below), the exponential

decay function relating change in conduction time to preceding

inter-spike-interval (ISI) was subtracted from the arrival time of the

second spike before estimating jitter.

A necessarily different method was required for finding the jitter

for the intracellular-extracellular recordings, depicted graphically in

Figure 1D–1G. As a first step, the timing of the intracellular action

potential at the TAG was found as for the dual intracellular case

described above. The mean conduction velocity was then found by

comparing the negative derivative of the mean intracellular

waveform with a 5-ms window of the corresponding extracellular

voltage, starting at the time of the intracellular action potential. The

xcorr function in Matlab (Mathworks) was used to find the timing

offset where the two mean waveforms coincided (Figure 1D). The

jitter around this mean waveform was estimated through modifi-

cation of the ‘dejittering’ algorithm which we previously developed

to examine spike-triggered stimuli [27]. Briefly, the ensemble of

extracellular waveforms surrounding the mean conduction time was

extracted, and then each individual waveform was shifted in time by

minimization of a Gaussian distance d according to

d tð Þ: 1

2
xC{1xz

t2

s2

� �
, ð1Þ

where x is the residual between the specific extracellular waveform

and the mean waveform across the ensemble, C is the covariance

matrix of the ensemble, s is the assumed variance of the jitter

distribution (a parameter set at 0.15 ms- changing this parameter

did not affect the results), and t is the specific shift time being tested.

This distance d was calculated for the range of t values from -3s to

3s, and the value of t that minimized d was selected as the shift time

for that action potential. The dejittering procedure and resultant

jitter is depicted in Figure 1E–G. Two confounds occurred in this

data that added difficulty to estimations of the propagation jitter.

First, superposition of action potentials from other neurons recorded

on the hook electrode sometimes affected the waveshape of

individual extracellularly-recorded action potentials. Second, our

dual intracellular data indicates that a small number of action

potentials fail to conduct along the length of the axons. Both of these

effects have the potential to lead to large outliers in the distribution

of transmission jitters. To avoid these effects we removed as outliers

all samples that had transmission time greater than four times the

calculated sample jitter.

The expansive non-linearity was estimated by using the nlinfit

function in Matlab to fit a standard exponential decay function to

data expressing the conduction time of action potentials as a

function of the preceding ISI. The exponential decay function was

of the form

Information Transmission Through Noisy Axons
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ct ISIð Þ~x1zx2
:e

{ISI=x3 , ð2Þ
where ct(ISI) was the conduction time as a function of the

preceding ISI, and x1 through x3 are the fit parameters.

In cases where enough data was available, we estimated both

the expansive and compressive non-linearity using a function of

the form

ct ISIð Þ~x1zx2
:e

{ISI=x3{x4
:e

{ISI=x5 , ð3Þ

where x4 and x5 are additional parameters for estimation of the

compressive non-linearity.

The probability of conduction failure was only observable in the

dual intracellular recordings, and was estimated by dividing the

number of action potentials observed at the TAG that were not

observed at T3 by the total number of action potentials observed

at the TAG.

Information-Theoretic Calculations
We adapted the model for calculating information rates on these

neurons that we previously developed [28]. Briefly, we used

exponential models for the onset jitter of doublet action potential

patterns, and for the internal jitter of the doublets themselves to

characterize the probability of spike patterns with specific ISIs at

the TAG. The conditional entropy for the ISI, HC, was calculated

according to

HC ISIð Þ~{
X

isi
p isið Þ:log2 p isið Þ½ �: ð4Þ

This yielded the conditional entropy per stimulus event. To

transform this into a rate we weighted the conditional entropy by

the probability of each ISI occurring (the normalized ISI

histogram), and then multiplied this value by the firing rate of

the cell. The unconditional or total response entropy rate was

calculated using only the ISI histogram plugged into Eq. 4,

multiplied by the firing rate. The mutual information of the

models was estimated as the difference in the two entropy rates.

To determine the precision of the same patterns at the thoracic

ganglia, we added a Gaussian noise source (mean = mean

conduction time, standard deviation = observed transmission jitter)

as well as the expansive non-linearity from Eq. 2. This produced

new ISI probabilities representing spike patterns at the second

recording site, from which information rates were estimated in the

same way as for ISIs at the TAG, described above. Comparisons

between information rates at the TAG and thoracic ganglia were

used to assess the effect of conduction noise on information

transmission in this system. We determined how the two noise

sources could affect the transmission by calculating information

rates using transmission jitter ranging from 0.001 to 1 ms, and

using exponential decay terms (x2 in Eq. 2) ranging from 0.001 to

1000 ms.

This model for information transmission was compared with the

entropy and information rates calculated from our intracellular-

extracellular data using the context tree weighting (CTW) method

of Kennel and Shlens [29,30] and the Spike Train Analysis Toolkit

[31].

Results

Spike Conduction Velocity is Subject to Stochastic Jitter
Our experimental set-up was as follows: two electrodes were

placed approximately 9 mm apart along an axon from an

interneuron of cell class 10-2a (n = 4) or 10-3a (n = 4, Figure 1A).

The neuron cell body and spike initiation zone for both cell classes

are located in the TAG, near the first recording (intracellular)

electrode. We refer to this as the encoding site, because this is where

the collective activity of the presynaptic, afferent neurons is

encoded into the action potentials that activate the interneuron.

The first area of postsynaptic output for this interneuron is in the

ganglion T3, near the second recording (intracellular or

extracellular) electrode. We refer to this as the decoding site, because

it is where the information carried in the spike train of the

interneuron needs to be decoded by postsynaptic neurons. For

experiments which included one intracellular and one extracellular

electrode, a slightly different set-up was used, as depicted in

Figure 1C. For the preparation depicted in Figure 1A, we

recorded spontaneously evoked action potentials simultaneously at

the encoding and decoding sites in order to assess variability

during propagation.

Action potentials do not traverse the length of the axon at a

single velocity, but instead show some variability in speed. This

leads to a spread in the time it takes for a spike to travel from the

encoding site to the decoding site. We refer to this spread in speed

as transmission jitter, since it arises during conduction from

encoding site to decoding site.

The distribution of transmission times for spontaneously-evoked

action potentials was approximately Gaussian (Figure 1B, data

shown with grey histogram, Gaussian fit shown with solid dark

line). The standard deviation of this distribution (the transmission

jitter) was 24 ms, with a mean conduction time of around 2.8 ms.

This corresponds to about 9 ms of jitter per millisecond of

conduction time, or a ,1% error, compounding continuously. We

measured this jitter in 8 neurons of class 10-2a and 10-3a, using

both dual intracellular recordings (n = 4) and combined intracel-

lular and extracellular recordings (n = 4, see methods). We found

Figure 1. Experimental set-up and measurement of transmission jitter. A, Outline of cricket, cerci and filiform hairs, and ventral nerve cord,
with approximate placing of recording electrodes as well as simultaneous intracellular recording from encoding (lower trace) and decoding (upper
trace) sites in a recorded neuron. Scale bars: 1 cm (full animal), 3 mm (nerve cord); phys. recording- 50 ms, 2 mV (lower trace) and 10 mV (upper
trace). B, Histogram showing distribution of transmission time of spikes from recording shown in A, as well as Gaussian fit (dark line). C, Intracellular-
extracellular experimental set-up, convention as in A. Scale bars: horizontal, 25 ms; vertical, upper trace, 100 mV; vertical, lower trace, 20 mV. D1, ,100
samples of intracellular spikes (lower trace, dashed light grey lines) and corresponding extracellular waveforms (upper trace, dashed light grey lines).
Mean waveforms are shown with solid black lines. Scale bars: horizontal, 1 ms; vertical, upper trace, 250 mV; vertical lower trace, 20 mV. D2, Cross-
correlation between the negative temporal derivative of the mean intracellular spike waveform, and the mean extracellular waveform. Correlation is
normalized so that autocorrelations at zero lag have values of 1. D3, Negative temporal derivative of mean intracellular waveform (black line) and
extracellular waveform (dashed grey line), aligned by maximum lag indicated in D2. Time of spike (peak in intracellular waveform) is indicated with an
arrow. Scale bar: 1 ms. E1, Raster plot of a selection of 50 extracellular waveforms, aligned according to time of intracellular spike (time of intracellular
spike indicated by vertical lines at t = 0), with amplitude of extracellular spike indicated in greyscale. E2, Same raster shown in E1, with extracellular
waveforms aligned through the dejittering algorithm (see Methods). F, Histogram of shift times for all 3556 spikes. Asymmetric distribution towards
long positive shift times indicates non-linear transmission time for second spike of short ISIs. Standard deviation of shift times after correcting for
nonlinearity (transmission jitter) was 24 ms. G, Change in mean extracellular waveform, before (dashed grey line) and after (solid black line) dejittering.
Scale bar: 1 ms.
doi:10.1371/journal.pone.0030115.g001
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the transmission jitter to range from 19 to 74 ms over the ,2.5 ms

of transmission time, with a mean 6 1 SD of 32619 ms (Table 1).

This corresponds to a compounding percentage error of

1.3560.81% (mean 6 1 SD).

Spike Conduction Velocity is Subject to ISI-dependent
Non-Linearities

In addition to the stochastic jitter described above, we also

observed changes in conduction velocity that were dependent on

the time since the previous spike. This was evident when we used

sensory stimulation, which drove the spike rate up and led to more

short duration ISIs. Specifically, for spikes that fall within the

relative refractory period of a previous spike, some proportion of

the voltage-gated sodium channels necessary for propagation

remain in the inactive state, causing the second spike to decelerate

relative to the speed of the first. This effect lengthens very short

ISIs between their generation at the encoding site and their arrival

at the synaptic arbors of the decoding site, while leaving longer

ISIs unchanged. Although this effect has been reported previously

[7,9,11–13,32,33], our study is the first to demonstrate it with

action potentials generated by sensory stimulation rather than

current injection. Since the distribution of ISIs is dependent on the

stimulus (and the magnitude of the change in propagation velocity

is in turn dependent on preceding ISI), our use of sensory

stimulation allows us to draw stronger inferences about the

relevance of this effect on neural coding in naturally behaving

animals.

The dependence of conduction velocity on the previous inter-

spike interval (ISI) is shown in Figure 2. Figure 2A1–2A4 shows

the conduction time of the second spike for all ISIs from four

different dual-intracellular recordings, along with exponential fits

to the data (dashed red lines, methods Eq. 2). In these cases, there

appears to be an asymptotic conduction time for long ISIs

(parameter x1 from Eq. 2). However, for ISIs shorter than ,7 ms,

the second spikes required up to approximately 25% longer

(,0.5 ms out of 1.9 ms propagation time in A2) to propagate

along the axon. We refer to this as an expansive non-linearity,

since the ISI at the decoding end increases relative to the ISI at the

encoding end. The parameter values for exponential fits for these

four experiments are listed in the first four rows of Table 1.

Figure 2B1–2B4 shows results similar to those in Figure 2A1–

2A4, but obtained in cells recorded with one intracellular and one

extracellular electrode. The greater stability of the extracellular

hook electrode allowed us to monitor cells for much longer, in the

case of 2B4 for nearly 4.5 hours, sampling over 150,000 spikes

from a single neuron. This large sample revealed not only

variability caused by the deceleration of second spikes in short ISI

pairs, but also an effective acceleration for second spikes of

intermediate ISIs (,10–20 ms). This acceleration is visible in

Figure 2C, where the change from the steady-state propagation

time is shown as a function of ISI for the neuron in panel 2B4

(envelope shows mean 6 95% CI). We refer to this acceleration as

a compressive non-linearity, since the ISI at the decoding end

decreases relative to the ISI at the encoding end.

Like the deceleration due to the relative refractory period, this

effective acceleration of second spikes has also been observed

before [8,11,14,33], and is thought to be the result of an activity-

dependent accumulation of potassium in the extracellular space

around unmyelinated axons. We fit propagation time as a function

of preceding ISI with a sum-of-exponentials (methods Eq. 3), in

which the first exponential term (x2 and x3) represented the effects

of the deceleration for short ISIs and the second exponential term

(x4 and x5) represented the effects of acceleration for long ISIs. The

parameter values for exponential fits for these four neurons are

listed in rows 5–8 in Table 1.

Figure 2D shows how changes in conduction velocity affected

the ISI distribution at the decoding site relative to the spike

generation at the encoding site for the neuron in Figure 2B4, with

the difference shown as a percentage. The net effect was to

increase the probability of ISIs in the range from 3.6 to 5.2 ms

(portion of curve.0), at the expense of decreasing the probability

of shorter and longer ISIs.

Spike Conduction Failure Rate is Low
A third form of noise that we observed during action potential

propagation was the failure of some spikes to travel the entire

length of the neuron. Because of the difficulty in matching every

spike in intracellular-extracellular recordings, this effect was only

obvious in the dual intracellular experiments, and was evident

when spikes on the encoding-site electrode were absent on the

decoding-site electrode. An instance of such a conduction failure is

shown in Figure 3A. Figure 3B shows the ISI that preceded all 32

conduction failures detected in the same recording as Figure 3A

(failures denoted with blue circles, note that displayed height of

failures along y axis is arbitrary), along with the conduction time of

all 889 action potentials that did not fail. Figure 3C shows a similar

plot for a second cell that had four failures out of 981 spikes

observed at the encoding end. In both cells we note that failures

only occur for the second spikes of very short ISIs. In all, only

two out of our four dual intracellular recordings exhibited spike

Table 1. Transmission jitter and fit parameters for all 8 intra-intra and intra-extra experiments.

Cell ID Cell type
Transmission
jitter (ms) Model parameters (Eqns. 2&3, main text)

x1 (ms) x2 (ms) x3 (ms) x4 (ms) x5 (ms)

2006-05-14_1_a 10-2a 74 2.52 2.35 1.18

2006-05-17_1_a 10-2a 42 1.90 1.72 1.48

2006-05-19_1_a 10-3a 22 2.67 3.73 1.33

2010-11-28_1_a 10-2a 25 1.82 1.62 0.98

2004-08-18_1_a 10-3a 27 2.54 0.62 1.63 0.07 7.35

2004-08-26_1_b 10-3a 24 2.55 1.95 1.13 20.34 1.13

2004-09-07_1_b 10-2a 19 2.46 0.95 1.48 0.09 5.74

071701_a 10-3a 19 2.90 1.82 1.56 0.05 6.51

doi:10.1371/journal.pone.0030115.t001
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failures, accounting for 36 of the 4077 spikes (,0.1%) observed at

the encoding site across all four experiments.

Information Transmission Rates are Unchanged Between
Encoding and Decoding Ends

To assess the significance of the above noise sources for a

neuron’s ability to transmit information to a postsynaptic target,

we stimulated neurons with a repeating white noise air current and

compared the magnitude of temporal jitter resulting from the

transduction of the stimuli into spikes (encoding jitter) with

temporal uncertainty that arises during conduction along the axon

(transmission jitter). The results of this comparison for three

neurons are shown in Figure 4A. The encoding jitter was assessed

by determining the standard deviation of isolated single-spike

responses across repeated stimulation [34]. Encoding jitter in these

three cells ranged from 1.36 to 1.66 ms, while the transmission

jitter ranged from 14.7 to 33.3 ms. This meant that the magnitude

of the temporal spread due to conduction along the axon was

1.08% to 1.42% that of the stimulus-locked temporal uncertainty

that occurred during spike generation.

The effects of the expansive non-linearity on short ISIs as well as

the other noise sources we characterized could potentially have very

large effects on the ability of these neurons to transmit information

about stimuli to subsequent processing areas. To assess the

cumulative deterioration of the signal during transmission from

encoding site to decoding site, we estimated the mutual information

rates of the same three neurons from Figure 4A. A significant

decrease in information rates between the encoding and decoding

sites would indicate that the various noise sources were degrading

the ability of the neuron to signal changes in the stimulus to a

postsynaptic cell. The results of our calculations are shown in

Figure 4B. Note that the information measured at the encoding site

includes the effects of the encoding jitter shown in Figure 4A,

whereas the information measured at the decoding site includes

both the encoding and transmission jitters, as well as all other noise

sources which result from propagation along the axon. In all three

neurons, changes in information rate between encoding and

decoding site were smaller than the 95% CI of our estimate.

In order to further explore the ranges of conduction noise over

which information transmission would be unaffected, we adopted

Figure 2. Expansive and compressive non-linearities in conduction velocity. A, The propagation time for all spikes from the four dual
intracellular recordings, expressed as a function of the preceding ISI (black points). Also shown are the exponential fits to the data, using Eq. 2,
(dashed red line, parameters in table 1). B, Data are presented as in A, but for four cells recorded with a combination of intracellular and extracellular
electrodes. In these cases the fits are to a sum of exponentials function (Eq. 3, parameters in table 1). Note that in panel B4 only every 10th data point
(of 157,775 recorded) is shown, for visual clarity. C, The mean change in propagation time as a function of ISI for the recording shown in B4, along
with the 95% CI (grey envelope). Y axis is truncated at 0.25 ms. D, The percentage change in ISIs at the encoding vs. decoding recording electrodes,
for the recording shown in B4.
doi:10.1371/journal.pone.0030115.g002
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our previous model [28] to include transmission jitter and the time

constant for an expansive non-linearity (see Methods). For the sake

of simplicity, we did not include effects due to a compressive non-

linearity or conduction failure in our model, since these two effects

were relatively small and only observable in some of our data. We

tested the information rate for transmission jitters ranging from

1023 to 101 ms, and for time constants ranging from 1023 to

103 ms. The results of this calculation are shown in Figure 5. The

grey scale represents a surface showing the change in information

as a percentage of the information rate at the encoding site. The

parameter combinations for the jitter and expansive non-linearity

for each of the 8 neurons from which we recorded are shown as

x’s. Note that we clipped the x axis at transmission jitter = 1 ms in

order to show greater contrast in the parameter regions

neighboring the observed values. For the observed ranges of these

noise parameters, our model predicts that there would be a modest

1%–3% loss in information, in agreement with the insignificant

changes shown in Figure 4. Furthermore, our model predicts only

small changes (,7%) in information rates caused by the effects of

the expansive non-linearity, even for time constants as long as 1

second. However, transmission jitter affects the information rate to

a larger extent, decreasing transmission rates by 10% for 1 ms of

transmission jitter (,33% conduction error rate, following logic

for Figure 1C).

Figure 3. Conduction failures. A, Simultaneous intracellular recording from encoding (lower trace) and decoding (upper trace) sites in a single 10-
2a neuron, showing an instance of an action potential which failed to propagate the length of the axon (red arrows). B, Distribution of spike
propagation time as a function of ISI, along with exponential fit (dashed red line), as in figure 2. Also shown is the length of the preceding ISI for 32
action potentials that failed to propagate (blue circles, arbitrary ordinate position). C, Data are presented as in B, but for a different cell (class 10-3a).
Scale bars: A, horizontal, 20 ms; vertical, 5 mV.
doi:10.1371/journal.pone.0030115.g003

Figure 4. Measurement of jitter and information rates. A,
Comparison of jitter at encoding end (light grey portion of bar)
assessed over repeated presentations of stimulus, and transmission
jitter (black portion of bar), measured in three different neurons. B,
Mutual information rates for the three neurons in A, calculated at the
encoding (light grey) and decoding (black) sites. Error bars represent
Bayesian 95% confidence interval from CTW calculation.
doi:10.1371/journal.pone.0030115.g004

Figure 5. Model of change in information rates as a function of
transmission jitter and expansive non-linearity. A surface
depicting the percentage change in mutual information between
encoding and decoding sites is shown in greyscale for model
parametrized by the magnitude of the transmission jitter (Fig. 1C)
and the time constant of the expansive nonlinearity (Fig. 2A). The
parameter combinations measured in 8 neurons are shown with grey
x’s.
doi:10.1371/journal.pone.0030115.g005
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Changes in ISI Distributions Favor the Most Informative
Intervals

We have recently shown that pairs of spikes with small ISIs have

greater precision and carry more information than spikes

occurring in longer ISIs, and employ nonlinear strategies for

encoding the stimulus [28]. We hypothesized that short ISIs in

these cells could represent a separate information channel from

single spikes, as happens in several bursting systems [35–37].

These short ISIs correspond to the regions most affected by the

activity-dependent nonlinearities during transmission from encod-

ing site to decoding site. The temporal relationship between the

temporal precision of ISIs, linearity of coding associated with ISIs,

and the changes of these ISIs during propagation are shown in

Figure 6. 6A shows the percentage change in the ISI distribution

between the encoding and decoding end, indicating that there is a

relative increase in the number of ISIs between 3.6 and 5.2 ms.

Panel B shows the correlation coefficient between neighboring ISIs

over repeated presentations of an identical stimulus. For short ISIs

(,10 ms) there is high correlation, indicating that these patterns

are reliably produced in response to stimulation. Panel C shows

the log likelihood ratio expressing how well a given stimulus can be

predicted based on non-linear vs. linear models. This shows that

the stimuli associated with short (,7 ms) ISIs are significantly non-

linear. The interval over which ISI probability is increased at the

decoding end correlates with the ISIs which have the highest

temporal reliability and the most non-linear encoding.

Discussion

To assess the significance of action potential conduction noise on

neural coding, we have characterized several types of noise. This

study represents the first effort to examine the effects of these noise

sources using sensory stimulation, rather than current injection.

These results demonstrate the constraints that several biophysical

mechanisms impose on the capacity for neurons to transmit

information to a postsynaptic target. We discuss these results in

the context of previous measurements in other systems as well as

potential impacts on mechanisms of coding and information

transmission.

Our measurements of the transmission jitter were in general

agreement with measurements from the sciatic nerve of frogs [9], as

well as in proprioceptive afferents in crabs [38]. In contrast, the jitter

we measured was much smaller than the ,25% error rate over 2.7

mm of conduction measured in squid giant axons [12], but much

higher than values predicted from models in that system, which

were in the range of ,0.02% error rate [15,39]. In contrast, recent

models of the very thin diameter axons in vertebrate cortex predict

larger error rates (,6%) than we see in the cercal system [19].

Temporal jitter can degrade the ability of nervous systems to

transmit information about stimuli, causing optimal decoders to

conflate the effects of temporal noise processes with variability in

the driving stimulus [27]. To assess the coding significance of

transmission jitter, we compared the variability in spike propaga-

tion times to the observed variability in spike initiation times. Our

strategy was to assess the relative magnitude of transmission jitter

with respect to the overall limiting temporal precision of the nerve

cell: is the spike timing jitter insignificant with respect to the

limiting temporal precision of the neuron as a whole, or is the

magnitude of the jitter large enough to be a significant constraint

on the cell’s information encoding capacity?

Our raster-based measurement of encoding jitter yielded results

of about 1.5 ms, in agreement with our previous characterization

of these neurons [28]. The additional variability due to conduction

along the axon was very much less than the temporal encoding

precision, accounting for only ,1% of total uncertainty at the

decoding end. Therefore, the transmission jitter in these cells is not

a significant determinant of their operation. It does not constrain

the upper bound on the temporal precision with which patterns of

action potentials could be decoded in this system, and hence would

not constrain the limit of meaningful precision in the encoding

operation. However, we note that this maintenance of information

transmission rates during spike propagation need not be universal

across all sensory systems. In the data shown here, the changes in

transmission time are on the order of hundreds of microseconds.

This may be typical for many neurons with axon diameter and

length similar to the cricket, but signal degradation may be a much

bigger problem for systems with longer-projecting axons. This is

particularly important as changes in delay do not scale linearly

with conduction distance [40].

Our observation of the dependence of conduction velocity on

the time from the previous spike is in qualitative agreement with

previous observations [7–9,11–14,16,33,41]. These effects arise

from different aspects of the biophysics of ion channels and the

natural fluctuations in ion concentration. For the very shortest

Figure 6. Change in ISI Distribution and Relation to Stimulus
Coding. A, Percentage change in probability of ISI at decoding site
relative to encoding site, same data as in figure 2D. The shaded region
indicates ISIs that occur more frequently at the decoding site than at
the encoding site. B, The correlation between first and second spikes of
ISIs reliably elicited by repeated presentations of identical stimuli
(‘‘frozen noise’’). C, The linearity of stimuli associated with doublet
patterns of spikes with various ISIs, as assessed with log likelihood
ratios. Data in B & C are from [28], reprinted with permission.
doi:10.1371/journal.pone.0030115.g006
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interspike intervals (i.e. those that lie within the neuron’s relative

refractory period) the passage of a preceding spike leaves a large

portion of the sodium channels in the inactive state. This leads to

relatively longer time for the membrane potential to reach

threshold, which in turn delays propagation along the axon. In

contrast, for longer interspike intervals, the effect of a modest

accumulation of potassium ions in the extracellular space leads to an

increase in neuronal excitability, which leads to increased

conduction velocity for action potentials [42]. These two phenom-

ena have the effect of increasing the intervals of short ISIs while

decreasing the length of moderate ISIs at the axon terminal. In the

cricket system this leads to an increase in the probability of ISIs from

3.6 to 5.2 ms, at the cost of decreased probability for other intervals.

However it is worth noting that in other systems such activity-

dependent effects lead to much more drastic changes in ISI

distributions between encoding and decoding end.

Through information-theoretic methods, we have demonstrated

that the variability of axon propagation does not significantly limit

the amount of information that can be decoded from these cells’

neural activity. To address the possibility that the larger neuron

population might have greater amounts of information loss during

transmission, we developed a simple model to examine the

relationship of the information transfer rate on the transmission

jitter and the value of the activity-dependent time constant. Our

model was in agreement with our data for compressive non-

linearities and transmission jitter within the range we observed,

and further predicted that wide ranges of the compressive

nonlinearity would have little effect on information transmission.

In contrast, it predicts that increases in the transmission jitter

would have much larger effects – 10% of all information would be

lost if transmission jitter was on the same order of magnitude as

the encoding jitter (,1 ms), and up to 70% of the information

could be lost if transmission jitter was 10 ms.

The earliest efforts to quantify the effects of conduction noise on

information transfer were primarily concerned with determining

optimal ISI intervals for transmitting information [32], making

them difficult to reconcile with our results. However, recent

modeling work on propagation along tiny axons suggests a

potentially much larger decrease in mutual information during

conduction [19]. Since the magnitude of transmission jitter is

relatively larger in thin axons, we would also predict a greater

decrease in information transfer in such axons, and vice versa in

larger axons. Indeed, in the relatively large axons of proprioceptive

afferents in crabs, it has been shown that transmission jitter has

relatively little effect on information transfer in comparison with

encoding jitter [38]. This underscores the fact that the impact of

noise on information transfer is likely to be neuron-specific, with

large-diameter axons likely to be less affected by propagation noise.

A further mitigating factor that we didn’t account for in our

experiments is the known relationship between stimulus intensity

and temporal precision of responses. It has been shown in previous

experiments in the cricket cercal system that at very high stimulus

intensities the neurons become temporally locked to specific

stimulus events [43]. It is possible that at such high stimulus

intensities (and consequent low temporal variability in spike

generation), the contribution of propagation noise to total variability

of spike timing could become larger relative to the values reported

here. Conversely, at very low stimulus intensities, noise sources

extrinsic to the stimulus can actually improve the encoding capa-

cities of neurons through the phenomenon of stochastic resonance

[44]. An interesting line of further research would be to examine the

relationship between stimulus intensity and the contribution of

variability in spike propagation to the information content about the

stimulus that can be extracted from the spike train.

In total these observations reveal a potential trade-off between

neurons that employ temporal vs. rate coding strategies. Temporal

coders, such as the neurons studied here, must limit the extent to

which conduction variability and non-linearities act to change the

temporal patterning of spiking activity between encoding and

decoding regions. Our results show multiple ways that this can be

accomplished. First, the use of axons with large diameters reduces

the effect of that the stochastic nature of single ion channels has on

spike conduction. Second, since conduction noise compounds over

the length of the axon, it would be important to keep the

transduction distance to a relative minimum. Finally, it is important

to minimize the non-linear effects of the supernormal and

subnormal periods, which can be done through the selection and

distribution density of ion channels in the axon [40]. In contrast,

neurons using rate coding are free to instead exploit these various

non-linearities to implement coding strategies such as contrast

enhancement [45].

It will be interesting to see to what extent the cricket cercal

system uses this trade-off in coding strategies. The neurons in the

full system contain ,20 bilateral pairs of axons of various diameter

[20,21,23,46,47], from which recordings can be made both near

their spike initiation zone as well as their axon terminals several

millimeters away. In addition, the neurons in the system exhibit

varying degrees of temporal precision [48], personal observation),

which would provide a convenient platform for examining this

question. Further, these new results contain intriguing implications

for the use of temporal coding in this system [28]. The end result

of the conduction non-linearities is to produce a resonant peak at

ISIs,6 ms, which could lead to improved transmissibility of

information to the next layer of the system through spike-timing

dependent mechanisms [49–51] and the appropriate tuning of

synapses [52]. In fact, there is evidence from cockroaches that

short ISI bursts in this system preferentially lead to spiking in a

postsynaptic motor neuron, whereas other patterns of spikes do

not [53]. A fruitful line of future research will be to determine the

ranges over which patterns of spikes in giant interneurons of the

cercal system lead to spiking in their postsynaptic targets, and

particularly whether such spike patterns result from behaviorally

relevant stimuli.
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