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Abstract

Pre-trained language models have transformed the field of natural language processing (NLP), and
their success has inspired efforts in genomics to develop domain-specific foundation models (FMs).
However, creating high-quality genomic FMs from scratch is resource-intensive, requiring signifi-
cant computational power and high-quality pre-training data. The success of large language models
(LLMs) in NLP has largely been driven by industrial-scale efforts leveraging vast, diverse corpora
and massive computing infrastructure. In this work, we aim to bypass the data and computational
bottlenecks of creating genomic FMs from scratch and instead propose repurposing existing LLMs
for genomics tasks. Inspired by the recently observed ‘cross-modal transfer’ phenomenon – where
transformers pre-trained on natural language can generalize to other modalities – we introduce L2G,
which adapts a pre-trained LLM architecture for genomics using neural architecture search (NAS)
and a novel three-stage training procedure. Remarkably, without requiring extensive pre-training
on DNA sequence data, L2G achieves superior performance to fine-tuned genomic FMs and task-
specific models on more than half of tasks across multiple genomics benchmarks. In an enhancer
activity prediction task, L2G further demonstrates its capacity to identify significant transcription
factor motifs. Our work not only highlights the generalizability and efficacy of language models
in out-of-domain tasks such as genomics, but also opens new avenues for more efficient and less
resource-intensive methodologies in genomic research.
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Introduction

In recent years, large-scale pre-trained models, often referred to as foundation models (FMs) [1], have
revolutionized the field of natural language processing (NLP). Models such as BERT [2], LLaMA [3],
and GPT [4] leverage self-supervised pre-training on vast amounts of unlabeled text data to develop a
rich and nuanced understanding of language. Similarly, DNA sequences can be viewed as strings of
nucleotides, with recurring patterns analogous to reusable elements in natural language. This parallel
has inspired the development of genomic FMs, such as DNABERT [5], Nucleotide Transformer [6], and
HyenaDNA [7], which are pre-trained on large-scale genomic sequence data with subsequent fine-tuning.
These models have shown potential in predicting complex genomic features, such as genomic element,
chromatin state, and genome function.

However, constructing these domain-specific FMs from scratch is costly and resource-intensive. For
instance, training the Nucleotide Transformer required approximately 174 billion tokens and 28 days
of continuous training on 128 NVIDIA A100 GPUs. Even smaller models like DNABERT-2 required
two weeks of training on 8 GTX 2080 Ti GPUs [8]. More recent architectures with fewer parameters
than transformer-based models, such as HyenaDNA [7] and Mamba [9], still require substantial compute
budget and massive training corpora (see Fig. 1B and Table S1 for details).

To address these challenges, we explore an alternative strategy to bypass genomic pre-training alto-
gether. Our framework, Language-to-Genome (L2G), adapts pre-trained language models to genomic
prediction tasks. This work is motivated by recent advances in the cross-modal transfer paradigm, which
leverages the general reasoning capacity of pre-trained LLMs in domains such as protein property predic-
tion [10] and solving partial differential equations [11]. These studies demonstrate that transferring exist-
ing models from well-studied text and vision modalities to scientific applications holds the promise of not
only drastically reducing the required computational and data resources associated with pre-training, but
also improving downstream model performance. L2G builds on a general-purpose cross-modal trans-
fer approach [12] but incorporates neural architecture search and a novel three-stage training procedure
(Fig. 2) to adapt to the unique features of genomics data, significantly enhancing empirical effectiveness.
Fig. 1A contrasts L2G with the traditional approach of building genomic FMs.

The advantages of L2G are three-fold. First, by sidestepping pre-training, L2G is much more data
and compute efficient. For a given downstream task, our three-stage workflow is comparable to vanilla
fine-tuning in terms of required compute and data resources. All our experiments can be performed on a
single A6000 GPU in a matter of hours by leveraging existing open-source language models, compared
to days of training needed to develop genomic FMs from scratch. Second, L2G demonstrates better
average performance than fine-tuned genomic FMs on various genomics benchmarks (Fig. 1B), includ-
ing GenomicBenchmarks [13] and NucleotideTransformerBenchmarks [6]. Third, we show that L2G
can tackle challenging regulatory activity prediction tasks, such as predicting developmental and house-
keeping enhancer activity, where it consistently outperforms expert-designed models. Additionally, L2G
learns relevant transcription factor motifs.

Overall, L2G leverages pre-trained LLMs for genomic prediction, achieving performance competi-
tive with in-modal transfer on various genomic tasks while bypassing the massive costs associated with
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Figure 1: L2G is a data-efficient cross-modal fine-tuning method for genomics. A. Schematic overview con-
trasting genomic foundation models (FMs) with L2G during pre-training and fine-tuning. Genomic FMs pretrain
with massive DNA sequencing data, while L2G bypasses genomic-specific pre-training altogether by leveraging
existing pre-trained language models. Both approaches perform fine-tuning for specific downstream genomic
task, but L2G’s three-stage cross-modal fine-tuning workflow on par with vanilla fine-tuning in terms of compute
and data requirements. B. L2G (red dot) achieves a higher mean test score than leading genomic FMs on the
Nucleotide Transformer benchmark, with higher values indicating better performance. By skipping pre-training,
L2G requires significantly less genomic data and computational resources.

collecting and processing large amounts of unsupervised genomic sequencing data.

Methods

Cross-modal fine-tuning

Fine-tuning has been a highly effective technique for adapting pre-trained language models to various
downstream tasks. However, most existing research focuses on in-modal adaptation, where the fine-
tuning data originates from the same modality as the pre-training data but is tailored for a more special-
ized focus, such as sentiment analysis or text classification. In such cases, the model operates on the
same type of input it was originally trained on. In contrast, cross-modal fine-tuning adapts a pre-trained
model to work with data from an unseen modalities, such as using text-pre-trained LLMs to address
biological questions. Fig. 1A illustrates the distinction between in-modal and cross-modal fine-tuning
strategies for genomic tasks.

Cross-modal fine-tuning is more challenging than the in-modal fine-tuning due to the modality gap
between the pre-training and target task data [14]. Bridge this gap often requires additional data align-
ment. For instance, to repurpose a pre-trained BERT model for predicting physicochemical and biomed-
ical properties of protein sequences, Vinod et al. [10] introduced R2DL (Representation Reprogramming
via Dictionary Learning), a token-level alignment method that learns a sparse linear mapping between
English vocabulary embeddings and amino acid embeddings.

Recently, Shen et al [12] proposed a more general distributional alignment technique, ORCA, that
adapts various pre-trained transformer models to diverse non-text, non-vision inputs. ORCA employs a
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convolutional neural network to transform input data into sequence features, minimizing the distribution
distance between target data embeddings and standard English token embeddings prior to fine-tuning.
ORCA achieves state-of-the-art results on three benchmarks containing over 60 datasets from 12 modal-
ities, outperforming a wide range of general-purpose, automated machine learning (AutoML) and task-
specific methods. However, genomics is one domain where ORCA does not show superior results [12].
Specifically, on DeepSEA – a well-known dataset for predicting functional effects of genomic sequence
– ORCA falls behind non-pre-trained AutoML baselines. This motivates us to study how cross-modal
alignment can be improved specifically for genomic prediction tasks.

Beyond ORCA, several other studies have also proposed different cross-modal fine-tuning strate-
gies [15–20]. However, they are not tailored to biological domains. To address this gap, we aim to
develop the first cross-modal fine-tuning framework specifically designed for genomic applications.

Motivation for the framework

Since ORCA is the only previous method that has attempted genomics tasks, we thoroughly examine
its workflow to identify limitations. Specifically, ORCA first creates custom embedder and predictor
networks to support various tasks. The embedder is trained to minimize the optimal transport dataset
distance (OTDD) between a target and proxy dataset, aiming to map the target dataset into the embedding
space of the pre-trained model. Finally, the entire model – comprising the embedder, transformer, and
predictor – is fully fine-tuned on the target task data to adapt the pre-trained model to the target modality.

However, ORCA has two major limitations when applied to genomics – both model-wise and training-
wise. Model-wise, ORCA employs a universal CNN structure as the input embedder for all tasks. This
embedder, consisting of a single-layer CNN with small kernel sizes and strides designed for computer
vision, may not be well-suited for genomics tasks. It cannot effectively model the long-range dependen-
cies of genomic sequences and may fail to capture important features from genomic datasets. To address
this, we propose a redesigned embedder architecture tailored for genomics data.

Training-wise, by reproducing ORCA experiments on DeepSEA, we revealed that a lower alignment
loss at the end of embedder training does not necessarily lead to better downstream performance on
genomics tasks. This suggests a more complex dynamic between embedder training and fine-tuning than
the ORCA paper indicated. For instance, in many cases, training the embedder for longer epochs can
hurt the final performance on the target task. We hypothesize that this occurs because a single alignment
loss is insufficient for effective embedder training; closer mapping to text embeddings can result in the
loss of important class information in the target genomic dataset. To address this, we propose a new
embedder training objective that jointly optimizes for both distribution alignment and downstream task
performance.

By tailoring the embedder architecture and objective design to genomics data, we significantly im-
prove empirical performance and develop a new cross-modal fine-tuning workflow, named L2G, to ef-
fectively adapt language models for genomic applications.
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Model design

Problem Setup

A modality M consists of a feature space X , a label space Y , and a joint probability distribution
P (X ,Y). We focus on the cross-modal setting in this paper. That is, the target genomics modality
Mt and source language modality Ms have different feature spaces, label spaces, and joint probability
distributions, i.e., X t ̸= X s, Y t ̸= Ys, and P (X s,Ys) ̸= P (X t,Y t). Our goal is to adapt a model
pre-trained in Ms to the tasks in Mt.

Following previous work [12, 15], the model architecture of L2G is composed of three parts: a CNN
embedder, a transformer encoder, and a linear predictor (Fig. 2A). The embedder maps input genomics
data to an embedding space, the encoder extracts features from these embeddings, and the predictor maps
the encoder output to the label space.

Embedder

Denote f s as the source embedder of a language model, which transforms the source raw data X s into
source language embeddings htext = RN×D, where N denotes the embedding length and D denotes the
embedding dimension. Following ORCA, we use the CoNLL-2003 dataset [21] as the reference dataset
for text. This dataset contains nine classes for a named entity recognition (NER) task, from which we
sampled 350 data points per class, resulting in a total of 3,150 data points. The source language embedder
is taken from a pre-trained language transformer and remains frozen during the entire training process.
Reference data is passed through the embedder to obtain reference embeddings for alignment.

Denote f t as the custom target embedder, which transforms the target genomics sequence data in X t

into target embeddings hDNA = RN×D. The key to cross-modal transfer is to learn f t into map hDNA into
the shared representation space with htext. As mentioned above, existing work typically uses a generic
small-kernel convolutional layer for f t, which is unsuitable for modeling long-sequence genomics data.
To address this, we propose using a larger, more capable dilated CNN as the backbone architecture for
f t. Previous studies have shown that dilated convolutions are effective for modeling DNA features in
genomics tasks [22–25]. Unlike prior work, which fixes the convolution hyperparameters (e.g., kernel
size and dilation rate) for the model architecture before seeing the task and data, we employ a data-
driven approach that automatically learns the architecture configuration from the end task data (see later
section). This new approach effectively improves downstream task performance.

Transformer Encoder

The transformer encoder, denoted as as g, takes hDNA as input and outputs intermediate representations
(last hidden states) hintermediate = RN×D. While L2G is compatible with various language models, we
chose RoBERTa-base in our experiments in this work because its model size is smaller than or compa-
rable to most transformer-based genomic FMs, such as DNABERT, DNABERT-2, Enformer, and Nu-
cleotide Transformer-500M. This choice ensures a fair comparison of different methods. The embedding
dimension D for RoBERTa-base is 768.
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Figure 2: The overall workflow. A. The architecture of L2G. The architecture of the L2G model is composed of
a CNN embedder, transformer layers from a pre-trained language model, and a linear predictor. B. The model
is trained in three stages. In stage 1, L2G performs a Neural Architecture Search to optimize the embedder
architecture for a given task. In stage 2, the CNN embedder is pre-trained to minimize the modality gap between
DNA embeddings and language embeddings. In stage 3, the entire model is fine-tuned on task-specific data
in a supervised manner by minimizing the task-specific loss between the final predictions and the true labels.
C. In stage 2, L2G closes the modality gap by pertaining the embedder with a joint objective. The CNN
embedder is trained with a joint objective, which simultaneously minimizes a) the distribution distance between
language embeddings (htext) and DNA embeddings (hDNA), and b) the task-specific loss between predictions
from Predictor 1 and the true labels.

Linear Predictor

The predictor, denoted as pt, takes hintermediate as input and returns a task-specific output tensor. The
goal of pt is to map the learned representations to the desired output dimension. Following ORCA [12],
we use average pooling along the sequence length dimension. A single linear layer then transforms the
pooled outputs of the language models to produce the final prediction.

Model Training

L2G is trained in three stages: neural architecture search (NAS), embedder pre-training, and fine-tuning
(see Algorithm 1 and Fig. 2B).
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Algorithm 1 Pseudocode for the L2G workflow.
Input: Genomic Dataset G, Set of Embedder Backbone Architectures B, Language Model L, Alignment

Loss Weight α, Task-Specific Loss Weight β
for each architecture b ∈ B do

Initialize b
val_scoreb ← Train b for one epoch on G

end
best_b← argmaxb∈B val_scoreb ; // Select the embedder backbone with the best
validation score
(k, d)← DASH(best_b) ; // Optimize the kernels and dilations
h_text← Inference L on the source text dataset ; // Generate text embeddings
Initialize best_b with (k, d)
for epoch ∈ embedder_epochs do

pred_1, h_DNA← best_b(G)
loss_1← LMMD(h_text, h_DNA)
loss_2← Ltask(pred_1, labels)
embedder← min(α · loss_1 + β · loss_2)

end
model← embedder + transformer blocks from L + linear predictor
pred_2← Train model on G
return pred_2

Neural Architecture Search

Neural Architectural Search is a machine learning technique that automates the design of deep neural
network architectures. Instead of relying on substantial manual efforts by human experts, NAS identifies
architectures that perform well on a given task through algorithmic solutions [26]. Given its success in
certain genomics applications [27], we utilize NAS to tailor embedder architectures to different tasks.

To achieve optimal performance across various downstream tasks, we use a two-step process for se-
lecting the embedder network in L2G. First, we select an optimal backbone CNN architecture from a
pre-defined search space. In this study, we consider ResNet [28] and UNet [29], both of which have
been effectively applied in genomics. ResNet, with its deep residual connections, is well-suited for
classification tasks that require capturing hierarchical features from sequential data. In contrast, UNet’s
U-shaped encoder-decoder structure with skip connections makes it particularly effective for dense pre-
diction tasks. Each architecture is trained for one epoch, and the one achieving the highest validation
score is selected as the backbone.

Next, L2G applies NAS to optimize layer operations for the specific task. Specifically, we learn the
optimal kernel size and dilation rate for each convolutional layer in the CNN using the DASH (Diverse-
task Architecture Search) algorithm [30], which has demonstrated state-of-the-art performance among
AutoML methods on the DeepSEA dataset. After this two-step process, both the backbone architecture
and the convolutional layers of the embedder f t are tailored for the target task, effectively capturing
meaningful target embeddings from genomics datasets.
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Embedder Pre-training

The embedder pre-training stage is critical for minimizing the modality gap between DNA and the pre-
trained language models, enabling cross-modal adaptation. We propose a joint objective to address the
training limitations discussed earlier. The first objective minimizes the distribution distance between
DNA and text data, performing modality alignment. Unlike ORCA [12], which uses OTDD loss, we
utilize Maximum Mean Discrepancy (MMD) as the distance metric in L2G due to its better empirical
performance in our ablation studies.

Additionally, we introduce a second objective – a task-specific loss (Ltask) – during embedder pre-
training. This enables the embedder to incorporate class information while performing distribution align-
ment. This task-specific loss is either cross-entropy loss for classication tasks or Mean Squared Error
(MSE) for regression tasks. By including Ltask, the embedder learns to model the class information ef-
fectively when mapping genomics data to the language model’s embedding space. Training with only
alignment loss but not task-specific loss can result in worse downstream performance, as shown in the
ablation studies in the Results section.

In summary, the embedder pre-training objective is defined as:

Ltotal = αLMMD(hlanguage, hDNA) + βLtask(Y, Ŷ ),

where α and β are weights for the MMD loss and task-specific loss, respectively. To optimize perfor-
mance, we set up a scheduler for these weights, minimizing the task-specific loss first before minimizing
the joint objective. We did this because empirically, introducing the alignment loss in later epochs of
pre-training embedders achieves the best performance.

Fine-tuning

After pre-training the embedder, the entire model – including embedder, transformer encoder, and linear
predictor – is fine-tuned using task-specific loss on the target data. To optimize the hyperparameter
configuration (e.g., learning rate, dropout rate, weight decay) for fine-tuning, we use ASHA [31].

Results

Overview

Directly applying transformer models trained on natural language data to out-of-domain tasks like ge-
nomics can lead to the corruption of pre-trained weights, resulting in inefficiencies and inaccuracies due
to the fundamental mismatch between the two modalities. To address this, we developed L2G, an ef-
fective and efficient workflow designed to repurpose pre-trained language models for genomics tasks
through cross-modal transfer learning. Unlike traditional in-modal transfer learning, where transformer
models are first pre-trained on large-scale DNA sequencing data before fine-tuning, our approach is not
only more competitive in prediction quality but also significantly more efficient. L2G eliminates the
need for large-scale self-supervised pre-training, reducing both data and computational requirements
while still generalizing effectively across a variety of genomics tasks through fine-tuning.
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We demonstrate the empirical effectiveness and efficiency of L2G through extensive experiments on
two genomics benchmarks and a challenging regression task for enhancer activity prediction. Beyond
presenting results on predictive accuracy, we assess L2G’s ability to learn relevant TF motifs and evaluate
the efficacy of cross-modal fine-tuning through embedding analyses and ablation studies.

L2G matches or outperforms fine-tuned genomic FMs

Predicting the regulatory function of non-coding DNA based on its sequence is crucial for prioritiz-
ing functional non-coding variants and remains a major challenge in genomics [32, 33]. We evaluated
L2G on two existing benchmarks, Genomic Benchmarks [13] and the Nucleotide Transformer Bench-
marks [6], to demonstrate its generalizability and efficacy.

Figure 3: Average performance across task types (histone marks,
enhancers, promoters, and splice sites) on the Nucleotide Trans-
former benchmarks. Each bar represents the average test score of
a model. L2G outperforms all other models on histone marks and
enhancers tasks and ranks second on promoters and splice sites
prediction tasks. Notably, the bar for DNABERT-1 in the splice sites
category is missing because it could not be trained on two splice site
prediction tasks.

We first evaluated L2G on the Nu-
cleotide Transformer Benchmarks [6],
one of the most widely used bench-
marks for genomic FMs. This bench-
mark suite includes eighteen tasks for
predicting regulatory elements from
four categories: enhancers, promoters,
epigenetic marks, and splice sites from
DNA sequences with lengths rang-
ing from 300 to 600 bp (Table S3).
We compared L2G against several
representative genomic FMs, includ-
ing Enformer [34], DNABERT-1 [5],
DNABERT-2 [8], HyenaDNA (1kb)
[7], Nucleotide Transformer - Multi-
species (2.5B) and Caduceus-ph [35],
which outperforms Caduceus-ps in
most of the tasks [6]. All these mod-
els have been pre-trained and then fine-
tuned.

The complete benchmarking results are displayed in Table S4 and Fig. 3. L2G achieves the best
results on ten tasks and ranks second on six others. It demonstrates a clear advantage in predicting hi-
stone marks and enhancers from DNA sequences, outperforming all other genomic FMs. For promoter
and splice site prediction tasks, the Nucleotide Transformer is the top-performing model, followed by
L2G. It is worth noting that the Nucleotide Transformer is the largest model evaluated on this bench-
mark, with 2.5 billion parameters and the most extensive pre-training data, while L2G uses significantly
fewer parameters and no pre-training data. Overall, L2G achieves the highest average test score on the
Nucleotide Transformer benchmark with the least training (pre-training + fine-tuning) data, underscoring
its ability to generalize effectively across tasks even with limited data.

The Genomic Benchmarks dataset [13] includes eight classification tasks: seven binary and one
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three-way classification task. These tasks focus on predicting regulatory elements such as promoters,
enhancers, and open chromatin regions from several species, including humans and Drosophila [7, 13,
36]. The inputs sequences have median lengths ranging from 200 to 2,381 bp. This benchmark includes
three baselines: a supervised CNN model, a supervised transformer model, and a fine-tuned genomic
FM, HyenaDNA [7].

The results are shown in Table S5. L2G outperforms all other models in five out of eight tasks and is
the second best in the remaining three, slightly behind HyenaDNA. As demonstrated by the aggregated
results using performance profiles Fig. S1C, L2G achieves the best overall performance on the Genomic
Benchmarks.

Overall, L2G matches or outperforms fine-tuned genomic FMs across a variety of regulatory element
prediction tasks. This is particularly significant as L2G does not rely on extensive pre-training on unsu-
pervised DNA data, a standard practice for most genomic FMs. These results highlight the efficacy of the
cross-modal transfer learning approach employed by L2G, which effectively leverages the pre-trained
knowledge embedded in language models to address genomics tasks.

L2G reveals transcriptional factor motifs

While we have demonstrated the strong benchmark performance of L2G, we also sought to showcase its
utility in downstream applications, such as discovering functional regulatory syntax. Here, we focused
on a regression task to predict the activities of developmental and housekeeping enhancers [37] from
DNA sequences. Using the DeepSTARR dataset [37], which predicts enhancer activity for two distinct
promoters in Drosophila S2 cells, we compared L2G to baseline methods.

The comparison included the DeepSTARR model, an adaptation of the Basset convolutional neural
network [38], as well as several genomic FMs. Full results are presented in Table S6. Fig. 4A shows that
predictions by L2G align well with measured values for both developmental (PCC=0.66) and housekeep-
ing (PCC=0.76) enhancers. Compared to other models, L2G outperforms all others in the housekeeping
enhancer prediction task and ranks second in the developmental enhancer prediction task, slightly behind
DeepSTARR (PCC=0.68).

To determine whether L2G learned regulatory syntax, we quantified how each nucleotide contributes
to predicted enhancer activities using DeepLiftShap [39] and identified predictive sequence patterns with
TF-Modisco-lite [40]. Full motif results are shown in Figs. S3 and Figs. S4. Interestingly, although both
L2G and DeepSTARR achieve high PCC values in predicting developmental and housekeeping enhancer
activities, they identified different sets of TF motifs (Fig. 4B).

For developmental TF motifs, both models identified AP-1, GATA and SREBP, but L2G uniquely
revealed the da motif. The daughterless (da) gene, part of the basic helix-loop-helix (bHLH) family,
is essential for several developmental pathways, including sex determination and neurogenesis [41].
For housekeeping TF motifs, L2G uniquely identified BEAF-32 and CRP. The Drosophila Boundary
Element-Associated Factor (BEAF) of 32kDa primarily binds near the promoters of numerous house-
keeping genes, contributing to chromatin domain boundary activity and promoter function [42, 43].
Similarly, the CRP motif may be associated with housekeeping promoters [44].

We acknowledge that differences in identified motifs may arise from several factors. First, we used
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different implementations of DeepLIFTShap and TF-MoDISco algorithms, as DeepSTARR is based on
Keras and TensorFlow, while our implementation uses PyTorch. These framework differences can con-
tribute to variations in motif interpretation and sensitivity. Additionally, DeepSTARR’s simpler CNN-
based architecture is inherently easier to interpret than L2G’s CNN-transformer hybrid model, and hy-
perparameter variations could also affect motif detection.

Nevertheless, we demonstrate that L2G can predict enhancer activities and reveal relevant TF mo-
tifs associated with developmental and housekeeping enhancers, suggesting it is effective in identifying
important sequence patterns for prediction tasks.

Figure 4: L2G predicts enhancer activities and reveals TF motifs. A. Performance of L2G on predicting de-
velopmental and housekeeping enhancer activity from DNA sequences in Drosophila S2 cells, measured using
Pearson Correlation Coefficient (PCC). Scatter plots show predicted vs. observed enhancer activity for devel-
opmental (left) and housekeeping (right) enhancers. B. Venn diagrams indicating the common and unique TF
motifs identified by L2G (blue) and DeepSTARR (red) for developmental (left) and housekeeping enhancers
(right). Motif identified by DeepSTARR were retrieved from [37], with unknown and redundant motifs excluded.
While both methods achieve high PCC values in predicting enhancer activities, they identify different sets of
motifs. C. Nucleotide contribution scores for strong developmental (top) and housekeeping (bottom) enhancer
sequences, respectively.

L2G closes the modality gap

L2G bridges the modality gap through joint loss optimization during the embedder pre-training step,
simultaneously aligning distributions between text and DNA while optimizing downstream task perfor-
mance. This approach addresses the challenge where directly fine-tuning language models on genomic
tasks often results in weight shifts and poor performance. To evaluate the effectiveness of this strategy,
we examined the learned representations of the target modality data generated by different fine-tuning
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approaches. Specifically, we selected three binary classification tasks from the Nucleotide Transformer
benchmark and visualized the learned embeddings for the two classes. We also calculated the Silhouette
Score, which quantifies cluster separation. Scores range from -1 to +1, with +1 indicating well-separated
clusters, 0 suggesting overlapping clusters, and -1 indicating incorrect class assignments [45]. Across
all three tasks, L2G achieved higher positive Silhouette Scores (Fig. S2), demonstrating improved class
separation compared to vanilla fine-tuning. This clear distinction in embedding space resulted in better
performance.

To better understand the factors contributing to the success of cross-modal fine-tuning in L2G, we
conducted three ablation studies on selected tasks from the Nucleotide Transformer benchmark, H3,
enhancer, and promoter_tata. The full empirical results are provided in Tables S7, S8, and S9.

First, to validate the importance of using a pre-trained LLM backbone, we compared two configu-
rations: using a pre-trained RoBERTa-base transformer vs. a randomly initialized backbone. Next, we
examined the impact of loss functions during the embedder pre-training step by comparing joint loss
optimization with task-specific loss alone and MMD loss alone. Finally, we evaluated the optimal choice
of embedder architecture by comparing the neural architecture search method DASH, used in L2G, with
two alternatives: the domain-specific CNN model DeepSEA and the embedder from the original ORCA
model [12].

The results of these ablation studies showed that the pre-trained transformer, joint loss optimization,
and the DASH-based embedder consistently outperformed their respective alternatives (Fig. 5). These
findings highlight the critical role of pre-training, optimized loss functions, and robust embedder archi-
tecture in the success of L2G.

Figure 5: Ablation results for three selected tasks in the Nucleotide Transformer benchmark. Left: Performance
comparison between a pre-trained RoBERTa-base transformer and a randomly initialized backbone during
pretraining. Middle: Middle: Evaluation of different loss functions during embedder pretraining, comparing joint
loss optimization, task-specific loss alone, and MMD loss alone. Right: Comparison of embedder architectures,
including DASH, DeepSEA, and the original ORCA embedder.
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Discussion

In this work, we investigate the efficacy of cross-modal transfer in genomics. By analyzing a general-
purpose cross-modal fine-tuning method, we identified key limitations in both architectural design and
objective function. To address these challenges, we introduced L2G, a new method that incorporates a
carefully designed architecture and improved alignment between different modalities. This enables L2G
to harness the capabilities of pre-trained language models for genomics tasks. Our evaluations across
multiple genomics tasks demonstrate superior average performance compared to fine-tuned genomic
FMs and domain-specific expert models, notably without requiring large-scale pre-training.

The success of our cross-modal approaches raises important questions: Is the current pre-training
approach in genomics the most effective? Do we truly need vast amounts of unsupervised genomics data
for pre-training? By leveraging pre-trained language models, L2G bypasses the need for extensive un-
supervised pre-training, reducing computational and data demands while still achieving competitive per-
formance with in-modal transfer. This challenges the conventional approach of building domain-specific
FMs from scratch, suggesting that language models originally developed for NLP can be repurposed for
seemingly unrelated domains like genomics. This opens new avenues for cross-disciplinary applications
of LLMs, highlighting their versatility and questioning the necessity of developing entirely new models
for every domain.

A few contemporaneous studies have also raised concerns about the effectiveness of current genomic
FMs. For example, one study observed that genomic FMs offer little to no advantage over traditional
models based on one-hot encoded sequences [46]. Another work found that a supervised-only pipeline
named DASHA surpassed the latest genomic FMs on the Nucleotide Transformer benchmark [47]. No-
tably, L2G outperforms DASHA on 11/18 tasks in the benchmark and reaches a better average score.
At the time of this writing, L2G is the only fine-tuning based approach that outperforms such strong su-
pervised baselines on the Nucleotide Transformer benchmark, despite not being pretrained on genomics
data. Our work along with these contemporaneous studies collectively challenge the prevailing pre-
training-then-fine-tuning paradigm for genomic FMs and highlight the need to rethink their development
and applications.

Our study has several limitations. First, our evaluations did not cover a broad range of genomics
tasks, including long-range prediction tasks that involve more complex interactions and regulatory mech-
anisms. Future work could extend L2G’s application to more complex genomic tasks, such as sequence-
based gene expression prediction [22, 34]. Second, we have not explored whether the scaling laws
common in NLP apply to cross-modal transfer learning for genomics. It remains to be seen whether us-
ing increasingly larger language models (trained on natural language) would yield proportionally better
performance. Thirdly, interpretability remains a challenge [48]. While we have used ablation studies
and embedding analyses to explain L2G’s effectiveness, the underlying mechanisms and interpretability
of L2G require further investigation. Lastly, our current cross-modal transfer approach relies on fine-
tuning. Future work could explore combining cross-modal transfer with continued pre-training [49],
leveraging both unsupervised text and genomic data to potentially further enhance the performance of
domain-specific FMs, albeit at the cost of increased data and computational requirements.
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In summary, L2G demonstrates the potential of cross-modal transfer learning to address genomics
tasks effectively and efficiently, providing a compelling case for leveraging existing pre-trained mod-
els from natural language rather than building domain-specific ones from scratch. This work lays the
foundation for further advancements in cross-disciplinary applications of pre-trained language models,
extending their utility to a diverse range of biological problems.
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Code Availability

The source code of L2G can be accessed at: https://github.com/wenduocheng/L2G.

Data Availability

In this work, we utilized several public datasets.

• The Genomic Benchmark is available at:
https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks.

• The Nucleotide Transformer benchmarks can be downloaded from HuggingFace at:
https://huggingface.co/datasets/InstaDeepAI/nucleotide_transformer_downstream_tasks.

• The DeepSTARR dataset is available on Zenodo at:
https://doi.org/10.5281/zenodo.5502060.
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