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Abstract 26 
Path integration, the ability to track one’s position using self-motion cues, is critically 27 
dependent on the grid cell network in the entorhinal cortex, a region vulnerable to early 28 
Alzheimer’s disease pathology. In this study, we examined path integration performance in 29 
individuals with subjective cognitive decline (SCD), a group at increased risk for Alzheimer’s 30 
disease, and healthy controls using an immersive virtual reality task. We developed a Bayesian 31 
computational model to decompose path integration errors into distinct components. SCD 32 
participants exhibited significantly higher path integration error, primarily driven by increased 33 
memory leak, while other modelling-derived error sources, such as velocity gain, sensory and 34 
reporting noise, remained comparable across groups. Our findings suggest that path integration 35 
deficits, specifically memory leak, may serve as an early marker of neurodegeneration in SCD 36 
and highlight the potential of self-motion-based navigation tasks for detecting pre-symptomatic 37 
Alzheimer’s disease-related cognitive changes. 38 
 39 
Teaser 40 
Virtual reality, computational modelling, and biomarkers uncover path integration deficits, 41 
distinguishing pre-symptomatic Alzheimer’s from normal aging. 42 
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 1 
MAIN TEXT 2 
Introduction 3 
Spatial navigation is a multifaceted behaviour involving various cognitive processes such as 4 
memory storage and retrieval, multisensory integration, and decision-making. Central to 5 
navigation is path integration (PI), a process of continuously updating one's position and 6 
orientation based on the integration of self-motion cues(1). This mechanism is crucial for the 7 
development of cognitive maps, aiding in the association of environmental cues with location 8 
estimates(2). PI is thought to critically depend on grid cell computations in the entorhinal 9 
cortex (EC)(3), which is also the first neocortical region to exhibit tau pathology and 10 
neurodegeneration in Alzheimer’s disease (AD)(4). Consistent with these findings, impaired 11 
grid cell dynamics and navigation deficits are evident early in AD mouse models(5, 6). In 12 
humans, young APOE-e4 carriers, a known risk factor for AD, have shown altered grid-like 13 
BOLD signals(7). Moreover, behavioural work has suggested corrupted PI in patients with 14 
Mild Cognitive Impairment (MCI) and early AD(8, 9), particularly in cases when AD-related 15 
pathology is present. Howett et al. (2019) even demonstrated that (i) PI performance was more 16 
sensitive at discriminating between AD biomarker positive vs. negative MCI patients 17 
compared to standard neuropsychological assessments, and (ii) that PI performance was related 18 
to CSF tau and EC volume, further outlining the link between PI and AD-related pathology.    19 
 20 
Despite the evidence that PI is affected in MCI and early AD, it remains unknown whether PI 21 
deficits emerge at earlier stages of the disease, before traditional cognitive symptoms become 22 
apparent. Earlier identification is particularly important as it opens a window for potential 23 
interventions at a stage when treatment could be more effective, potentially altering the disease 24 
trajectory(10, 11).  Subjective Cognitive Decline (SCD) presents a unique opportunity in this 25 
regard, because it is increasingly acknowledged as potentially the earliest stage of AD(12). 26 
Older adults with SCD self-report cognitive deficits that are not detectable through standard 27 
neuropsychological testing(13), and they have shown signs of tau pathology in EC (14). To 28 
date, however, it is unknown if PI is affected in SCD and, if so, what mechanisms may 29 
represent the earliest degradation of PI due to emerging AD pathology. 30 
 31 
To achieve a nuanced understanding of the mechanisms that could underlie PI impairments in 32 
SCD, we developed a hierarchical Bayesian model that decomposes observed PI errors into 33 
distinct components. Our model builds upon previous leaky integrator models(15–17) that 34 
assume a linear accumulation of errors with time or distance, influenced by the leaking of 35 
information from the memory trace. Parameters of the model include memory 'leak', velocity 36 
gain, additive bias, accumulating noise and reporting noise. By incorporating these parameters, 37 
the model accounts for noise, representing random fluctuations, and biases, indicating 38 
systematic deviations from the true path, both of which contribute to the overall accuracy of the 39 
PI process. Unlike previous models that were based on maximum likelihood, which yield point 40 
estimates of parameters, the Bayesian approach estimates full posterior distributions(18), 41 
allowing for a richer quantification of uncertainty. Additionally, its hierarchical structure 42 
enables the simultaneous modelling of individual differences and group-level effects, offering 43 
deeper insights into the variability of PI impairments in SCD. By incorporating prior 44 
information, the Bayesian framework is also more robust to noisy data. 45 
 46 
To determine if and how PI is impaired in preclinical AD, we tested patients with SCD and 47 
matched controls on an immersive, self-guided virtual reality-based PI task. We eliminated 48 
distal cues and utilised curved paths to more accurately replicate continuous PI observed in 49 
animal studies, minimising reliance on non-spatial heuristics and configural strategies 50 
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commonly associated with triangular paths in human experiments(19–21). Additionally, given 1 
the reports that early AD may be associated with angular deficits(22) we complemented our PI 2 
task by including a novel response to assess angular integration, without being confounded by 3 
distance encoding as in previous studies (e.g.(22, 23), see (19) for further discussion). To 4 
preview, our results show that individuals with SCD exhibit larger PI errors compared to 5 
controls, driven by increased memory leak as revealed by computational modelling. 6 
Importantly, these deficits were not associated with differences in angular integration, 7 
movement dynamics, or visual distance estimation, underscoring the specificity of PI 8 
impairments in SCD.  9 
 10 
Results 11 
Data were collected from 102 participants, comprising 72 controls and 30 individuals with 12 
SCD. No significant differences were observed between the groups in terms of 13 
neuropsychological assessments, self-reported navigation abilities, and visuo-spatial working 14 
memory (Table 1).  The SCD group was slightly older (BF₁₀ = 1.916), and controls performed 15 
slightly better on the gait assessment (BF₁₀ = 3.057), although both groups scored near ceiling 16 
(12-point maximum).  17 
To measure PI, participants engaged with an immersive virtual reality environment through a 18 
head-mounted display. They navigated the environment using self-motion cues (vestibular, 19 
proprioceptive, motor efference copies and optic flow). For the PI task (Fig. 1), participants 20 
followed a floating object along eight distinct pre-defined curved paths (Fig. S1). They were 21 
required to report two key metrics at designated stopping points (Stop 1 and Stop 2, Fig. 1): 1) 22 
initial heading orientation (angular integration [AI] response), and 2) distance and direction 23 
back to the start of the path (PI response). Some trials featured only a single stopping point at 24 
the end of the path (Fig. 1; see Methods). After outlier exclusion, both groups presented a 25 
comparable number of valid trials for analysis (Table 1). 26 
 27 
Table 1 Demographic characteristics  28 
 Control 

Mean (SD) 
SCD 
Mean (SD) 

BF10 

Age 65.5 (5.68) 68.7 (7.76) 1.916 
MoCA 27.0 (1.80) 26.7 (2.00) 0.274 
Self-reported spatial 
abilities  

69.4 (22.80) 78.5 (24.8) 0.868 

Visuo-spatial working 
memory (corsi block 
task) 

4.5 (0.96) 4.58 (0.898) 0.236 

Gait (subset of 
functional gait 
assessment task(24) 

11.3 (1.01) 10.6 (1.40) 3.057 

Completed PI trials 80.5 (14.90) 78.8 (19.0)  0.252 
      29 
 30 
 31 
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  1 
Fig. 1. Task Schematic for Path Integration and Angular Integration 2 
(Top) Example of the immersive virtual reality environment illustrating the key stages of 3 
the task. Participants started at a designated point marked by a visible object (e.g., a pumpkin). 4 
They then followed a curved path by walking towards a floating white sphere (object no longer 5 
visible). At the stopping point, they performed the path integration response by repositioning the 6 
object to its original location. This was done by turning and estimating the distance using a 7 
white line displayed on the ground within the virtual environment. Participants also saw a 8 
numerical representation of the response line length, which allowed them to fine-tune their 9 
distance estimates by comparing visual and numerical cues. Participants also performed an 10 
angular integration response (not shown), by rotating to what they thought is their initial 11 
heading orientation (see bottom panel). An example video is available in supplementary 12 
materials. (Middle) Example of a curved path, performed either with two stopping points, 13 
Stop 1 in the middle of the path and Stop 2 at the end (left), or with a single stop at the end of 14 
the path (right). (Bottom) Representation of key task elements and metrics. (Left) 15 
Participants angular integration (AI) response example, where participants are asked to indicate 16 
their initial heading orientation at each stopping point by rotating their head and body.  Dashed 17 
line represents the initial heading orientation and solid purple line represents the AI response. 18 
The absolute difference between the two represents AI error. (Right) For the path integration 19 
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(PI) response, participants were asked to indicate the start position of the path by turning to the 1 
“presumed” start location and then indicating distance to start. The difference between the start 2 
location and the PI response indicates path integration error (m). Participants perform both 3 
responses (angular and path integration) at each stopping point.   4 
 5 
SCD patients show reduced PI performance 6 
Using a regression model, for group and stopping point with age, sex and MoCA scores as 7 
covariates, we found that participants with SCD exhibited larger PI errors compared to healthy 8 
controls (Estimate =0.257, SE = 0.065, t =3.925, p<0.001, Fig. 2a). Both groups demonstrated 9 
higher PI error at the 2nd stopping point at the end of the path relative to the intermediate 10 
response points (Estimate = 0.560, SE = 0.090, t = 6.245, p<0.001, Fig. 2b). Critically, there 11 
were no significant differences in PI errors for the final stop between trials with or without 12 
intermediate stopping points for either group (t=1.238, p=0.217), suggesting that in both 13 
groups, errors increased with increasing walked distance from the start location. Replicating 14 
previous findings, PI errors increased with advancing age (Estimate = 0.427, SE = 0.063, t = 15 
6.728, p<0.001, Fig. 2d), and females exhibited higher PI errors than males (Estimate = 0.306, 16 
SE = 0.067, t = 4.557, p<0.001, Fig. 2c). Full regression results are reported in supplementary 17 
materials (Table S1). We assessed whether participants performed better than chance on the PI 18 
task. Both groups outperformed chance at the first stopping point. However, at the final 19 
stopping point, SCD participants did not perform above chance, while controls maintained 20 
above-chance performance in trials without an intermediate stopping point (Fig. S2). 21 
 22 
 23 

 24 
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Fig. 2. Path integration performance. a) Group differences in PI error; healthy controls 1 
exhibited significantly lower PI errors compared to the SCD group, b) with errors increasing at 2 
the final stopping point relative to intermediate points in both groups. c) Sex differences in PI 3 
error; females exhibited significantly higher PI errors compared males. d) PI error increased as 4 
a function of age across both groups. 5 
 6 
In contrast to PI error, there were no differences in AI error between the groups (BF₁₀ =0.285, 7 
Fig. 3a), with both groups performing significantly better than chance (Control: mean= 50.92°, 8 
BF₁₀ = 46.457; SCD: mean= 54.49°, BF₁₀ = 15.583). Similar to PI error, we found higher AI 9 
error between the 2nd stopping point at the end of the path relative to the intermediate response 10 
points (Estimate = 12.565°, SE = 1.859, t = 6.758, p<0.001, Fig. 3b). We also found that AI 11 
error was lower for the final stop without an intermediate stopping point, compared to the final 12 
stop preceded by an intermediate stopping point (Estimate = -3.720, SE = 1.859, t = -2.001, 13 
p=0.046, Fig. 3b). Finally, AI error was associated with increasing age and was higher in 14 
females compared to males (Table S2). 15 
      16 

 17 
Fig. 3. Angular integration performance. a) Group differences in AI error between groups; 18 
no differences in angular integration (°) error between Control and SCD groups. b) AI error 19 
across stopping points; higher angular integration error for Stop 2 vs Stop 1, and lower angular 20 
integration error at the end of the path in trials with only a single stop compared to trials with 21 
an intermediary stop point. 22 
 23 
Movement characteristics and visual distance perception are unlikely to drive PI 24 
differences between groups 25 
To test whether group differences in PI error were driven by movement dynamics, we 26 
compared head movements, angular and translational velocity, and head pitch (Fig. S3) using 27 
Bayesian t-tests, assessing evidence for the null hypothesis. Controls and SCD neither differed 28 
in head movements during walking, (BF₀₁=4.193) nor in translational (BF₀₁=4.167) and angular 29 
velocities (BF₀₁=2.031). 30 
We further examined whether SCD participants sampled the environment differently by 31 
looking downward more frequently during walking, which could impair optic flow 32 
perception(25, 26). Since gaze behaviour was not recorded, head pitch data from the HMD 33 
served as a proxy, revealing no group differences (BF₀₁=2.066).  Together, with all analyses 34 
yielding BF₀₁ >1, we conclude that movement dynamics are unlikely to contribute to the 35 
differences in PI error between groups. 36 
 37 
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Next, we examined changes in PI performance and movement dynamics from early to late 1 
trials (comparing the first 10% vs. last 10% of trials; Fig. S4) to ensure no differences in 2 
learning dynamics or task adaptation between groups, which could confound PI performance 3 
interpretations. First, we did not find any changes in PI performance between early and late 4 
trials (estimate = -0.021, SE = 0.094, t = -0.228, p = 0.820), with no significant interaction 5 
between group and trial stage (estimate =-0.076, SE = 0.094, t = -0.814, p = 0.416). In terms of 6 
movement dynamics, we observed an increase in translational and angular velocity between 7 
early and late trials (Translation: estimate = 0.026, SE = 0.003, t = 10.257, p < 0.001; Angular: 8 
estimate = 1.814, SE = 0.243, t = 7.467, p < 0.001), with similar patterns for path groups 9 
(Translation: p=0.864; Angular: p= 0.983). Additionally, both groups showed an overall 10 
decrease in head movements in later trials (estimate = -100.879, SE = 14.934, t = -6.755, p < 11 
0.001), potentially reflecting that participants realised the futility of extensive head movements 12 
due to the lack of distal cues in the environment, with no interaction between group and trial 13 
stage (p=0.297). Finally, head pitch remained unchanged across trials (p= 0.804), with no 14 
group or trial stage interactions (p=0.615). 15 
 16 
In addition to the PI task, we included a distance estimation task to assess potential differences 17 
in visual distance perception and response precision between control and SCD participants. 18 
Participants memorised and reproduced distances to an object (1.4, 3.4, and 5.9 metres) using a 19 
virtual ruler. We found no significant group differences in distance estimation (estimate = 20 
0.018, SE = 0.011, t = 1.635, p = 0.103, Fig. S5), suggesting comparable visual distance 21 
perception and estimation across groups. Both groups exhibited a Weber's law-like effect, with 22 
error increasing as the distance increased from 1.4 to 3.4 metres (estimate = 0.202, SE = 0.015, 23 
t = 13.340, p < 0.001) and further from 3.4 to 5.9 metres (estimate = 0.155, SE = 0.015, t = 24 
10.259, p < 0.001). Additionally, distance error increased with increasing age (estimate = 25 
0.005, SE = 0.002, t = 3.314, p < 0.001).  26 

Characterising error sources with a computational model  27 

To better understand the mechanisms that contribute to the observed PI errors, we developed 28 
an extended computational model based on the distance-based framework introduced by Stangl 29 
et al.(17). This enhanced model addresses gaps in prior approaches by capturing both 30 
individual variability and shared characteristics of healthy aging and early pathological 31 
changes (i.e., SCD). Our model simulates participants' internal location estimates during PI 32 
using a two-dimensional diffusion equation, incorporating memory leak (𝛽), velocity gain (𝛼), 33 
additive bias (b) and accumulating noise (𝜎!). Internal estimates are generated based on 34 
reported distance (𝑑') and angle, with addition of Weber-like reporting noise (𝜎") drawn from a 35 
normal distribution with zero mean and standard deviation proportional to the reported distance 36 
(𝑑'). 37 

To infer the model parameters (𝛽, 𝛼, b, 𝜎!, 	𝜎"), we utilized a Bayesian hierarchical approach, 38 
which provides distinct advantages over traditional methods based on likelihood maximization. 39 
Specifically, this approach accounts for individual variability while capturing shared group-40 
level characteristics. The Bayesian framework allows for prior knowledge integration and 41 
robust parameter estimation via posterior distributions. Parameter inference was conducted 42 
using Markov Chain Monte Carlo (MCMC) sampling with the No-U-Turn Sampler (NUTS), 43 
ensuring efficient exploration of the parameter space and reliable posterior estimates(27). This 44 
model effectively captures variability across individuals and groups, enhancing our 45 
understanding of cognitive changes in aging and SCD. 46 

Model selection/evaluation  47 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2025. ; https://doi.org/10.1101/2025.02.17.638583doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.17.638583
http://creativecommons.org/licenses/by-nc/4.0/


 
 

8 
 

To determine the most parsimonious model, we compared candidate models combining various 1 
error sources (Fig. 4). Model complexity and fit were assessed using expected log predictive 2 
density for leave-one-out cross-validation (elpdloo)(28). The full model showed the best fit, 3 
leading us to retain all parameters to explain PI error sources. 4 

5 

 6 
Fig. 4. Comparison of Candidate Models Across Error Sources 7 
Comparison of candidate models incorporating different combinations of error sources: 8 
velocity gain (α), memory leak (β), additive bias (𝐛), accumulating noise (𝜎!), and reporting 9 
noise (𝜎"). Error sources included in each model are represented below the graph as filled 10 
(purple). The expected log pointwise predictive density for leave-one-out cross-validation 11 
(elpdloo) is shown for each model (mean ± SEM). Models with higher elpdloo values indicate 12 
better predictive performance. The “full” model demonstrates the best fit to the data (highest 13 
elpdloo value).  14 
 15 
Memory leak distinguishes SCD patients from healthy controls   16 
What are the mechanisms that may have caused increased PI errors in individuals with SCD? 17 
To address this question, we first calculated mean parameter estimates for each participant and 18 
compared them using linear regression with age and group as covariates (results reported in 19 
Table S4).  We found that SCD participants exhibited significantly higher memory leak than 20 
Controls (β; estimate = 0.055, SE = 0.020, t=2.720, p=0.008, Fig. 5b), indicating a greater 21 
tendency for stored information to decay over travelled distance. In contrast, there was no 22 
evidence of a significant group difference in velocity gain (α; estimate = -0.025, SE = 0.052, t 23 
= -0.493, p = 0.623, Fig. 5a), additive bias (||b||; estimate = 0.0001, SE = 0.003, t = 0.044, p = 24 
0.965, Fig. 5c), accumulating noise (σo²; estimate = 0.022, SE = 0.025, t = 0.858, p = 0.393, 25 
Fig. 5d) and reporting noise (σr²; estimate = 0.031, SE = 0.017, t = 1.820, p = 0.072, Fig. 5e). 26 
Across both groups, age was associated with increases in memory leak (β; estimate = 0.008, SE 27 
= 0.003, t = 2.720, p = 0.008, Fig. S6a) and reporting noise (σr²; estimate = 0.008, SE = 0.002, t 28 
= 3.581, p = 0.001, Fig. S6b).  29 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2025. ; https://doi.org/10.1101/2025.02.17.638583doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.17.638583
http://creativecommons.org/licenses/by-nc/4.0/


 
 

9 
 

 1 
To further assess the robustness of our findings, we examined group differences in PI error 2 
sources using the Highest Density Intervals (HDIs) of the posterior distributions of the group-3 
level mean model parameters (see Fig. S7). HDIs provide a comprehensive summary of 4 
parameter differences by capturing the most credible range rather than relying solely on point 5 
estimates, offering a clearer representation of uncertainty and group differences.  HDIs provide 6 
a more comprehensive summary of the distribution by highlighting the most credible range of 7 
parameter differences rather than relying solely on point estimates. This approach offers a 8 
clearer representation of uncertainty and group differences. Consistent with the individual-level 9 
analysis, the differences in the posterior distributions of 𝛾 for memory leak (β) provide strong 10 
evidence for higher values in individuals with SCD compared to controls, with 99.7% of the 11 
distribution above zero. In addition, the 95% HDI [0.10,0.76] did not include zero, suggesting 12 
a statistically credible and significant group difference. The differences in posterior 13 
distributions of the remaining group-level parameters—velocity gain (𝛾#), additive bias (γ$), 14 
accumulating noise (𝛾%!") and reporting noise (𝛾%#") (Fig. 5a, 5c-5e)—exhibited negligible 15 
evidence for group differences as their 95% HDIs all overlapped zero. A subsequent ROPE 16 
analysis ([-0.1, 0.1]) supported practical equivalence for the remaining parameters, as most of 17 
the 95% HDI samples fell within these bounds(29). Together, these findings suggest that SCD 18 
is associated with increased memory leak, even after accounting for possible age effects, while 19 
other parameters remained comparable between groups across both individual and group-level 20 
comparisons.  21 
 22 

 23 
 24 
Fig. 5. Comparison of Computational Model Parameters Between Control and SCD 25 
Groups Upper panel (a-e) Violin plots showing distributions of individual level mean point 26 
estimate comparisons between control and SCD groups for velocity gain (α), memory leak (β), 27 
additive bias (∣∣b∣∣), accumulating noise (σ02), and reporting noise (σr²) for Control (blue) and 28 
SCD (red) participants. SCD participants exhibited significantly higher memory leak (β) 29 
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compared to Controls (g), while other parameters (α, ∣∣b∣∣, σ02, and σr²) showed no significant 1 
group differences. Asterisk indicates significant effect.  Lower panel (f-j) Posterior 2 
distributions of the differences between control and SCD groups for the group-level mean 3 
parameter γ. The horizontal bars near the x-axis denote the 95% Highest Density Interval 4 
(HDI) of the posterior distributions for group differences. Dashed vertical lines indicate zero, 5 
and the percentages reflect the proportion of the posterior distribution on either side of zero, 6 
providing evidence for the likely direction of group differences. The posterior distributions 7 
revealed strong evidence for higher memory leak (β) in individuals with SCD compared to 8 
Controls (red dashed line), with 99.7% of the distribution above zero and a 95% HDI excluding 9 
zero, indicating a statistically credible group difference. In contrast, posterior distributions of γ 10 
for the remaining parameters—velocity gain, additive bias, accumulating noise, and reporting 11 
noise—showed negligible evidence for group differences, as their 95% HDIs overlapped zero 12 
(black dashed line). 13 
 14 
Blood NFL Predicts PI Errors, Velocity Gain Deviations, and Increased Reporting Noise 15 
We also obtained plasma-based biological biomarker data related to neurodegeneration from a 16 
subset of participants (SCD=27, Control=54). Specifically, we measured plasma levels of 17 
neurofilament light chain (NFL), a marker of general neurodegeneration(30, 31), and pTau181, 18 
associated with AD-related tau accumulation(31, 32). We also included APOE (ε4 carriers and 19 
ε4 noncarriers), a risk factor for AD(33), in the analysis. Our analysis of these plasma 20 
biomarkers showed no significant differences in the concentrations of NFL (BF₁₀=0.461, Fig. 21 
6b) as well as no differences in the number of ε4 carriers and ε4 noncarriers between Control 22 
and SCD groups (𝜒&p=0.796, Fig. 6c). 23 
 24 
Next, we investigated the predictive relationship between PI error and blood-based biomarkers, 25 
with age included as a covariate. NFL was the only significant predictor of increased PI error 26 
(Fig. 6d; estimate = 1.195, SE = 0.370, t = 3.232, p =0.002). Subsequently, to understand the 27 
potential biological underpinnings driving distinct error sources contributing to impaired PI we 28 
examined if these biomarkers predict individual parameter estimates derived from the 29 
computational model. We found that higher NFL levels were predictive of greater deviations 30 
from the optimal velocity gain (Fig. 6e; absolute deviation from α=1; estimate = 0.121, SE = 31 
0.039, t = 3.183, p =0.002), and increased reporting noise (Fig. 6f; estimate = 0.055, SE = 32 
0.018, t = 3.009, p = 0.004). No other biomarkers significantly predicted PI error sources.  33 
Based on partial R² values, NFL contributed more to predicting reporting noise (0.120) than to 34 
velocity gain deviation (0.045). 35 
 36 
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 1 
Fig. 6. Plasma Biomarkers, APOE Genotype, and Associations with PI and Error Sources 2 
(a-b) Violin plots showing plasma levels of pTau181 and NFL in Control (blue) and SCD (red) 3 
groups. Bayesian analyses provided evidence supporting no group differences in pTau181 4 
(BF₁₀ =0.279) and NFL (BF₁₀ =0.461). (c) Proportion of APOE ε4 carriers (pink) and 5 
noncarriers (blue) across Control and SCD groups, showing no significant differences 6 
(p=0.796). (d-f) Scatter plots illustrating the predictive relationship between plasma NFL levels 7 
and behavioural outcomes, with age included as a covariate. Higher NFL levels were 8 
associated with increased PI error (d), greater deviations from the optimal velocity gain (e), and 9 
higher reporting noise (f). Shaded areas represent the 95% confidence interval for regression 10 
lines. 11 
 12 
Discussion 13 
In this study, we examined PI in individuals with SCD and healthy controls using a self-guided 14 
immersive virtual reality task. SCD participants showed significantly higher PI errors than 15 
controls. A hierarchical Bayesian model revealed that these deficits were primarily driven by 16 
increased memory leak, while other parameters—velocity gain, additive bias, and noise—17 
remained similar between groups. Although no group differences were found in blood 18 
biomarkers, NFL, a marker of neurodegeneration, was significantly associated with increased 19 
PI errors, velocity gain deviations, and reporting noise. 20 
 21 
To the best of our knowledge, this study provides the first evidence for PI impairments in SCD 22 
participants, despite their comparable performance to healthy controls on the AI component of 23 
the task and in other cognitive domains. Bayesian analyses did not reveal any group differences 24 
in head movements, translational and angular velocity, or head pitch, indicating that PI deficits 25 
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were unlikely to be driven by variations in movement dynamics or sampling strategies, such as 1 
a tendency to look downward during navigation. Additionally, both groups exhibited similar 2 
changes in performance and movement metrics from early to late trials, with no evidence of 3 
group differences in learning or task adaptation. Thereby our results highlight that PI may 4 
uniquely tap into subtle changes in neural computations that are difficult to detect with 5 
standard cognitive measures, highlighting its potential as a sensitive marker of pre-6 
symptomatic AD.  7 
 8 
It is important to note that our experimental design was specifically tailored to reduce potential 9 
confounds often seen in PI tasks. By requiring participants to rely primarily on multisensory 10 
self-motion cues (vision, proprioception, vestibular and motor efference copies), we minimized 11 
the influence of sensory degradation, which is commonly observed with aging and can impair 12 
performance when limited sensory modalities are available(23, 34, 35). Furthermore, the task 13 
excluded proximal and distal landmarks(7, 9, 36), reducing the likelihood of compensatory 14 
landmark-based navigation or reliance on non-spatial heuristics. These design choices create a 15 
more “pure” PI task, where older adults had to continuously update their position in space 16 
relying on idiothetic cues. The observed deficits in SCD participants, therefore, likely reflect 17 
genuine impairments in PI rather than alternative cognitive or sensory explanations. 18 
 19 
To gain a deeper understanding of the mechanisms contributing to the overall PI deficits, we 20 
developed a hierarchical Bayesian model that decomposes observed PI errors into distinct 21 
components. Critically, we found that memory leak was the only parameter that reliably 22 
distinguished older adults with SCD from healthy controls. Memory leak, as defined in our 23 
model, refers to the gradual decay of the state variable, specifically the homing vector encoding 24 
the distance and direction back to the starting point as distance increases during path traversal. 25 
Our behavioural findings support that this decay occurs over space rather than time, as 26 
indicated by the comparable PI performance at the end of the path in trials with and without 27 
intermediate stopping points. Notably, trials without intermediate stops had similar distances 28 
but shorter durations, emphasizing that memory leak is more closely tied to movement itself—29 
emerging when positional changes occur—rather than during stationary periods. Thus, we 30 
conclude that memory leak is unlikely to be driven by working memory deficits. This 31 
interpretation is further supported by the absence of group differences on the Corsi block task, 32 
a standard measure of visuo-spatial working memory(37). 33 

We propose that these PI deficits are related to impaired grid cell function, which may be - 34 
amongst the earliest functional changes during Alzheimer’s disease progression(6, 38, 39). 35 
Grid cells serve as a neural integrator for spatial information supporting PI(3), and functional 36 
changes in this network may impair the brain's ability to maintain a stable representation of 37 
self-location over the course of movement. Animal models of AD show profound loss of grid 38 
tuning(6, 40, 41) . The additional burden of tau pathology in the EC may disrupt the grid cell 39 
network’s capacity to prevent “leakage,” amplifying memory decay and making it a key 40 
distinguishing feature from healthy aging, where some degree of leak may also be present but 41 
to a lesser extent (c.f. higher leak with age(17)). Indeed, young APOE ε4 carriers exhibit 42 
reduced grid-cell-like tuning(39) . 43 

While the precise mechanisms as to how AD pathology may lead to greater memory leak 44 
remain speculative, we propose several plausible explanations. One possible mechanistic 45 
example of how AD pathology could disrupt spatial computations involves altered attractor 46 
dynamics within the hippocampal–entorhinal circuit. Grid cell models based on continuous 47 
attractor networks create stable spatial maps by maintaining coherent activity patterns 48 
representing the organism's location(42). In these networks, each new location estimate relies 49 
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on the previously encoded spatial state and velocity updates. The stability of these attractor 1 
networks could be compromised by tau pathology, which effectively reduces the network’s 2 
“energy well,” making attractor states more prone to drift. In such a weakened network, any 3 
slight perturbation (e.g., from sensory noise or normal fluctuations in neural firing) can push 4 
the representation away from its stable configuration, causing the previously encoded spatial 5 
state to degrade more quickly and amplifying PI errors. This instability could be further 6 
exacerbated by AD related dysfunction in parvalbumin interneurons, which compromises the 7 
inhibitory control needed for precise network dynamics and grid tunning(43, 44). Furthermore, 8 
the disruption of axonal transport and synaptic function likely contributes to this weakened 9 
network state(45). Consequently, updating spatial position becomes increasingly difficult, with 10 
the internal representation eroding faster than under normal conditions. 11 

An additional mechanism involves disrupted temporal precision in the sequential updating of 12 
the PI signal. Accurate tracking of position relies on rhythmic oscillatory processes—13 
particularly theta and gamma bands—to coordinate neuronal ensembles in the entorhinal-14 
hippocampal circuit(46–52). AD-related changes in the EC may reduce synchrony between 15 
grid cells and head-direction cells or attenuate the amplitude of key oscillations, potentially by 16 
disrupting the function of interneurons that regulate these rhythms(53, 54). For example, 17 
disease related reduction in cholinergic transmission(55)  disrupt theta-gamma interactions and 18 
grid tunning(56, 57) . Without precisely coordinated neuronal firing, the system struggles to 19 
integrate velocity and orientation cues at the correct moments, thereby compounding small 20 
discrepancies over successive steps. This disruption of temporal precision could further 21 
destabilize the state variable, contributing to the “leak” observed in SCD. Since PI relies on 22 
cumulative updates, even minor disruptions in the running position estimate can have a 23 
cascading effect, resulting in progressive loss of spatial information manifesting as a gradual 24 
“leak” in spatial memory.  25 

Contrary to recent findings suggesting pre-clinical or prodromal AD (i.e., MCI, APOE4 status, 26 
and other AD-related risks) is associated with higher angular errors(7, 36, 58) with corrupted 27 
angular integration as a primary driver of early AD-related deficits(22), we did not observe 28 
group differences in AI between healthy older adults and individuals with SCD. Both groups 29 
performed significantly better than chance on our AI tasks, despite showing clear differences in 30 
PI. This discrepancy may be explained by methodological differences in how AI is assessed. 31 
Traditional PI tasks, such as triangle completion, derive distance and angular errors to infer 32 
deficits, with distance error as the deviation from the actual start point and angular error as the 33 
difference between the correct and reported heading. However, mis-encoding of travelled 34 
distance during the outbound path can also induce angular error, potentially confounding the 35 
interpretation of angular deficits(19–21). To address this, we incorporated an additional task in 36 
which participants were asked to remember and recreate their initial heading orientation at each 37 
response point, allowing us to disentangle angular integration from distance encoding and the 38 
combined processes required for PI. 39 

Our findings of intact AI alongside PI deficits in SCD align with research on AD rodent 40 
models. These studies suggest that head direction (HD) cell coding, a critical component for 41 
orientation inputs to grid cells(59), is preserved for longer than grid cell integrity during the 42 
progression of AD(5, 6).  It is possible that impaired AI becomes more prominent at later 43 
stages of disease progression, such as aMCI, as supported by recent modelling studies in 44 
humans(22). Notably, Ying et al.(5) demonstrated that although HD cells maintain normal 45 
firing properties and tuning curves in AD mice, early-stage AD is characterized by reduced 46 
synchrony between HD and grid cells. This suggests that impaired integration of orientation 47 
and distance information may underlie early PI deficits, as evidenced by intact AI but disrupted 48 
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PI in SCD, consistent with the interpretation that the EC is responsible for integrating these 1 
inputs. 2 
 3 
Contrary to previous research(7, 36, 58), we did not observe larger PI deficits in APOE ε4 4 
carriers, a known risk factor for sporadic AD, despite employing PI tasks without orientation 5 
cues, which are considered highly sensitive to PI impairments in this group (e.g., Colmant et 6 
al.,(58)). This discrepancy may be partly explained by complex interactions between APOE 7 
status, lifestyle factors, and sex, as suggested by prior studies(36). Additionally, most research 8 
reporting greater PI errors in APOE ε4 carriers has focused on younger populations, such as 9 
young adults(7) or middle-aged individuals(36). In older samples like ours, APOE status may 10 
be less informative, with markers such as NFL emerging as stronger predictors of 11 
neurodegeneration. One possible explanation is that APOE ε4 carriers predisposed to AD may 12 
have already progressed to MCI or dementia, excluding them from our sample. Alternatively, 13 
the ε4 carriers in our cohort may represent a subset with protective factors that delay disease 14 
progression, as nearly half were cognitively healthy. This aligns with evidence that APOE ε4 15 
expression is modulated by various epigenetic(60), environmental and genetic factors(61). 16 
 17 
Our study found no group differences in blood biomarkers, including NFL and plasma 18 
pTau181. This lack of distinction may reflect the nonspecific nature of NFL, which indicates 19 
general neurodegeneration rather than AD-specific pathology(31, 62). Similarly, while 20 
pTau181 is associated with AD, its sensitivity for detecting early or preclinical stages is limited 21 
- emerging evidence suggests that other phosphorylated tau isoforms, such as pTau217, may 22 
offer greater diagnostic accuracy and specificity for AD-related pathology(63). Despite the 23 
absence of group differences, NFL predicted PI deficits, with associations observed for higher 24 
PI error, velocity gain, and reporting noise. These associations align with NFL’s established 25 
link to systemic neurodegeneration and white matter pathology(30, 64)  both critical for 26 
efficient neural communication(65, 66). Reduced white matter integrity, associated with 27 
elevated NFL, may amplify noise across neural networks, contributing to variability in 28 
reporting accuracy and PI performance. Furthermore, NFL’s link to sensorimotor impairments, 29 
such as slower nerve conduction and reduced sensory precision in diabetes(67), may further 30 
impact motor control and sensory integration, contributing to higher reporting noise. Together, 31 
these findings suggest that NFL captures broader neuronal changes that contribute to higher 32 
uncertainty and increased variability in response execution across navigation tasks. 33 

 34 
In summary, our findings highlight PI deficits as a hallmark of pre-symptomatic AD, with 35 
memory leak identified as the key source driving these deficits in individuals with SCD.  These 36 
results underscore the critical role of grid cell dysfunction in early AD-related PI deficits, 37 
likely reflecting the vulnerability of the entorhinal cortex to tau pathology. Our computational 38 
model effectively decomposed and distinguished error sources, revealing distinct mechanisms 39 
underlying PI deficits in SCD. These findings can inform the design of targeted spatial 40 
navigation tasks tailored to detect early AD-related impairments. Moreover, such tasks could 41 
provide useful behavioural readouts for clinical trials, enabling a more sensitive evaluation of 42 
disease-modifying interventions that aim to mitigate early AD-related cognitive and neural 43 
changes.  44 
 45 
Materials and Methods  46 
Participants 47 
The study involved 104 participants, divided into two groups. The Control group consisted of 48 
73 individuals (46 females), averaging 65.70 years old (SD = 5.80). The Subjective Cognitive 49 
Decline (SCD) group, referred by neurologists from an in-house memory clinic, included 31 50 
participants (15 females), with an average age of 68.45 years (SD = 7.79). SCD classification 51 
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was based on a comprehensive clinical interview, including self-reported cognitive concerns 1 
and informant feedback, with no objective cognitive impairment detected through 2 
neuropsychological testing using the CERAD-plus battery(68) . All participants provided 3 
informed consent, and the study was approved by the Ethics Committee of the University of 4 
Magdeburg. Two subjects (1 SCD and 1 Control) scored below the Montreal Cognitive 5 
Assessment (MoCA(69) cutoff of 23(70) - indicating the presence of mild cognitive 6 
impairment - and were hence excluded from further analysis- resulting in the final sample of 7 
102 participants (72 controls and 30 SCD. All subjects had normal or corrected-to-normal 8 
vision and were physically capable of standing for extended periods, a prerequisite for 9 
completing the PI task. We also obtained self-reported spatial abilities, measured by the 32-10 
item DZNE Questionnaire on Spatial Orientation Skills (DFRO), and visuo-spatial working 11 
memory, measured by the Corsi block-tapping task(37), implemented using PsyToolkit 12 
platform(71). In addition to cognitive assessments, participants underwent functional gait 13 
analysis using four tasks from the Functional Gait Assessment(24), focusing on level surface 14 
walking, gait speed variations, narrow base support, and gait with eyes closed. Balance was 15 
assessed using eight brief 20-second tasks. However, due to scoring discrepancies among 16 
experimenters, these results were not included in the analysis.  17 
 18 
Plasma biomarker analysis 19 
Blood samples for pTau181, NFL, NPTX2, and APOE genotyping analysis were obtained from 20 
84 participants.  The blood samples were analysed at the clinical research group, Bonn DZNE, 21 
using the SIMOA kit, whilst NPTX2 was analysed using the INNOTEST kit from Fujirebio. 22 
We did not include NPTX2 in the final analysis because, although it is secreted by neurons and 23 
serves as a marker of synaptic integrity(72), NPTX2 is also produced in non-neuronal tissues 24 
such as the pancreas (pancreatic islets), pituitary gland, and adrenal medulla. This broader 25 
expression pattern raises concerns about the specificity of plasma NPTX2 as a reliable marker 26 
of synaptic integrity. For APOE genotyping, DNA was extracted from participants’ blood 27 
samples, analyzed to detect the APOE polymorphisms, and assigned two of the following 28 
alleles: ε2, ε3, or ε4. The APOE ε4 allele is a major risk factor of AD(33). We classified 29 
participants as ε4 carriers (ε3ε4, ε4ε4, and ε2ε4) or ε4 noncarriers (ε2ε2, ε2ε3, and ε3ε3). 30 
 31 
 32 
Immersive virtual reality path integration task 33 
Participants engaged in a self-guided immersive virtual reality path integration task, performed 34 
in a virtual environment featuring an open field devoid of landmarks, with only a ground 35 
pebbly texture providing optic flow information.  The self-guided nature of the task, where 36 
participants chose their preferred walking speed, offered the advantage of minimising 37 
experimenter biases and potential dual task costs associated with walking at a predefined 38 
speed. This setup also contrasts with other self-guided PI tasks, e.g., the apple game(7) or 39 
virtual reality-based triangle completion tasks (e.g.,(9, 36)) where external objects act as 40 
destination markers to guide participants, potentially enabling them to compute distances using 41 
static visual depth perception. This task required them to estimate the distance and direction to 42 
their starting point at two different points along each of eight unique sinuous paths - in the 43 
middle and at the end. These paths were designed with a variety of left and right turn 44 
combinations, ensuring each combination was repeated twice (Fig. S1). Examples include left 45 
followed by right turn, right followed by left turn, two consecutive left turns, and two 46 
consecutive right turns. The turn sizes varied between 40° and 140°, with the stipulation that 47 
the combined turn sizes in the same direction per path did not exceed 180°. This design, devoid 48 
of external guiding objects, ensured that distance estimation was based primarily on internal 49 
cues rather than visual distance estimation, thus providing a purer assessment of path 50 
integration abilities. 51 
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 1 
The task was developed using Unity software (19.4.0f1) and played through an HTC Vive Pro 2 
headset equipped with a wireless setup, enhancing the immersive experience. Each path 3 
segment, a portion of the path that contains a single turn in one direction, either leading from 4 
the start to the midpoint or from the midpoint to the end, spanned approximately 3 metres, 5 
varying with the curvature of the path (beeline distance of 2.7 metres). In about 10% of the 6 
trials, participants walked the entire path and provided responses only at the end, resulting in 7 
trials of shorter duration but covering the same distance. Each new trial commenced with 8 
participants walking towards an object, then facing the start of the path to memorise their 9 
position and heading orientation. They then followed a floating sphere to the first stopping 10 
point, where they provided both Angular Integration (AI) and Path Integration (PI) responses. 11 
After responding, participants were guided to continue the path by following the sphere until 12 
reaching the end, where AI and PI responses were again given. The order of AI and PI 13 
responses was counterbalanced among participants.  14 
 15 
At each stopping point during the task, participants were asked to orient themselves towards 16 
their perceived starting position, using a virtual ruler projected on the ground to indicate the 17 
distance to this location. The line's direction was controlled by the participant's head 18 
movements, while its length was adjusted using the up and down keys on the HTC Vive 19 
controller.  20 
 21 
Besides PI responses, we also obtained an AI response by asking participants to remember and 22 
recreate their initial heading orientation at each stopping point, achieved by physically rotating 23 
to their perceived initial heading and pressing the trigger on the HTC Vive controller. This 24 
additional task, which was based on earlier work(21), aimed to assess participants' ability to 25 
integrate heading changes (AI) without the confounding factor of distance integration, differing 26 
from standard approaches of decomposing the PI response into distance and angular error (see 27 
Segen et al.,(19) for further discussion). 28 
 29 
Experimental procedure 30 
The study was conducted over two separate days, with sessions lasting three hours each. 31 
Participants initially engaged in six practice trials. The main trials were organised into blocks 32 
of 14, interspersed with mandatory short breaks. At the end of each block, participants 33 
undertook three additional distance estimation trials, requiring them to recall and then replicate 34 
specific distances - 1.4, 3.8, and 5.9 meters - using a virtual ruler, without physical movement. 35 
This task was included to investigate potential differences in visual distance estimation and 36 
response noise between the control and SCD groups. 37 
 38 
A subset of the subjects in the control group performed PI tasks without the AI response, due 39 
to technical difficulties, we included these subjects in the analysis, as their PI error was similar 40 
to those who provided both the PI and AI responses (Fig. S8).  41 
 42 
Behavioral data analysis 43 
Outlier removal  44 
A 2-step outlier removal procedure was applied. First, we removed trials where an accidental 45 
response was registered either due to technical issues or participants' use of the controllers. 46 
These trials were identified as follows: trials less than 2 seconds (lowest possible time), trials 47 
with distance responses less than .4 meters (minimum set distance), trials with identical 48 
distance to the random lengths of the line at the beginning of the response (within .01m 49 
threshold). We also removed all trials that had response times over 60 seconds (longer response 50 
times often accompanied by loss of connection, or interruptions due to clarifications from 51 
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subjects about the task). The second step included removal of outliers based on PI task using 1 
the interquartile range method on individual path integration error (m) distributions to remove 2 
occasional trials where participants might have temporary lost concentration or got disoriented. 3 
Overall, this resulted in the exclusion of 4.63% of the data. We repeated a similar outlier 4 
removal procedure for the AI responses. Specifically, only responses with response times 5 
between 2-60 seconds were included. Next, we used the interquartile range method on 6 
individual angular integration error (°) distributions; overall, 6.33% of AI data was removed.   7 
 8 
For distance estimation trials, outliers were removed for each participant and each level of 9 
distance using the interquartile range method, which resulted in the exclusion of 6.46% of the 10 
data 11 
 12 
Path integration metric calculation 13 
The x and y coordinates of the presumed starting point according to the participant’s response 14 
were calculated by: 15 

𝑥'"()*+(, = 𝑥)-.' + 	𝑑 ⋅ 𝑐𝑜𝑠5𝑜𝑟𝑖"()'./)(8	 16 
𝑦'"()*+(, = 𝑦)-.' + 	𝑑 ⋅ 𝑠𝑖𝑛5𝑜𝑟𝑖"()'./)(8	 17 

 18 
where d is the response distance, and oriresponse is the responded orientation.  xorigin and yorigin are 19 
coordinates of the start point, xpresumed and ypresumed are the resulting coordinates of the presumed 20 
starting point.  To determine the path integration error for a given stopping point, the Euclidean 21 
distance between the presumed starting point (according to the participant’s response at this 22 
respective stopping point) and the starting point was calculated 23 

𝑃𝐼𝑒𝑟𝑟𝑜𝑟 = >5𝑥'"()*+(, − 𝑥."010/8
& + 5𝑦'"()*+(, − 𝑦."010/8

& 24 

 25 
Angular integration metric calculation 26 
Angular integration error was calculated using the absolute difference between the initial 27 
heading orientation at the starting point (orientation indicated to participants using an arrow on 28 
the floor of the virtual environment) and the angular orientation response at each stopping 29 
point.  30 
 31 
Modelling analysis 32 
Outlier removal 33 
To model error sources, an additional outlier removal criterion was applied, excluding subjects 34 
with fewer than 50 valid PI trials after data pre-processing. This resulted in the removal of 8 35 
subjects (5 controls and 3 SCD). Following parameter estimation, we further excluded subjects 36 
with negative velocity gain (𝛼). This led to the exclusion of an additional 10 participants (6 37 
SCD and 4 controls). Examination of individual responses in this group revealed a common 38 
tendency to "fail" to turn during their PI response, contributing to the negative velocity gain. A 39 
detailed analysis of the error patterns and response profiles of these participants is provided in 40 
the supplementary materials. 41 

Given that these 18 participants were excluded from the modelling analysis, we conducted a re-42 
analysis of the behavioural data, also excluding these individuals, and present the results in the 43 
supplementary materials for comparison. 44 

Internal estimate model 45 
We used the distance model from Stangl et al.(17) where internal location estimates of the 46 
participants’ positions are modelled by a two-dimensional diffusion equation. Compared to 47 
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Stangl et al.(17) where the path between two control points was approximated by a straight 1 
line, we interpolated the trajectories by a piecewise linear approximation. Bold-faced letters 2 
denote multi-dimensional vectors. 3 
Let 𝐱 be a path of length 𝐿 parametrized by its length, i.e., 𝐱(0) and 𝐱(𝐿) correspond to the 4 
starting and the finishing point, respectively. Let 𝐱C(ℓ) be the internal location estimate of the 5 
participant’s actual position 𝐱(ℓ) for 0 ≤ ℓ ≤ 𝐿. The distance model from Stangl et al.(17) 6 

d𝐱C(ℓ)
dℓ

= −𝛽𝐱C(ℓ) + 𝛼𝐯(ℓ) + 𝐛 + 𝜎!𝛏(ℓ), (1) 7 

where: 8 

• 𝛽 is the location memory decay. If 𝛽 = 0, the participant can incorporate the inputs on 9 
the right-hand side of Eq. (1) into the estimate of 𝐱C(ℓ) perfectly. If 𝛽 > 0, the 10 
participant will slowly forget the previous inputs. Models of this type are known as 11 
“leaky integrators”. 12 

• 𝐯(ℓ) = d𝐱(ℓ) dℓ⁄  is the normalized velocity at 𝐱(ℓ). Since the path is parametrized by 13 
the distance, it follows that |𝐯(ℓ)| = 1 for all 0 ≤ ℓ ≤ 𝐿. 14 

• 𝛼 is the multiplicative velocity gain. The value 𝛼 = 1 corresponds to the correct 15 
evaluation of the contribution of 𝐯 on the location estimate. The cases 0 < 𝛼 < 1 and 16 
1 < 𝛼 describe systematic underestimation and overestimation of the same effect, 17 
respectively. 18 

• 𝐛 is the additive bias, i.e., the direction in which the internal estimate is being 19 
systematically shifted. 20 

• 𝜎! is the accumulating noise (standard deviation). If 𝜎! = 0, the internal location 21 
estimate is not affected by the accumulating noise. 22 

• 𝛏 is two-dimensional normally distributed Gaussian noise uncorrelated in ℓ. Formally, 23 
the noise is a derivative of the two-dimensional Brownian motion. 24 

We note that for 𝛽 = 0, 𝜎! = 0, 𝛼 = 1 and 𝐛 = 𝟎, the estimate 𝐱C perfectly reflects the actual 25 
position 𝐱. 26 

Segment reformulation 27 

Assume that the path is split into 𝐾 segments marked by stopping points 𝐬2, 𝑘 = 0,1,2, … , 𝐾, 28 
so that 𝐬2 = 𝐱(ℓ2) for some ℓ2 ∈ [0, 𝐿] with ℓ! = 0 and ℓ3 = 𝐿. Let 𝛥ℓ2 = ℓ2 − ℓ245, where 29 
𝑘 = 1,2, … , 𝐾, be the length of the 𝑘-th segment of the path. The internal estimate 𝐱C2 at the 30 
stopping point 𝐬2 can be recovered from the participant’s report of distance estimate 𝑑'  and the 31 
estimate of angle 𝜑C  to the starting point 𝐱67897 by 32 

𝐱C2 = Z𝑑
'cos(𝜑C)
𝑑'sin(𝜑C)

` + 𝐱67897. (2) 33 

We set 𝐱67897 = 𝟎. Given the internal estimate 𝐱C2 : = 𝐱C(ℓ2) of location at the stopping point 𝐬2, 34 
the internal estimate of 𝐱C2:5 have a Gaussian distribution given by 35 

ℙ(𝐱C2:5 ∣ 𝐱C2; 𝜃) = 𝒩(𝐱C2:5 ∣ 𝛍2:5(𝐱C2), 𝜎2:5& Id&), (3) 36 
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where 𝜃 = (𝛽, 𝛼, 𝐛, 𝜎!) are the model parameters, Id& is the two-dimensional identity matrix, 1 
and the mean 𝛍2:5 and the variance 𝜎2:5&  are defined by 2 

𝛍2:5(𝐱C) = 𝐱C𝑒4;<ℓ$%& +
𝐛
𝛽
51 − 𝑒4;<ℓ$%&8 + 𝛼𝑒4;<ℓ$%& j 𝑒;(ℓ4ℓ$)

ℓ$%&

ℓ$
𝐯(ℓ) dℓ, (4) 3 

and 4 

𝜎2:5& =
𝜎!&

2𝛽 51 − 𝑒
4&;<ℓ$%&8, 5 

respectively (see supplemental material for complete derivation). 6 

In Stangl et al.(17), the integral term in Eq. (4) is simplified by an additional assumption of a 7 
constant velocity along each segment, effectively approximating the trajectory of each segment 8 
by a straight line. In contrast, we have not imposed this additional assumption, which renders 9 
the integral analytically unsolvable in general. For our purposes, it was sufficient to employ a 10 
numerical method to approximate the integral with higher precision. 11 

Reporting noise 12 

We consider reporting noise as a normal distribution with zero mean and variance 𝜎9@A&  13 
independent of 𝛏, reflecting the spread of the responses around the internally estimated location 14 
in Eq. (2). The reported internal location therefore satisfies: 15 

𝐱C2:5 ∣ 𝐱C2; 𝜃 ∼ 𝒩(𝛍2:5(𝐱C2), 𝜎2:5& Id&) +𝒩5𝟎, 𝜎9@A& Id&8. 16 

Thanks to the independence of 𝛏 and the reporting noise, the density of the reported internal 17 
location simplifies to: 18 

ℙ(𝐱C2:5 ∣ 𝐱C2; 𝜃) = 𝒩5𝐱C2:5 ∣ 𝛍2:5(𝐱C2), 5𝜎2:5& + 𝜎9@A& 8Id&8. 19 

Following Weber’s law, we assume that the standard deviation of the reporting noise is 20 
proportional to the participants’ reported distance 𝑑'2 (at the end of the 𝑘-th segment), 21 
i.e. 𝜎9@A = 𝜎"𝑑'2: 22 

ℙ(𝐱C2:5 ∣ 𝐱C2; 𝜃) = 𝒩5𝐱C2:5 ∣ 𝛍2:5(𝐱C2), 5𝜎2:5& + 𝜎"&𝑑'2&8Id&8, (5) 23 

where 𝜃 = (𝛽, 𝛼, 𝐛, 𝜎!, 𝜎") are the model parameters. 24 

Bayesian hierarchical model 25 
We employed a Bayesian approach(73), MCMC sampling, to estimate the posterior 26 
distributions of the model parameters. The likelihood for a single path segment is given by 27 
Eq. (5). Consequently, the likelihood function for the whole path is: 28 
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ℒ(𝐱C3|𝐱C345, … , 𝐱C!; 𝜃) =pℙ
345

2B!

(𝐱C2:5|𝐱C2; 𝜃). 1 

For 𝑇 trials, let 𝐗s2 = t𝐱C2
(5), … , 𝐱C2

(C)u denote the vector of 𝑇 reports at the 𝑘-th control point. 2 
The overall likelihood function is then defined by: 3 

ℒ5𝐗s3v𝐗s345, … , 𝐗s!; 𝜃8 =pℒ
C

-B5

t𝐱C3
(-)w𝐱C345

(-) , … , 𝐱C!
(-); 𝜃u. 4 

If ℙ(𝜃) represents the prior distribution over the parameters, the posterior distribution is: 5 

ℙ5𝜃v𝐗s3 , … , 𝐗s!8 ∝ ℒ5𝐗s3v𝐗s345, … , 𝐗s!; 𝜃8ℙ(𝜃). (6) 6 

 7 

Fig. 7. Graphical Representation of the Bayesian Hierarchical Model. 8 
The group-level hyper-parameters 𝛾D,1 and 𝜏D,1, associated with group plate 𝐺, govern the 9 
individual-level parameter 𝜆D,', enclosed in the participant plate 𝑃. Each participant undergoes 10 
multiple trials, represented by the outer trial plate 𝑇, with each trial having multiple path 11 
segments captured by the inner plate 𝐾. The observed data 𝒙~2-  at segment 𝑘 + 1 in trial 𝑡 is 12 
influenced by the parameter 𝜆D,'. Here 𝜓 stands for any of five model parameters under 13 
parameter plate 𝜃. 14 

We introduced two levels of hierarchy into each model parameter 𝜓: individual and group 15 
level, represented using the plate notation (Fig. 7). At the individual level, parameters from 16 
participants within the same group are assumed to follow the same prior distribution governed 17 
by the group-level parameters. Specifically, for a given parameter 𝜓 associated with the 18 
participant 𝑝 from group 𝑔 (either Control or SCD) has a distribution 𝒟 with location 𝛾D,1 and 19 
scale 𝜏D,1 20 

𝜆D,' ∼ 𝒟5𝛾D,1, 𝜏D,18. 21 

For accumulating noise 𝜎! and reporting noise 𝜎", 𝒟 is Gaussian+. For all other parameters 𝒟 is 22 
a Gaussian. The group-level hyper-parameters 𝛾D,1 and 𝜏D,1 have their own respective priors 23 
ℋ5 and ℋ&: 24 

𝛾D,1 ∼ ℋ5(⋅), 	 𝜏D,1 ∼ ℋ&(⋅). 25 

Details regarding the specific prior distribution of hyper-parameters, including their locations 26 
and scales, are provided in the supplemental material. 27 

Since an analytical solution for the posterior distribution in Eq. (6) is not available, we used the 28 
No-U-Turn Sampler (NUTS) to generate posterior samples of the model parameters (27). The 29 
inference was conducted using NumPyro(74)  with four independent MCMC chains, each run 30 
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for 1000 warm-up iterations followed by 1000 sampling iterations. To assess model 1 
performance, we used leave-one-out expected log pointwise predictive density, elpdloo. 2 
 3 
Statistics and reproducibility 4 
PI and AI error analysis 5 
For statistical quantification, all analyses were conducted in R. To examine the relationship 6 
between group status, stopping point, we used robust multiple linear regression with the MASS 7 
package in RStudio, as the Shapiro-Wilk test indicated non-normal residuals (p < 0.05). These 8 
models assessed associations of these factors with two primary outcomes: PI error (m) and AI 9 
error (°). Covariates included ‘sex’, ‘age’, and ‘MoCA’, and due to evidence suggesting sex-10 
specific effects in AD pathology(75),  a ‘sex by group’ interaction term was also added. 11 
 12 
Continuous covariates were scaled and centred to normalize their range. We applied sum 13 
contrasts for binary factors such as group (control vs. SCD) and sex (male vs. female), and 14 
successive differences contrasts for stopping point, comparing intermediate versus final 15 
stopping points. 16 
 17 
Blood and genetic biomarker analysis  18 
To evaluate whether PI performance and key computational model parameters were related to 19 
biological and genetic markers of neuropathology (pTau 181, NFL and APOE status), we 20 
modelled PI error and parameters such as the absolute deviation from optimal velocity gain (1), 21 
beta, additive bias, accumulating noise, and reporting noise as dependent variables, influenced 22 
by standardised (scaled and centred) plasma biomarker concentrations. All models included 23 
age as a covariate. Given the violation of normality, robust regression from the MASS package 24 
was employed to capture these relationships accurately.  Sum contrasts were used for APOE 25 
status (carriers and noncarriers).  26 
 27 
To evaluate the unique contribution of plasma NFL levels to specific error sources, partial R2 28 
values were calculated. For each dependent variable (e.g., reporting noise, velocity gain), we 29 
compared the variance explained by full regression models including NFL with reduced 30 
models excluding NFL. Partial R2 was computed as the proportion of variance uniquely 31 
attributed to NFL, reflecting its specific predictive contribution to the model. 32 
 33 
Group comparisons on demographic variables, blood biomarkers and movement 34 
characteristics  35 
For simple group differences, Bayesian t-tests were conducted. Where variances were equal, 36 
we used ttestBF from the BayesFactor package in R; in cases of unequal variances, as in age, 37 
and gait, we modelled variance separately for each group using the brm function from the brms 38 
package. This method applied to demographic variables (age, MoCA, self-reported spatial 39 
abilities, visuo-spatial working memory, gait and number of completed trials) as well as group 40 
comparisons for blood biomarkers (pTau181, NFL) and movement metrics (head movements, 41 
angular and translational velocity, and head pitch). 42 

For comparisons between first 10% and last 10% of trials on changes in PI performance and 43 
movement dynamics from early to late trials, we used linear regression analysis with sum 44 
contrasts for both group and trial period (first 10% and last 10%).  45 

Modelling analysis  46 
Individual-level To examine differences for the individual (mean) level error sources, we used 47 
robust linear regressions from the MASS package to account for violations of the normality 48 
assumption in residuals. Separate models were fitted for each model parameter, with age 49 
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included as a covariate. The parameters analyzed included memory leak (β), velocity gain (α), 1 
additive bias (∣∣b∣∣), accumulating noise (σ02), and reporting noise (σr2). Sum contrasts were 2 
used for group were used (Control/SCD). 3 
 4 
Group-level  For group-level analysis, we examined the posterior distributions of the model 5 
parameters to assess credible differences between groups. The analysis focused on the 95% 6 
Highest Density Interval (HDI), a key concept in Bayesian inference that indicates the range 7 
within which the most credible values of a parameter lie. Whether zero falls within this interval 8 
is crucial for interpreting the strength of evidence for an effect. If zero is excluded from the 9 
95% HDI, it suggests statistically credible evidence of an effect, while inclusion of zero 10 
indicates the data do not rule out the possibility of no effect, reflecting uncertainty about the 11 
presence of a true difference. Additionally, we applied the Region of Practical Equivalence 12 
(ROPE)(29) to determine whether observed effects were practically negligible. The ROPE 13 
defines a range around the null value (often zero) within which differences are considered too 14 
small to be meaningful in practice. If most of the posterior distribution (e.g., 95% HDI) falls 15 
within the ROPE, the effect can be considered practically equivalent to the null value. We used 16 
ArviZ, NumPy, and Matplotlib to perform group-level analysis.  17 
 18 
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