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The prognostic and therapeutic implications in diffuse gliomas are still challenging. In this study, we first performed an integrative
framework to infer the clonal status of mutations in glioblastomas (GBMs) and low-grade gliomas (LGGs) by using exome
sequencing data from TCGA and observed both clonal and subclonal mutations for most mutant genes. Based on the clonal
status of a given gene, we systematically investigated its prognostic value in GBM and LGG, respectively. Focusing on the
subclonal mutations, our results showed that they were more likely to contribute to the poor prognosis, which could be hardly
figured out without considering clonal status. These risk subclonal mutations were associated with some specific genomic
features, such as genomic instability and intratumor heterogeneity, and their accumulation could enhance the prognostic value.
By analyzing the regulatory mechanisms underlying the risk subclonal mutations, we found that the subclonal mutations of
AHNAK and AHNAK2 in GBM and those of NF1 and PTEN in LGG could influence some important molecules and
functions associated with glioma progression. Furthermore, we dissected the role of risk subclonal mutations in tumor
evolution and found that advanced subclonal mutations showed poorer overall survival. Our study revealed the importance of
clonal status in prognosis analysis, highlighting the role of the subclonal mutation in glioma prognosis.

1. Introduction

Diffuse glioma is the most common aggressive primary
brain tumor. It can be categorized into grade II, grade
III, and grade IV (following the World Health Organiza-
tion (WHO) classification) depending on the degree of
aggressiveness [1]. As the most aggressive malignant gli-
oma, glioblastoma multiforme (GBM, grade IV) shows a
5-year survival rate of 5% with the median overall survival
of 14-17 months from diagnosis [2, 3]. While gliomas of
grade II and III are less aggressive and have been grouped
together by The Cancer Genome Atlas (TCGA) as lower
grade gliomas (LGGs). However, this subtype classification
is highly interobserver variable, and the survival varied

considerably within grades [4, 5]. To understand the etiol-
ogy of glioma, genetic alterations in tumor had been
screened in large cohorts of patients previously [6, 7].
These large-scale studies reveal that the genetic landscape
of human cancers is driven by the stepwise accumulation
of somatic alterations, which is an intrinsic aspect of can-
cer development [8, 9]. The analysis of the genetic and
clinical observations revealed that some actionable driver
mutations could promote cancer progression and impact
on patient outcome, such as the most commonly altered
genes IDH, TP53, and PTEN [7, 10, 11].

Accumulating evidence suggests that diffuse gliomas are
highly heterogeneous and invasive and have startling intra-
tumor heterogeneity (ITH) [12, 13]. It has been proved that
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tumorigenesis progresses through a series of mutational
events, providing putative markers for tumor progression
[9, 14]. Some of these events are incremental, and others
can be catastrophic and may impact on clinical outcome in
glioma. Indeed, individual tumors likely evolve through
exclusion and interaction between diverse genetic clones
and may comprise of multiple clones that exhibit specifically
important clinical implications [15]. Previous studies have
demonstrated the efficacy of reconstructing the clonal archi-
tecture (including clonal and subclonal events) of individual
tumor in clinical research [16, 17]. Clonal events (i.e., clonal
or trunk mutations) harbor mutations common to all tumor
cells. And subclonal events (i.e., subclonal or branch muta-
tions) are specific to one evolutionary branch of the tumor
and present in only a subset of cancer cells. Some studies
have revealed that the presence of genetically distinct sub-
clones and the clonal status of some genes may reduce the
clinical benefit of cancer therapies [18, 19]. For instance,
subclonal RAS mutations in colorectal cancer have been
shown to precipitate resistance to cetuximab, indicating the
importance of clonal evolution in drug resistance as well as
the clinical outcome [20]. Francis et al. effectively identified
clonal events in GBM and revealed subclonal diversity of
oncogenic EGFR and its implication in resistance to treat-
ment for EGFR inhibitors, revealing the broad implications
of clonal status in resistance to treatment [21]. Recently,
Luo et al. proved that integrating the clonal status into clas-
sification could provide more precise stratification in diffuse
gliomas and showed that gliomas with subclonal IDH muta-
tion and without 1p/19q codeletion could be a novel
subgroup and significantly correlated with patients’ clinical
outcomes [19]. Therefore, to further investigate the impact
of genetic mutations on clinical assessment and disease
severity, a better understanding of the clonal status of muta-
tion events is required.

In this study, we investigated the mutation clonality of
all mutant genes and their clinical impact in GBM and
LGG using the published large-scale genomic data from
TCGA. Our results revealed the clonal status of each mutant
gene and proved their prognostic value, especially for the
risk subclonal mutations. Patients with subclonal mutations
that associated with worse overall survival exhibited some
interesting genomic and regulatory features, suggesting the
clinical importance of considering clonal status in the
treatment of gliomas.

2. Materials and Methods

2.1. Data Source. The clinical data and the somatic mutation
data (exome sequencing data (level 2) and Affymetrix SNP6
data (level 3)) of 380 GBM samples and 499 LGG samples
were obtained from TCGA and Broad Institute Firehose
(https://gdac.broadinstitute.org). The variant allele frequen-
cies of mutations, copy number aberrations, and tumor purity
estimated by ABSOLUTE were obtained from cBioPortal
(http://www.cbioportal.org) and TCGA’s PanCancer Atlas
(https://gdc.cancer.gov/about-data/publications/pancanatlas).
The mutation burden data were downloaded from https://gdc
.cancer.gov/about-data/publications/PanCan-CellOfOrigin.

The mRNA and miRNA expression data for the LGG and
GBM cohorts were collected from the TCGA data portal
(https://tcga-data.nci.nih.gov/tcga), and the lncRNA expres-
sion data were derived from TANRIC [22]. Genes with mean
expression (normalized by log 2ðtpm + 1Þ) lower than 30% of
samples or with missing values in more than 10% of samples
were filtered.

2.2. Inferring the Mutation Status of SNV. We used the
tumor purity and the local copy number of mutation sites
summarized by McGranahan et al. [23] and Landau et al.
[16]. The cancer cell fraction (CCF) of each mutation was
estimated by incorporating tumor purity, absolute somatic
copy number, and variant allele frequency (VAF), and then,
the clonal status of all gene mutations in each sample was
inferred [8]. In brief, given a certain CCF of one mutation,
the expected VAF could be calculated according to the
following equation:

VAFex =
ρ ∗ CCF ∗ CNmut

CPNnorm 1 − ρð Þ + ρ ∗ CPN , ð1Þ

where ρ is the tumor purity, CNmut denotes the copy num-
ber of the mutation in the cells where the mutation occurred
(i.e., the number of chromosomal copies that carried the
mutation), and CPNnorm and CPNmut denote the absolute
copy number of this locus in normal and tumor, respec-
tively. Generally, the mutation was very difficult to occur at
two or more alleles at the same site, so CNmut was assumed
to be 1 to avoid overcalling subclonal mutation [19, 23,
24]. CPNnorm was set to be 2 for autosomal chromosomes
(mutations in the X and Y chromosome were not consid-
ered), and CPNmut was estimated by ABSOLUTE. Therefore,
the expected VAF can also be represented as follows:

VAFex =
ρ ∗ CCF

2 1 − ρð Þ + ρ ∗ CPNmut
: ð2Þ

We then estimated the probability of a given CCF by
using Bayesian probability theory and a binomial distribu-
tion:

P CCF ∣ a ∣Nð Þð Þ = P a ∣Nð Þ ∣ CCFð Þ ∗ P CCFð Þ
P a ∣Nð Þ ,

P CCF ∣ a ∣Nð Þð Þ∝ Binom a ∣N , VAFex CCFð Þð Þ,
ð3Þ

where a means the number of altered read counts for the
mutation and N means the sequencing coverage N (alternate
read count+reference read count).

Based on the posterior probability distribution of CCF,
we obtained the estimated CCF and the 95% CI for each
somatic mutation. Finally, we regarded mutations as clonal
if the upper band of the CI95 was ≥1 and the Pr ðclonalÞ >
0:5 and as subclonal otherwise. To reduce the background
noise, we only analyzed the mutation status of genes with
mutation frequency of 2% or greater. If a gene harbored
multiple nonsilent SNVs in a patient, it was excluded.
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2.3. Evaluating the Impact of Mutational Status on Patient
Survival. The patients were classified as clonal, subclonal,
and wild-type (WT) groups according to the mutation status
of a given gene. We only considered genes that harbored
both clonal and subclonal mutations in more than 5
patients, respectively. The corresponding clinical informa-
tion (including clinicopathological factors and overall
survival) of GBM and LGG patients were obtained as
described above. To assess the associations between the
mutational status and patient survival, the overall survival
was used as the endpoint of this study, the Kaplan-Meier
method was performed for the visualization, and the differ-
ences between survival curves (i.e., clonal mutation vs. WT
and subclonal mutation vs. WT) were calculated by the
log-rank test. The mutational statuses with p values smaller
than 0.05 were considered to have a significant impact on
patient survival. In addition, the univariate Cox proportional
hazard regression analysis was also applied to evaluate the
prognostic capability of mutational status. The mutational
statuses with p values < 0.05 were considered to be signifi-
cantly related to OS. In order to exclude the influence of
large differences in the number of samples, we used the R
package powerSurvEpi to calculate the power in the analysis
of survival data to detect the survival differences under the
corresponding sample size. To ensure the accuracy of the
result, we filtered clonal and subclonal mutations with
power < 80%.

2.4. Statistical Analysis of Clinical Data. The overall survival
(OS) curves were constructed by the Kaplan-Meier estima-
tion, with p values calculated by log-rank test. The univariate
and multivariate Cox proportional hazard regression models
were used to investigate the association between clonal/sub-
clonal gene mutations and OS. A p value less than 0.05 was
considered statistically significant. The relationship between
genomic characteristics of different sample groups was
assessed by using the Wilcoxon rank-sum test. All statistical
analyses were performed with R statistical software (http://
www.R-project.org).

2.5. Identification of Dysregulated Regulatory Interactions
Driven by Risk Subclonal Mutation. We developed a
computational strategy to identify dysregulated regulatory
interactions driven by risk subclonal mutations. It consisted
two main steps. The first step is calculating the difference of
the expression correlation of the regulatory interactions
between patients with the subclonal mutation and not to
determine the extent of dysregulation. The extent of dysreg-
ulation was defined as follows:

ΔR = corv gene1, gene2ð Þ − corn gene1, gene2ð Þj j, ð4Þ

where corvðgene1, gene2Þ was the Pearson correlation coeffi-
cient (PCC) estimated from the risk subclonal mutation
patients and cornðgene1, gene2Þ was from others. The
second step is identifying the dysregulated regulatory inter-
actions driven by risk subclonal mutations. Permutation test
was performed to determine whether ΔR was statistically
significant. We randomized the labels of mutation status

1000 times and recalculated the changes of correlation
coefficients of each gene pair. A p value of 0.05 was used as
the cut-off to obtain significantly dysregulated interactions.

2.6. Identification of ceRNA Triplets in GBM and LGG. The
interactions of mRNA-miRNA and lncRNA-miRNA were
obtained from StarBase v2.0 [25]. Using the expression
profiles of mRNA, lncRNA, and miRNA in GBM and
LGG, respectively, we calculated PCC between mRNA/
lncRNA (ceRNA) and miRNA to measure their expression
correlations. We required that the ceRNA pairs showed sig-
nificantly positive correlations (adjusted p value < 0.05) in
which the correlation of each miRNA-ceRNA pair should
be significantly negative (adjusted p value < 0.05). The
ceRNA pairs that passed these conditions were considered
as candidate ceRNA triplets.

3. Results

3.1. Inference of Clonal Status of Somatic Mutations in
Diffuse Gliomas. The genomic data of 380 GBM samples
and 499 LGG samples were obtained from TCGA. After pre-
processing and filtering, over 77 thousand somatic nonsilent
mutations were kept for subsequent analysis (see Materials
and Methods). We adopted an integrated approach to esti-
mate the cancer cell fraction (CCF) of each single nucleotide
variation (SNV) in each sample and inferred clonal status of
somatic mutations (see Materials and Methods). We identi-
fied 34,549 clonal mutations and 14,571 subclonal mutations
in GBM and 16,504 clonal mutations and 11,960 subclonal
mutations in LGG, respectively. As expected, the number
of clonal mutations was generally higher than that of subclo-
nal mutations within a sample in both GBM and LGG
(Figure 1). In GBM, patients harbored an average of 91
and 39 clonal and subclonal mutations, respectively. And
in LGG, the numbers were 32 and 23. After filtering out
genes mutated in less than 2% sample, most mutant genes
occurred both clonal and subclonal mutations in glioma,
indicating that subclonal mutation was a widespread
phenomenon.

We found that driver genes predominantly occurred
clonal mutations. For example, a large proportion of IDH1
mutations were clonal (75% in GBM and 83% in LGG), con-
sistent with previous experiments that the mutations in IDH
tended to be trunk events in the tumor initiation (Figure 1)
[26]. The clonal status of TP53 mutations was almost clonal
in both GBM and LGG, indicating that the mutations in
TP53 gene appear to be early events in tumorigenesis
(Figure 1) [27]. Interestingly, more than 50% of CIC and
FUBP1 mutations were found to be subclonal in LGG
samples, suggesting that they probably occurred late during
cancer evolution and played roles in tumor progression
(Figure 1(b)).

3.2. The Mutation Status Could Be an Effective Prognostic
Indicator in Diffuse Glioma. Different mutation status of
some driver genes has been found to affect patient outcome
in renal clear cell carcinoma, chronic lymphocytic leukemia,
and breast cancer [18, 28, 29]. To evaluate the prognostic
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value of clonal status in diffuse glioma, we analyzed genes
with both clonal and subclonal mutations which affected
more than 5 patients (see Materials and Methods, Supple-
mentary Table 1) and identified 3 genes whose clonal
mutations and 4 genes whose subclonal mutations
significantly affected overall survival in GBM (Table 1).
The numbers in LGG were 5 and 6, respectively. The
power for clonal status to detect significant survival
differences under the corresponding sample size ranged
from 81.1% to 100.0% in GBM and above 90% in LGG.
We found that the mutation sites between the two clonal
statuses were almost different, but they usually affected
similar protein domains (Supplementary Figure 1). For
example, the clonal and subclonal mutation sites of
AHNAK2 had no interaction, but they were located in the
same protein domains (Supplementary Figure 1C).
Furthermore, we used two methods (SIFT [30] and
POLYPHEN [31]) to predict the functional effect of each
mutation and found that the proportion of the subclonal
mutations predicted to damage protein function was
comparable with clonal mutations (42% and 44%,
respectively). These results indicated that not all mutations
in a gene have an equal impact, and other factors needed

to be further considered to reveal the effect of the clonal
status on prognosis [32].

For some well-known cancer genes, such as TP53 and
IDH1 in GBM and EGFR in LGG, their clonal mutations
showed improved prognosis in survival, which was consis-
tent with previous studies (Table 1). Notably, all of the
subclonal mutations in GBM (DNAH5, AHNAK,
AHNAK2, and CD163L1, Figure 2(a)) and most of the sub-
clonal mutations in LGG (PTEN, RYR2, NF1, and FLG,
Figure 2(b)) showed significantly poor prognosis, suggesting
that subclonal mutation preferred to be a risk factor.

To further evaluate the necessity of mutation status in
prognosis analysis, we integrated the Kaplan-Meier method
and log-rank test to distinguish the prognostic impact of
mutation and mutation status. Our results showed that the
prognostic effect of most genes with risk or protect clonal
mutation could be identified by overall mutation, such as
TP53 and IDH1 in GBM and EGFR, IDH1, NF1, and FLG
in LGG (Supplementary Figure 2). However, the
prognostic effect of genes with subclonal mutations could
be barely recognized by overall mutation. In GBM, all of
the genes with risk subclonal mutation had no prognostic
significance when just used the mutation of the gene.
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Figure 2: Overall survival among GBM and LGG patients stratified by subclonal mutation. Kaplan-Meier estimates overall survival in GBM
(a) and LGG (b) patients harboring risk subclonal mutation.
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These findings suggested that the absence of the reference
for mutation status may reduce the accuracy of clinical
guidance.

3.3. The Risk Subclonal Mutations Could Be Novel Prognostic
Markers. As most of the subclonal mutations were risk prog-
nostic factors in both GBM and LGG, we then focused on
this prognostic type for the following analysis (Figure 3).
Our results showed that risk subclonal mutation correlated
with the deletion of 9p21.3 (which contained CDKN2A
and CDKN2B) in gliomas, especially in LGG (Figures 3(a)
and 3(b)). Patients with these risk subclonal mutations did
not appear to contain IDH1 alterations and preferred to be
IDH1 wild-type subtype (Figures 3(a) and 3(b)). We also
found that the patients with the risk subclonal mutations
had a significantly higher frequency of genetically altered
canonical oncogenic signaling pathways, such as P53
signaling in GBM and PI3K signaling in LGG [33]. The
accumulation of the risk subclonal mutations showed
significantly poor outcome (HR: 2.3218 (1.641−3.2848) and
p value < 0.0001 for GBM; HR: 3.542 (2.3895−5.2505) and
p value < 0.0001 for LGG, univariate Cox regression
analysis), and patients with more mutations tended to have
worse overall survival (Figures 3(c) and 3(d)).

Previous studies have shown that IDHmutation status is a
strong predictor of survival in gliomas, which are associated
with improved survival compared with GBM [34, 35]. By con-
sidering clonal status, our results showed a consistent prog-
nostic effect in both LGG and GBM (Table 1). It should be
noted that the presence or absence of an IDH mutation has
the largest prognostic significance (more strongly predicted
OS than did histologic grade and other molecular alterations)
[36]. When comparing with the risk subclonal mutations, we
found that the presence of a subclonal mutation was an inde-
pendent factor (p value = 0.0375 in GBM and 7.88e-06 in
LGG, multivariate Cox regression analysis) and could separate
patients with IDH mutation into two subgroups with signifi-
cant differences in OS (p value < 0.001 in both GBM and
LGG, log-rank test, Figures 3(e) and 3(f)). Our results showed
that the risk subclonal mutation was able to improve the accu-
racy of prediction of OS based on IDH mutation, suggesting
that assessment of subclonal mutation would be effective in
conjunction with the current prognostic instruments to pro-
vide a more accurate prognosis.

3.4. Patients with Prognostic Subclonal Mutations Reflecting
Worse Genomic Instability. To investigate the potential
mechanisms of risk subclonal mutations, we analyzed sev-
eral genomic features of patients with or without these
subclonal mutations. We found that patients with these sub-
clonal mutations preferred to have higher aneuploidy scores
than patients without them (p value = 0.00466, Wilcoxon
rank-sum test, Figure 4(a)) and patients with prognostic
clonal mutations (p value = 0.00136, Wilcoxon rank-sum
test, Supplementary Figure 1D) in LGG. Patients with risk
subclonal mutations also showed a positive correlation
with elevated mutation load in both LGG and GBM (p
value < 0.05, Wilcoxon rank-sum test, Figures 4(b) and
4(d) ), and the results were similar by comparing with

patients with prognostic clonal mutations (p value =
0.0245 for LGG and 0.281 for GBM, Wilcoxon rank-sum
test, Supplementary Figure 1E and 1F).

Previous studies have shown that genomic instability
often leads to high diversity within tumors and this diversity
is termed intratumor heterogeneity (ITH), which was a
determinant of patient survival outcomes. We found that
the patients with at least one subclonal mutation had signif-
icantly higher ITH than other patients as well as patients
with prognostic clonal mutations in GBM (p values =
7.618e-06 and 4.64e-04, respectively, Wilcoxon rank-sum
test, Figure 4(c) and Supplementary Figure 1G) and also
showed a positive correlation in LGG. In addition, ITH
alone may not be sufficient as a prognostic determinant,
and patients with both high extent of ITH and subclonal
mutations reflected worse overall survival. These results
suggested that the risk subclonal mutations were correlated
with specific biological mutagenesis mechanisms and
genomic instability in glioma.

3.5. Exploring the Dysregulated Transcriptional Programs
Driven by the Prognostic Subclonal Mutations. Next, we ana-
lyzed the regulatory differences driven by the risk subclo-
nal mutations to explore their potential effect. We first
investigated whether these subclonal mutations could
influence transcription factor binding. Based on the tran-
scriptional regulatory network from TRRUST v2 database
(http://www.grnpedia.org/trrust), we designed a two-step
strategy to identify dysregulated interactions of patients
with the subclonal mutations: (1) calculated the degree of
dysregulation based on the expression correlation and (2)
used perturbation test to get significant dysregulated
interactions. In total, 152 transcriptional regulatory rela-
tionships that significantly changed in GBM and 441 in
LGG were identified (Supplementary Figure 3A and 3B).
Using GSEA and MSigDB database, we found that the
dysregulated interactions driven by the subclonal
mutation were significantly enriched in regulation of cell
population proliferation, regulation of RNA metabolic
process, and regulation of cell death in both GBM and
LGG (FDR < 0:001, Supplementary Figure 3C and 3D).
The overlap between the top 10 enriched functions was
90%, suggesting their similar functions under risk
subclonal mutations.

We then constructed ceRNA network and identified
dysregulated ceRNA networks driven by the subclonal
mutations based on the above strategy and a previous study
[37]. In GBM, the dysregulated ceRNA network driven by
AHNAK and AHNAK2 were identified, including 66 and
16 significantly changed ceRNA pairs, respectively
(Figure 5(a)). The dysregulated ceRNAs also contained 17
long noncoding RNAs (lncRNAs), such as MALAT1 and
MIR22HG, which had been proved to play important roles
in glioma [38, 39]. In LGG, a total of 766 dysregulated
ceRNA pairs were identified (including 61 lncRNAs, such
as SNHG16, ZNF883, and MIR22HG), which were driven
by NF1 and PTEN (Figure 5(b)). Functional characterization
of the dysregulated ceRNA networks revealed some biologi-
cal pathways that are critical to tumor progression. In GBM,
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Figure 3: Overview of the clinical features of patients with risk subclonal mutation. (a and b) The heatmap displays the main copy number
variations and clinical features in GBM (a) and LGG (b). (c and d) Kaplan-Meier survival curves of the patients without or with at least one
or two risk subclonal mutations in GBM (c) and LGG (d). (e and f) Kaplan-Meier survival curves of the patients with IDH mutation or risk
subclonal mutation in GBM (e) and LGG (f).
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the dysregulated ceRNAs were primarily enriched in catego-
ries related to circulatory system process, programmed cell
death and axon guidance, and proteoglycans in cancer path-
ways (Figure 5(c)). In LGG, the top significant biological
functions were crucial to glioma development, including cell
cycle, neuron development, neurogenesis, and neuron differ-
entiation (Figure 5(d)). These results suggested that the risk
subclonal mutations in GBM participated in more specific
pathways than in LGG. For example, proteoglycans in can-
cer have been proved to be critical for understanding tumor
microenvironment interactions and many signaling path-
ways [40, 41]. They have been proved to regulate multiple
determinants of tumorigenesis in GBM, indicating a poten-
tial role of the subclonal mutations.

3.6. Further Classifying the Subclonal Mutations and
Constructing Evolutionary Trees. Considering the evolution-

ary tree for each patient with prognostic subclonal
mutations could further dissect the subclonal mutations.
We reconstructed the evolutionary trees for most of these
patients according to Nik-Zainal et al. (except 3 patients in
LGG) [42]. The subclonal mutations located at the terminal
subclone which also had mean CCF < 0:3 were regarded as
advanced subclonal mutations (subclone 2). For each prog-
nostic subclonal mutation, we compared the OS between
patients with the subclonal mutation in subclone 1 and in
subclone 2. Our results showed that 70% of them could be
classified into two subgroups (except DNAH5 in GBM and
RYR2 and PTEN in LGG). Most of the submutations classi-
fied as subclone2 showed poorer OS, such as AHNAK and
AHNAK2 in GBM (Supplementary Figure 4A-C for
AHNAK2) and CIC and FLG in LGG (Supplementary
Figure 4D-F for CIC), further supporting the prognostic
value of subclonal mutations.
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Figure 4: The association between the risk subclonal mutation and different genomic characteristics. The scatter plots represent the
relationship between the accumulation of the risk subclonal mutations and aneuploidy score (a) or mutation load (b) in GBM and ITH
(c) or mutation load (d) in LGG.
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4. Discussion

The genetic heterogeneity in glioma has been recently
emphasized by whole-genome and exome sequencing stud-
ies. In this study, we observed that somatic mutations in
many genes showed widespread clonal heterogeneity in
GBM and LGG patients, including some driver genes, such
as TP53, PTEN, and EGFR. More importantly, the mutation
status of several genes was an independent predictor of
patient survival. As expected, the prognostic mutation status
of driver genes was mainly clonal mutation. And subclonal
mutations preferred to contribute to poor prognosis, which
could be hardly appropriately recognized without consider-
ing mutation status. We mainly analyzed the risk subclonal
mutations and found that the accumulation of the mutations
came with the increased genomic instability and ITH in both
GBM and LGG. In addition, by analyzing the regulatory dif-
ferences driven by the prognostic subclonal mutations, we
identified some underlying biological pathways that contrib-
uted to the cancer progression, indicating the important
roles of subclonal mutations in diffuse gliomas.

Our results identified clonal and subclonal mutation of
many genes, indicating that the subclonal mutation was a

widespread phenomenon in GBM and LGG. By classifying
patients based on mutation status, we identified more prog-
nostic factors than considering mutation only. Our results
showed that for most driver genes, clonal mutation was the
main prognostic factor, such as TP53 and IDH1 in GBM
and EGFR in LGG, which had been proved by previous stud-
ies [43–45]. When both clonal and subclonal mutations were
prognostic factors, they usually showed same effect. We also
found that some genes, especially those whose only subclo-
nal mutation affected overall survival, could be hardly
identified by only mutation. For example, previous studies
failed to show that PTEN mutation was linked to survival
[46, 47]. Our results revealed that it was the subclonal muta-
tion of PTEN that contributed to the prognosis in LGG.

As most prognostic subclonal mutations were risk fac-
tors, our study showed important insights into the genomic
features of the risk subclonal mutation status. Previous stud-
ies had revealed that genomic instability often leads to high
diversity within tumors [48]. Many previous studies have
revealed that the extent of ITH was a potential determinant
of patient survival outcomes [17, 49]. Our analysis suggested
that the high extent of ITH was a common genomic charac-
ter in the patients with risk subclonal mutation, highlighting
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mutations of AHNAK and AHNAK2 in GBM (a) and of PTEN and NF1 in LGG (b). (c and d) GO terms and KEGG pathways annotated by
all dysregulated ceRNAs in GBM (c) and LGG (d).
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the role of the risk subclonal mutation in influencing the OS
of patients.

In GBM, we identified ceRNA triplets driven by the risk
subclonal mutations of AHNAK and AHNAK2. It has been
shown that the mRNA levels of AHNAK were downregulated
in glioma and may be an independent prognostic factor for
poor survival of glioma patients [50]. Our results demonstrated
its prognostic value in genomic level, and its subclonal mutation
could influence cell death program and axon guidance by
ceRNAmechanisms. For AHNAK2, it has not beenwell studied
in glioma, but it has been proved to be candidate cancer bio-
marker in pancreatic cancer and papillary thyroid carcinoma
[51, 52]. In LGG, ceRNA triplets driven by the risk subclonal
mutations of PTEN and NF1 were identified and shown to par-
ticipate in neuron development, neurogenesis, and nervous sys-
tem development. The functional enrichment results were
consistent with previous studies that PTEN deletion could
enhance constitutive neurogenesis and the inactivation of NF1
was important to central nervous system [53, 54]. We further
did functional characterization of the dysregulated ceRNA net-
works driven by clonal mutations and found that the enriched
GO terms were more likely to be parent terms of those in sub-
clonal mutations, indicating a more specialized role of the sub-
clonal mutations (Supplementary Figure 5). These results
provided a potential explanation of the molecular mechanism
of the risk subclonal mutations in diffuse gliomas.
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Supplementary 1. Supplementary Figure 1: comparison
analysis of the prognostic clonal mutations and risk sub-
clonal mutations. (A) Density distribution of overlapping
mutation sites between two clonal statuses. (B) Density
distribution of overlapping protein domains affected by
two clonal statuses. (C) Schematic diagram of AHNAK2.
Protein domains are represented by boxes. Variants repre-
sented on the top of the protein correspond to clonal
mutation sites whereas variants represented. (D-G) The
scatter plots represent the difference of aneuploidy score
(D), mutation load (E-F), and ITH (G) between patients
with the risk subclonal mutations and prognostic clonal

mutations. Supplementary Figure 2: overall survival among
GBM and LGG patients stratified by overall mutation. (A)
Overall survival in GBM patients harboring mutation of
TP53 or IDH1. (B) Overall survival in LGG patients
harboring mutation of EGFR, IDH1, NF1, or FLG. Supple-
mentary Figure 3: transcriptional regulatory relationships
influenced by the prognostic subclonal mutations in
GBM and LGG. (A-B) Transcriptional regulatory relation-
ships that significantly changed in GBM (A) and in LGG
(B). (C-D) Functional enrichment results of dysregulated
transcriptional regulatory networks in GBM (C) and in
LGG (D). Supplementary Figure 4: evolutionary trees for
patients with risk subclonal mutation. (A-C) Evolutionary
trees for two patients with subclonal mutation of
AHNAK2 (A-B) and survival comparison between sub-
clones in GBM (C). (D-F) Evolutionary trees for two
patients with subclonal mutation of CIC (D-E) and
survival comparison between subclones in LGG (F). Sup-
plementary Figure 5: GO graph displays the biological
process involved in the clonal mutation (red) and the sub-
clonal mutation (blue).

Supplementary 2. Supplementary Table 1: the clonal status of
somatic mutations in GBM and LGG.

Supplementary 3. Supplementary Table 2: the dysregulated
ceRNA networks driven by risk subclonal mutations in
GBM and LGG.
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