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SARS-CoV-2 infection and cancer
Evidence for and against a role of SARS-CoV-2 in cancer onset
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Abstract

Despite huge efforts towards understanding the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) pathogenesis, little is known about the long-term con-

sequences of the disease. Here, we critically review existing literature about onco-

genesis as a potential long-term effect of SARS-CoV-2 infection. Like other viral

infections, SARS-CoV-2 may promote cancer onset by inhibiting tumor suppressor

genes.Weconclude that, althoughunlikely, suchhypothesis cannot beexcludedapriori

and we delineate an experimental approach to address it. Also see the video abstract

here: https://youtu.be/TBUTDSLR7vY
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INTRODUCTION

To date, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) and the ongoing outbreak of the novel coronavirus disease 2019

(known as COVID-19) has rapidly become one of the most important

global health problems—infectingmore than 150million peopleworld-

wide and causing over 3million deaths. Besides acute symptoms, there

are rising concerns about long-term effects of the viral infection. Con-

valescent patients, with no detectable viral load, report a variety of

long-lasting symptoms that puzzle scientists and clinicians.[1,2] These

long-lasting symptoms are worrisome from a public health perspec-

tive, as people experiencing them may need medical care for months

or years.

A recent report proposed that among long-term effects linked to

SARS-CoV-2 infection there may be an oncogenic potential.[3] Here,

we further discuss this hypothesis by comparing SARS-CoV-2 with

other oncogenic viruses and evaluate potential molecular mechanisms
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thatmay link the viral infectionwith cancer.We conclude that although

a link between SARS-CoV-2 and tumorigenesis is unlikely, it cannot

be excluded due to the incomplete understanding of some aspects of

the viral biology. To address this possibility, we believe more data are

needed and propose a few experimental strategies to close this gap.

CANCER AND VIRUSES

Cancer can arise through a series of stochastic mutations in the human

genome. Events that increase the rate of genetic mutation also corre-

late with cancer incidence. For example, the exposition of melanocytes

to ultraviolet radiation induces mutations that will eventually lead to

the development of melanoma.[4] Among the events that can induce

cancer, viral infections are of particular interest. The relationship

between viruses and cancer represents one of the most remarkable

observations in modern biology. Pioneering work in poultry identified
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a causal link between viral infections and some forms of cancer [5,6]

and paved theway to understanding the oncogenic potential of viruses.

Such oncogenic potential was later described in other animal viruses,

including human viruses.[7,8]

Today, the link between viral infection and cancer is well established

and recognized as one of the most pressing public health problems.

The mechanism through which a viral infection degenerates into can-

cer can vary from a sustained inflammatory reaction to a suppression

of the immune system to an active reprogramming of the host cell.

Broadly speaking, a virus can directly trigger cell transformation in the

following ways: by providing an external oncogene, by over-activating

human oncogenes, and/or by inhibiting tumor suppressors.[9] A

textbook example of virus-mediated inhibition of oncosuppressor is

the human papilloma virus (HPV). HPV infected cells express two viral

proteins named E6 and E7 that bind and inhibit the two tumor sup-

pressors p53 and pRB. HPV E7 protein contains a LXCXE motif and

mutation or deletion of this short sequence abolishes the interaction

between E7 and pRB.[10] In addition, the oncogenic potential of dif-

ferent HPV strains seems to correlate with the amount of E6 and E7

expression andwith their affinity to their targets.[11,12]

Overall, it is not uncommon for a virus to spark cell transformation

and cancer. Since Sars-CoV-2 is a novel virus with uncertainty about its

long-term effects, we asked whether Sars-CoV-2 infection could pro-

mote cancer onset.

ONCOGENIC POTENTIAL FOR SARS-CoV-2

Multiple mechanisms could link Sars-CoV-2 infection with cancer

onset. Themost important one being a potential inhibition of oncosup-

pressors in Sars-CoV-2-infected cells.

SARS-CoV, the virus responsible for the 2002 pandemic of the

severe acute respiratory syndrome (SARS), expresses the endoribonu-

clease non-structural protein 15 (Nsp15) that interacts with pRB

tumor suppressor through a LXCXEmotif.[13] The interaction between

Nsp15 and pRB induces its nuclear export and ubiquitination, target-

ing pRB for proteasomal degradation. NIH-3T cells expressing Nsp15

lose contact inhibition and display an increased proliferative poten-

tial compared to wild-type cells—indicating a role of Nsp15 in cell

transformation.[13] Altogether, Nsp15 expression has the potential to

inactivate pRB, to induce cell transformation and eventually cancer.

Nsp15 nuclease is present and conserved in the SARS-CoV-2 genome,

sharing 88.7% sequence similarity with its orthologue in SARS-CoV.

In addition, the pRB interacting motif LXCXE is conserved both in

terms of sequence and primary structure location. Although no exper-

imental evidence exists to date, an interaction between Nsp15 and

the tumor suppressor pRB seems highly likely. In this instance, a cell

infected with SARS-CoV-2 would experience Nsp15-mediated pRB

inhibition.

In addition to pRB inhibition, Sars-CoV-1 could also increase p53

degradation via non-structural protein 3 (Nsp3) protein. The papain-

like protease of Nsp3 interacts and stabilizes the E3 ubiquitin ligase

RCHY1 (ring-finger and CHY zinc-finger domain-containing).[14] One

of the main targets of RCHY1 is the tumor suppressor p53.[15,16] Sta-

bilization of RCHY1 results in decreased levels of p53 and a weaker

G1 checkpoint. Similar to Nsp15, Nsp3 is highly conserved between

SARS-CoV-1 and SARS-CoV-2 (76% sequence similarity) suggesting

that Nsp3 from SARS-CoV-2 has the potential to reduce p53 levels

increasing the likelihood of cell transformation.

Both p53 and pRB are widely recognized as important tumor sup-

pressor genes. p53 is the most frequently mutated gene in human

cancer[17] and pRB is often lost in human malignancies (reviewed

in [18,19]). In addition, germ-line mutation of either gene results in

genetic diseases associated with increased cancer risk.[20,21] The abil-

ity of SARS-CoV-2′s proteins to inhibit both p53 and pRB suggests that

SARS-CoV-2 may have an oncogenic potential through a mechanism

similar to HPV (see above).

SARS-CoV-2 AND CANCER: ARGUMENTS AGAINST

In the previous section, we described how someproteins of SARS-CoV-

2 may exert oncogenic potential by inhibiting tumor suppressor genes.

However, the relationship between a virus and its host is a complex

phenomenon, involving several regulators from both the virus and the

host. Although the expression of certain proteins may have an onco-

genic effect, this does not mean that the viral infection necessarily

degenerates into cancer.

Well-known oncogenic viruses typically establish long-term rela-

tionshipswith their host through some forms of latency or persistence.

Two infamous examples are HPV, which follows the differentiation of

keratinocytes as well as herpes simplex virus—which remains latent

into neural ganglia. Unlike these oncogenic viruses, most Sars-CoV-2

infections resolve in a limited amount of time. A recent work specu-

lated about the possibility of viral latency in the testis[22]; however,

Pan and colleagues found no evidence of Sars-CoV-2 genome in the

semen of convalescent males.[23] While the persistence of Sars-CoV-2

RNA in fecal samples may indicate a potential gastrointestinal reser-

voir, no direct evidence has been reported. Furthermore, RNA persis-

tence in fecal samples is limited to a period of months which is much

shorter than the infections caused by other oncogenic viruses.[24–26]

Other reports of “chronic” SARS-CoV-2 infections or “reactivation” of

the virus can be more easily explained by the worsening of low-grade

infections rather than by the existence of a viral reservoir. The fact that

SARS-CoV-2 does not seem to establish a long-lasting infection argues

against its role in cancer onset.

If Sars-CoV-2 does not establish a stable relationship with its host,

the only possibility for cell transformation relies on the ability of

infected cells to escape immune surveillance and the cytopathic effect

of the virus. This possibility is particularly attractive considering the

link between pRB haploinsufficiency and chromosomal instability. The

loss of a single pRB copy induces chromosomal instability[27] and cre-

ates an optimal environment for cell transformation, even in the case

of an acute and transient event.[28] Although Nsp15-mediated pRB

inhibition and genomic instability are likely to self-resolve with virus

clearance, the mutations that originated through genomic instability
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are irreversible. Some of these mutations may have long-term effects

and increase susceptibility to cancer evenyears after theprimary infec-

tion. However, SARS-CoV-2 infection results in extensive tissue dam-

age and cell death in cultured cells and organoids[29–31]; this indi-

cates that the virus tends to kill its host and severely reduces the

likelihood for cell transformation. Some lines of evidence suggest that

alternative outcomes of viral infection exist. Recent results indicate

that the egression strategy of β-coronaviruses does not cause major

alterations of the plasma membrane or increases in cell death 18 h

post-infection.[32,33] In addition, SARS-CoV-2 infects but does not

replicate in at least some cell types such as monocytes and monocyte-

derived macrophages.[34] The reduced cytotoxicity and the existence

of “abortive” viral cycle indicate that cell deathmaynot be the only pos-

sible outcomeof SARS-CoV-2 infections; in this context, the hostwould

experience pRB and p53 inhibition without the cytopathic effect of the

virus.

Considering a scenario where some cells survive the infection,

the chances of cell transformation are linked to an active cell cycle

machinery. While SARS-CoV-2 seems to promote cell cycle progres-

sion by inhibiting pRB and counteracting the G1 checkpoint, other

data suggest a cell cycle arrest in the infected cells. β-Coronaviruses
display multiple mechanisms to block cell cycle progression in the

host cell (reviewed in [35]). For example, SARS-CoV-1 inhibits pRB

phosphorylation through 3a and 7b proteins and inhibits cyclin-cyclin-

dependent kinases activity through the N-protein, inducing a cell

cycle arrest.[36–38] Similarly, the coronavirus infectious bronchitis virus

induces aG2/Marrest in cells lacking p53[39] andSARS-CoV-2 infected

cells also arrest in G2/M.[40] Moreover, cells infected by SARS-CoV-

2 activate the pro-apoptotic regulator caspase 8 and undergo pro-

grammed cell death.[41] Overall, even postulating the cell survival fol-

lowing SARS-CoV-2 infection, the chances of cell transformation are

severely reduced by the virus-induced cell cycle arrest and by the acti-

vation of the apoptosis cascade.

A final piece of evidence arguing against oncogenic potential of

SARS-CoV-2 comes from epidemiological data on SARS-CoV-1. Exten-

sive follow-up studies on the long-term symptoms of SARS-CoV-1 have

not reported increased cancer incidence thus far[42–44] arguing against

an increased susceptibility of cancer in SARS-CoV-1-infected individ-

uals. It must be noted that only a subset of the 8096 total reported

cases of SARS-CoV-1 were analyzed to epidemiologically investigate

the long-term effects of the syndrome. In addition, it is plausible that

increased incidence of cancer has not yet arisen in the relatively short

period of time between the 2002–2004 SARS outbreak and the time of

the study.

In conclusion, although cells infected by SARS-CoV-2 may expe-

rience downregulation of the tumor suppressors pRB and p53, the

virus-mediated cell cycle arrest and the cytopathic effect argue against

a direct oncogenic potential of SARS-CoV-2. However, one cannot

exclude the possibility of cell transformation in cell types where the

virus undergoes abortive cycles and in conditionswhere the cytopathic

effects are reduced.

SARS-CoV-2 AND CANCER: AN EXPERIMENTAL
ROADMAP

In previous sections, we speculated about the mechanisms that could

link SARS-CoV-2 with cancer and reviewed the evidence for and

against such a hypothesis. In this section, we consider how to address

any outstanding questions experimentally.

Histology is a classic technique to detect early signs of cell trans-

formation in biopsies and autopsies. Thus far, post-mortem histologi-

cal analysis of SARS-CoV-2 focused on patients that have died from the

infectionwithout specifically searching for cancermarkers.[45,46] In the

future, it would be interesting to study individuals that have recovered

from the disease and died of independent causes at different time after

the infection. This analysis should focus primarily on tissues with high

trophism for SARS-CoV-2, such as the lungs, as these are the prime sus-

pect location for cancer to potentially develop.

In parallel with the histological analysis, important evidence on the

oncogenic potential of SARS-CoV-2 could come from epidemiological

studies on patients that have recovered from COVID-19 syndrome.

The unprecedented detail and quality of epidemiological data collected

during the COVID-19 pandemic, along with recent advancement in

data analysis, will be invaluable tools for evaluating the long-term

effects of the infection.

Both histological and epidemiological data could show a correla-

tion between COVID-19 and cancer, but a more direct approach is

needed to demonstrate causation. In this context, the cellular effects

of the virus on cell physiology remain only partially understood. One

should assess the long-term effects of SARS-CoV-2 on cell cultures and

organoids using functional assays suchasproliferation curves, soft agar

assay, and cell cycle profile analysis. A replication-defective or attenu-

ated version of the virus is an important tool to differentiate the viral

effects on cell physiology from its cytotoxicity.

Although cells and organoids enable investigations of biologi-

cal phenomena at high resolution, they often fall short in captur-

ing the complexity of an organism. For this reason, it is crucial to

assess the long-term effects of mild SARS-CoV-2 infection in lab-

oratory animals. The effects of SARS-CoV-2 infection can be mod-

eled in several animals.[47,48] The development of mice expressing

human angiotensin-converting enzyme 2 (hACE2 – K18-hACE2 mice)

receptors[49,50,51] and the availability of cancer mouse models[52]

makes Mus musculus a promising model to study the effect of SARS-

CoV-2 infection and cancer development. It would be interesting to

cross p53−/+[53,54] with K18-hACE2 mice to investigate the effect of

tumor development in SARS-CoV-2-infected mice compared to non-

infectedmice.

CONCLUSIONS

Thenovel coronavirus, SARS-CoV-2, emerged for the first time inChina

in December 2019.
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It is characterized bymodestmortality (Infection Fatality Rate, circa

0.6) and high infectiousness that can cause a severe respiratory syn-

drome known as COVID-19.[55] There is a growing body of evidence

that indicates long-term effects well after primary SARS-CoV-2 infec-

tions have resolved. Among these long-term effects, we have specu-

lated about the oncogenic potential of SARS-CoV-2.

The viral proteins Nsp15 or Nsp3 are likely to have pro-oncogenic

effects by inhibiting the two important tumor suppressors, pRB and

p53. On the other hand, the transient nature of the infection, the

virusmediated cell cycle arrest, and the cytopathic effect argue against

the possibility of cell transformation. The most significant contribu-

tion of the virus to cancer could be indirect and related to the exten-

sive and irreversible lung fibrosis that characterizes severe COVID-19

pneumonia.[56–59]

Nevertheless, the effects of SARS-CoV-2 infection on a single cell

remain unclear and may be dramatically different depending on the

cell type and the initial viral load. In conclusion, the role of SARS-CoV-

2 in cell transformation is unlikely but cannot be excluded in specific

contexts. Additional studies on the long-term effects of the virus are

needed to shed light on such possibility.
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