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We formulate a deterministic system of ordinary differential equations to quantify HAART treatment levels for patients co-infected
with HIV and Kaposi’s Sarcoma in a high HIV prevalence setting. A qualitative stability analysis of the equilibrium states is carried
out and we find that the disease-free equilibrium is globally attracting whenever the reproductive number R𝑘 < 1. A unique
endemic equilibrium exists and is locally stable whenever R𝑘 > 1. Therefore, reducing R𝑘 to below unity should be the goal for
disease eradication. Provision of HAART is shown to provide dual benefit of reducing HIV spread and the risk of acquiring another
fatal disease for HIV/AIDS patients. By providing treatment to 10% of the HIV population, about 87% of the AIDS population
acquire protection against coinfection with HIV and Kaposi’s Sarcoma (KS). Most sub-Sahara African countries already have
programmes in place to screen HIV. Our recommendation is that these programmes should be expanded to include testing for
HHV-8 and KS counseling.

1. Introduction

Kaposi’s Sarcoma is a cancer that occurs mostly in humans
with suppressed immune systems [1]. The development of
this cancer depends upon prior infection to the human
herpesvirus-8 (HHV-8) [2], a virus which is usually transmit-
ted either sexually or via saliva [3]. For HIV-related Kaposi’s
Sarcoma development, immunosuppression is a necessary
causal factor [2]. Because HIV is an immunosuppressive
virus, it promotes the development of Kaposi’s Sarcoma in
individuals dually infectedwith both viruses (HIV andHHV-
8) and this combination has proved to be fatal and has made
Kaposi’s Sarcoma the fourth largest killer of people livingwith
HIV/AIDS in sub-Sahara Africa [4].

In competent immune systems, acquisition of HHV-8
does not guarantee the development of KS; in fact, most indi-
viduals with a strong immune response could remain latently
infected with HHV-8 throughout their lifetime [2]. The
HIV-1 growth factors stimulate the immune cells including

the healthy and infected B-cells to proliferate. The activation
of latently infected B-cells to proliferate only leads to produc-
tion of more HHV-8 that, according to the theory proposed
by Foreman et al. [2], may be responsible for infection of
progenitor cells of endothelial origin, which once infected
with HHV-8 develop into Kaposi’s Sarcoma cells [2].

Recent research findings [12] show that highly active
antiretroviral therapy (HAART) for HIV significantly
decreases (and, in some instances, completely forces
the cancer into remission) KS activity in a patient, but
such treatment is only effective against persons who have
seroconverted. Lungu et al. studied the within-host dynamics
ofHIV andKS and came to the conclusion thatHIV infection
accentuates the potential for infected individuals to develop
KS conditions and that administration of HAART on KS
individuals who have seroconverted results in the reversal
of KS conditions. However, the same result could not be
demonstrated if HAART was administered to HIV negative
individuals.
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From what has been described above, we formulate a
mathematical model which includes the following classes:
a susceptible class, 𝑆, two infected classes of individuals
infected with HIV-1 only, 𝐼, individuals coinfected with
HHV-8 and HIV-1, 𝐼𝑘, two classes of asymptomatic infectives
with HIV only, 𝑃, asymptomatic coinfected, 𝑃𝑘, a class
of treated individuals, 𝑇, and two AIDS classes, namely,
individuals with full-blown AIDS only, 𝐴, and individuals
coinfected with full-blown AIDS and Kaposi’s Sarcoma.

The structure of the paper is as follows. In Section 2 we
formulate the model that describes the coinfection transmis-
sion dynamics. Existence of solutions is proved in Section 3,
but our main interest is to simulate and study the dynamic
behavior of the steady state solution. In particular, we want to
quantify the proportion of HAART-treated individuals who
never develop KS at various treatment rates 𝜙1 and 𝜙2.

AIDS is the progressive stage at which an HIV-infected
individual loses competency of his immune system and
becomes prone to opportunistic infections. For this reason,
HIV coinfection models have found a lot of space in HIV
epidemiology studies. HIV and tuberculosis coinfection have
been studied by Cohen et al. [13], Roeger et al. [14], and
Ramkissoon et al. [15] while Barley et al. [9], Chiyaka
et al. [16], and Mukandavire et al. [17] studied HIV-malaria
coinfection dynamics with each study giving results pertinent
to the coinfection under investigation. The study of HIV-KS
coinfection dynamics is still in infancy and, to the best of
our knowledge, no mathematical modeling study has been
carried out to assess the coinfection dynamics of HIV and
KS at the population level in sub-Sahara Africa. Because our
model incorporates HAART administration to all infective
classes, it can provide insights into treatment strategies and,
in particular, decide whether the current policy based on a
CD4 count threshold to access treatment should be continued
as a strategy.

2. Model Formulation

We begin with a human population of susceptibles which
is free of both KS and HIV denoted by 𝑆. This population
is replenished at constant rate Λ through sexual maturity
or immigration. Upon effective contact with individuals
infected with the HIV virus, the new infectives progress into
the infected class 𝐼 at rate 𝜆ℎ, where 𝜆ℎ denotes the force of
infection.

For simplicity of themodel, we assume that all individuals
in the class 𝑆 are latently infected with the HHV-8 virus
which causes the KS infection.Therefore, in our model every
class, except for the susceptible class, is assumed to be at
risk of developing KS. HIV infection is known to promote or
enhance the development of KS condition [18, 19], and so we
assume that individuals in the class 𝐼 can develop mild KS at
rate 𝜖1 and move into the class of coinfected individuals KS
denoted by 𝐼𝑘.

HIV-only and coinfected individuals are assumed to
progress to the asymptomatic pre-AIDS classes (𝑃 and 𝑃𝑘) at
the same constant rate 𝜓1. Furthermore, persons in the pre-
AIDS class are deemed to be sexually interacting and that

individuals with mild KS in the 𝐼𝑘 class can develop acute
KS, which manifests in the form of visible lesions [19] and
severe debilitation. Due to the nature of these symptoms, we
assume that individuals who develop acute KS will no longer
be sexually interacting.Those individuals in the 𝐼𝑘 class, who
develop acute KS, die at a disease induced rate 𝜏1.

We assume that all infected individuals in the classes 𝐼

and 𝐼𝑘 are tested and if they are tested positive for HIV-1 they
receive treatment at rate 𝜙1 and move into the class of treated
individuals, 𝑇. Individuals in the pre-AIDS classes 𝑃 and 𝑃𝑘

have higher viral loads and therefore possess less competent
immune systems. These individuals will then present for
medical attention at a higher rate 𝜙2 > 𝜙1. HAART is known
to reverse KS conditions for people with HIV [19], and so in
the model we assume that the therapy is perfect in reversing
mild KS conditions. Upon accessing HAART, individuals in
the infective class 𝐼𝑘 and pre-AIDS class 𝑃𝑘 achieve full KS
recovery and progress to the treated class 𝑇. Additionally,
individuals in the pre-AIDS class 𝑃𝑘 progress to acute KS
at rate 𝜏2 > 𝜏1. Individuals in the pre-AIDS class 𝑃 are at
risk of developing KS at a constant rate 𝜖2. Individuals in
the pre-AIDS classes 𝑃 and 𝑃𝑘 develop clinical symptoms
and progress to full-blown AIDS 𝐴 and 𝐴𝑘, respectively, at
rate 𝜃1. Progression to full-blown AIDS by persons in the
class 𝑇 represents treatment failure, and they progress to the
class 𝐴 at the same rate 𝜃2. Full-blown AIDS individuals 𝐴

can also develop KS at rate 𝜖3 > 𝜖2 > 𝜖1 due to weakened
immune systems. Persons in the full-blownAIDS classes have
additional AIDS-induced mortality 𝛿1. Progression rate to
acute KS for persons with full-blown AIDS is 𝜏3, which we
assume to be greater than 𝜏2 and 𝜏1. Individuals in both AIDS
classes are also subject to a natural mortality rate of 𝜇.

The force of infection 𝜆ℎ depends on the probability
of transmission per contact 𝛽, the proportion of infected
individuals in each category (𝐼 and 𝐼𝑘), the proportion of
infected individuals in receipt of HAART (𝑇), and the pre-
AIDS classes (𝑃 and 𝑃𝑘). Individuals in receipt of HAART
have reduced viral load [20] and are therefore assumed to be
less infectious relative to infectives not in receipt of HAART.
This reduced infectiousness is modeled by 𝛾1 < 1. Coinfected
infectives and pre-AIDS individuals (𝐼𝑘 and 𝑃𝑘) have weaker
immune systems and are therefore likely to carry higher viral
loads than their counterparts in the (𝐼 and 𝑃) classes. This
added infectiousness is modeled by 𝛾2 > 1 and 𝛾4 > 1. Pre-
AIDS infectives 𝐴 are more infectious because of increased
viral load, and this increased infectiousness is modeled by
𝛾3 where 𝛾1 < 1 < 𝛾2 < 𝛾3 < 𝛾4. Persons with full-
blown AIDS exhibit symptoms related to HIV and therefore
are assumed to be noninteracting. The total sexually active
variable population at time 𝑡 is given by 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) +

𝐼𝑘(𝑡) + 𝑃(𝑡) + 𝑃𝑘(𝑡) + 𝑇(𝑡). Assuming homogeneous mixing,
the time dependent force of infection for HIV is given by

𝜆ℎ = 𝛽 [

𝛾1𝑇 + 𝐼 + 𝛾2𝐼𝑘 + 𝛾3𝑃 + 𝛾4𝑃𝑘

𝑆 + 𝑇 + 𝐼 + 𝐼𝑘 + 𝑃 (𝑡) + 𝑃𝑘

] . (1)

The model flow diagram depicting this biological system
is illustrated in Figure 1.
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Figure 1: Model flow diagram.

The above assumptions and formulations lead us to this
nonlinear system of differential equations:

𝑆
󸀠
(𝑡) = Λ − (𝜆ℎ + 𝜇) 𝑆 (𝑡) ,

𝐼
󸀠
(𝑡) = 𝜆ℎ𝑆 (𝑡) − (𝜖1 + 𝜇 + 𝜓1 + 𝜙1) 𝐼 (𝑡) ,

𝐼
󸀠

𝑘
(𝑡) = 𝜖1𝐼 (𝑡) − (𝜇 + 𝜓1 + 𝜙1 + 𝜏1) 𝐼𝑘 (𝑡) ,

𝑃
󸀠
(𝑡) = 𝜓1𝐼 (𝑡) − (𝜙2 + 𝜖2 + 𝜃1 + 𝜇) 𝑃 (𝑡) ,

𝑃
󸀠

𝑘
(𝑡) = 𝜖2𝑃 (𝑡) + 𝜓1𝐼𝑘 − (𝜙2 + 𝜃1 + 𝜇 + 𝜏2) 𝑃𝑘 (𝑡) ,

𝑇
󸀠
(𝑡) = 𝜙1 (𝐼 (𝑡) + 𝐼𝑘 (𝑡))+𝜙2 (𝑃 (𝑡) + 𝑃𝑘 (𝑡))−(𝜃2 + 𝜇) 𝑇 (𝑡) ,

𝐴
󸀠
(𝑡) = 𝜃1𝑃 (𝑡) + 𝜃2𝑇 (𝑡) − (𝜖3 + 𝛿1 + 𝜇) 𝐴 (𝑡) ,

𝐴
󸀠

𝑘
(𝑡) = 𝜃1𝑃𝑘 (𝑡) + 𝜖3𝐴 (𝑡) − (𝛿1 + 𝛿2 + 𝜇) 𝐴𝑘 (𝑡) .

(2)
All parameters for the model system (2) are assumed to

be nonnegative for all time 𝑡 > 0.

3. Basic Properties

3.1. Positivity and Boundedness of Solutions. We denote by 𝑅
8

+

the set of points 𝑥𝑡 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8) in 𝑅
8 with

positive coordinates and consider the system (2) with initial
values

𝑥
0

= (𝑥
0

1
, 𝑥
0

2
, 𝑥
0

3
, 𝑥
0

4
, 𝑥
0

5
, 𝑥
0

6
, 𝑥
0

7
, 𝑥
0

8
) . (3)

In this section, we prove the following lemma.

Lemma 1. The system (2) can be written as a system of
differential inequalities

𝑑𝑥𝑖

𝑑𝑡

≥ 𝐴 𝑖𝑥𝑖 +

𝑛

∑

𝑗

𝐵𝑖𝑗𝑥𝑗 + 𝜖 (𝑖 = 1, . . . , 𝑛) , (4)

where

𝐵𝑖𝑗 ≥ 0, 𝜖 ≥ 0. (5)

If 𝑥𝑖(0) ≥ 𝜖 then 𝑥𝑖(𝑡) ≥ 0 for all 𝑡 > 0 and 1 ≤ 𝑖 ≤ 𝑛.

Without loss of generalitywemay assume that 𝜖 > 0, since
the case 𝜖 = 0 follows by approximating the system with a
sequence 𝜖 = 𝜖𝑘 ↓ 0.

Proof. Suppose that the assertion 𝑥𝑖(0) ≥ 𝜖 > 0, for 1 ≤ 𝑖 ≤ 𝑛,
is not true.Then there exists the smallest number 𝑡0 > 0, such
that

𝑥𝑖 (𝑡) > 0 for 1 ≤ 𝑖 ≤ 𝑛, 0 ≤ 𝑡 ≤ 𝑡0,

𝑥𝑖 (𝑡0) = 0 for at least one 𝑖, say 𝑖 = 𝑖0.

(6)

Then 𝑥𝑖0
is a decreasing function at 𝑡 = 𝑡0, so that

𝑑𝑥𝑖0

𝑑𝑡

(𝑡0) ≤ 0. (7)

From the differential inequality (4) for 𝑥𝑖0
(𝑡) we get

𝑑𝑥𝑖0

𝑑𝑡

(𝑡0) ≥

𝑛

∑

𝑗

𝐵𝑖𝑗𝑥𝑗 + 𝜖 ≥ 𝜖 > 0 (8)

which is a contradiction.
For the state variables in our model, we always take

𝑆 (0) ≥ 0, 𝐼 (0) ≥ 0, 𝐼𝑘 (0) ≥ 0, 𝑃 (0) ≥ 0,

𝑃𝑘 (0) ≥ 0, 𝑇 (0) ≥ 0, 𝐴 (0) ≥ 0, 𝐴𝑘 (0) ≥ 0.

(9)

From Lemma 1 we conclude that
𝑆 (𝑡) ≥ 0, 𝐼 (𝑡) ≥ 0, 𝐼𝑘 (𝑡) ≥ 0, 𝑃 (𝑡) ≥ 0,

𝑃𝑘 (𝑡) ≥ 0, 𝑇 (𝑡) ≥ 0, 𝐴 (𝑡) ≥ 0, 𝐴𝑘 (𝑡) ≥ 0.

(10)
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Thus, in the region𝑅
8

+
themodel is epidemiologically and

mathematically well posed and we can use it to study the
dynamics of HIV-KS coinfection.

3.1.1. Equilibrium States, Reproductive Number, and Stability
Analysis. Themodel (2) possesses a disease-free equilibrium,
𝜉0, given by

𝜉0 = {𝑆, 𝐼, 𝐼𝑘, 𝑃, 𝑃𝑘, 𝑇, 𝐴, 𝐴𝑘} = {(

Λ

𝜇

) , 0, 0, 0, 0, 0, 0, 0} ,

(11)

and at least one endemic equilibrium state whose existence
is discussed in Section 3.3. Following Van Den Driessche
andWatmough [21], the KS-induced reproductive number of
system (2), R𝑘, is given by the spectral radius of the matrix
𝐹𝑉
−1 where the matrices 𝐹 and 𝑉 are given by

𝐹 = (

𝛽 𝛾3𝛽 𝛾2𝛽 𝛾4𝛽 𝛾1𝛽

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

) ,

𝑉 = (

−𝐾1 0 0 0 0

𝜓1 −𝐾2 0 0 0

𝜖1 0 −𝐾3 0 0

0 𝜖2 𝜓1 −𝐾4 0

𝜙1 𝜙2 𝜙1 𝜙2 −𝐾5

) ,

(12)

where

𝐾1 = (𝜇 + 𝜖1 + 𝜙1 + 𝜓1) ,

𝐾2 = (𝜇 + 𝜖2 + 𝜃1 + 𝜙2) ,

𝐾3 = (𝜇 + 𝜏1 + 𝜙1 + 𝜓1) ,

𝐾4 = (𝜇 + 𝜃1 + 𝜏2 + 𝜙2) ,

𝐾5 = (𝜇 + 𝜃2) .

(13)

From (12) we have calculated the reproduction number

R𝑘 = R𝐼 + R𝐼𝑘 + R𝑃 + R𝑃𝑘 + R𝑇, (14)

where

R𝐼 =

𝛽

(𝜇 + 𝜖1 + 𝜙1 + 𝜓1)

,

R𝐼𝑘 =

𝛽𝛾2𝜖1

(𝜇 + 𝜖1 + 𝜙1 + 𝜓1) (𝜇 + 𝜏1 + 𝜙1 + 𝜓1)

,

R𝑃 =

𝛽𝛾3𝜓1

(𝜇 + 𝜖2 + 𝜃1 + 𝜙2) (𝜇 + 𝜖1 + 𝜙1 + 𝜓1)

,

R𝑃𝑘 = 𝛽𝛾4𝜓1

× (𝜖1 (𝜇 + 𝜖2 + 𝜃1 + 𝜙2) + 𝜖2 (𝜇 + 𝜏1 + 𝜙1 + 𝜓1))

× ((𝜇 + 𝜖2 + 𝜃1 + 𝜙2) (𝜇 + 𝜃1 + 𝜏2 + 𝜙2)

× (𝜇 + 𝜖1 + 𝜙1 + 𝜓1) (𝜇 + 𝜏1 + 𝜙1 + 𝜓1))
−1

,

R𝑇 = R𝑇𝐼 + R𝑇2 + R𝑇3 + R𝑇4 + R𝑇5 ,

R𝑇1 =

𝛽𝛾1𝜙1

(𝜇 + 𝜃2) (𝜇 + 𝜖1 + 𝜙1 + 𝜓1)

,

R𝑇2 =

𝛽𝛾1𝜙2𝜓1

(𝜇 + 𝜃2) (𝜇 + 𝜖2 + 𝜃1 + 𝜙2) (𝜇 + 𝜖1 + 𝜙1 + 𝜓1)

,

R𝑇3 =

𝛽𝛾1𝜖1𝜙1

(𝜇 + 𝜃2) (𝜇 + 𝜖1 + 𝜙1 + 𝜓1) (𝜇 + 𝜏1 + 𝜙1 + 𝜓1)

,

R𝑇4 = 𝛽𝛾1𝜖1𝜙2𝜓1

× ((𝜇 + 𝜃2) (𝜇 + 𝜃1 + 𝜏2 + 𝜙2)

× (𝜇 + 𝜖1 + 𝜙1 + 𝜓1) (𝜇 + 𝜏1 + 𝜙1 + 𝜓1))
−1

,

R𝑇5 = 𝛽𝛾1𝜖2𝜙2𝜓1

× ((𝜇 + 𝜃2) (𝜇 + 𝜖2 + 𝜃1 + 𝜙2)

× (𝜇 + 𝜃1 + 𝜏2 + 𝜙2) (𝜇 + 𝜖1 + 𝜙1 + 𝜓1))
−1

.

(15)

This number R𝑘 is a threshold such that if R𝑘 < 1 the
disease clears from the population. IfR𝑘 > 1 the steady state
𝜉0 becomes unstable and the disease establishes itself into the
population.This number is comprehensively analyzed further
in Section 3.4 to reveal the impact of treatment.

3.2. Global Stability of the Disease-Free Equilibrium. IfR𝑘 <

1 then fixed pointE0 is locally asymptotically stable. We now
determine conditions which guarantee global asymptotic
stability of the disease-free state [22]. Rewrite model system
(2) as

𝑑𝑋

𝑑𝑡

= 𝐹 (x, 𝑍) ,

𝑑𝑍

𝑑𝑡

= 𝐺 (𝑋, 𝑍) , 𝐺 (x, 0) = 0,

(16)

where 𝑋 ∈ R𝑚 denotes the number of uninfected individuals
and 𝑍 ∈ R𝑛 denotes the number of infected individuals
including those latently infected and thosewho are infectious.
The disease-free equilibrium state can now be written as

𝑈0 = (𝑋
∗
, 0) , (17)

where 𝑋
∗

= ((Λ/𝜇), 0, 0, 0, 0, 0, 0, 0, 0). To guarantee global
stability, the following conditions must be satisfied:

(i) for 𝑑𝑋/𝑑𝑡 = 𝐹(𝑋, 0), 𝑋
∗ is globally asymptotically

stable;
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(ii) 𝐺(𝑋, 𝑍) = A𝑍 − 𝐺(𝑋, 𝑍), 𝐺(𝑋, 𝑍) ≥ 0 for (𝑋, 𝑍) ∈ Ω;
(iii) 𝐴 = 𝐷𝑍𝐺(𝑋

∗
, 0) is an 𝑀-matrix (the off diagonal

elements of 𝐴 are nonnegative) and Ω is the region
where the model makes biological sense.

Lemma 2. The fixed point 𝑈0 = (𝑋
∗
, 0) is a globally asymp-

totically stable point of (2) provided that R𝑘 < 1 and
conditions stated above are satisfied.

Proof. Consider

𝐹 (𝑋, 0) = (

Λ − 𝜇𝑆𝑓

0

0

0

0

) ,

𝐺 (𝑋, 𝑍) = 𝐴𝑍 − 𝐺 (𝑋, 𝑍) ,

𝐴 = (

𝛽 − 𝐾1 𝛾3𝛽 𝛾2𝛽 𝛾4𝛽 𝛾1𝛽

𝜓1 −𝐾2 0 0 0

𝜖1 0 −𝐾3 0 0

0 𝜖2 𝜓1 −𝐾4 0

𝜙1 𝜙2 𝜙1 𝜙2 −𝐾5

) .

(18)

Then

𝐺 (𝑋, 𝑍) = 𝛽 (𝛾1𝑇 + 𝐼𝑚 + 𝛾2𝐼𝑘 + 𝛾3𝑃 + 𝛾4𝑃𝑘)

× (

(

(1 −

𝑆

𝑆 + 𝐼 + 𝐼𝑘 + 𝑃 + 𝑃𝑘

)

0

0

0

0

)

)

.

(19)

Since 0 ≤ 𝑆 ≤ 𝑆+𝐼+𝐼𝑘+𝑃+𝑃𝑘, it is clear that𝐺(𝑋, 𝑍) ≥ 0

and𝐴 is an𝑀-matrix whenever its spectral radius is less than
unity.Then, by Lemma 2, 𝜉0 is a globally asymptotically stable
equilibrium of (2).

The biological interpretation of Lemma 2 is that this
population is observing the one partner policy or abstinence
from unprotected sex resulting in HIV being eliminated
from the population regardless of the size of the initial
subpopulations [23].

3.3. Existence of Endemic Equilibria and Bifurcation Analysis.
In this section following the approach in [7], we establish con-
ditions for the existence of endemic equilibria and investigate
their stability. Denote the arbitrary endemic equilibrium of
model (2) by E∗ where

E
∗

= (𝑆
∗
, 𝐼
∗
, 𝐼
∗

𝑘
, 𝑇
∗
𝑃
∗
, 𝑃
∗
, 𝐴
∗
, 𝐴
∗

𝑘
) . (20)

Let

𝜆
∗

ℎ
= 𝛽 [

𝛾1𝑇
∗

+ 𝐼
∗

+ 𝛾2𝐼
∗

𝑘
+ 𝛾3𝑃

∗
+ 𝛾4𝑃

∗

𝑘

𝑆
∗

+ 𝑇
∗

+ 𝐼
∗

+ 𝐼
∗

𝑘
+ 𝑃
∗

(𝑡) + 𝑃
∗

𝑘

] , (21)

be the force of infection. By setting the right hand side of
model (2) to zero, we obtain, in terms of the force of infection,

𝑆
∗

=

Λ

𝜆
∗

ℎ
+ 𝜇

, 𝐼
∗

=

𝜆
∗

ℎ

𝐾1

, 𝐼
∗

𝑘
=

𝜖1𝐼
∗

𝐾2

,

𝑇
∗

=

𝜓1𝐼
∗

𝐾3

, 𝑃
∗

=

(𝜓1𝐼
∗

𝑘
+ 𝜖2𝑃
∗
)

𝐾4

,

𝐴
∗

=

(𝜃1𝐼
∗

+ 𝜃2𝑇
∗
)

(𝜖2 + 𝜇 + 𝛿1)

, 𝐴𝑘 =

(𝜃1𝐼𝑘 + 𝜖3𝐴𝑘)

(𝜇 + 𝛿1 + 𝛿2)

.

(22)

Substituting the values of 𝑆
∗
, 𝐼
∗
, 𝐼
∗

𝑘
, 𝑇
∗
𝑃
∗
, 𝑃
∗
, 𝐴
∗, and𝐴

∗

𝑘

into (21) we obtain the polynomial

𝑎0𝜆
2

ℎ
+ 𝐾1𝜆ℎ = 0, (23)

where
𝑎0 = 𝐾2𝐾4 (𝐾3 + 𝜖1) (𝜇 + 𝜃2 + 𝜙1)

+ (𝐾2𝜖1 + 𝐾3 (𝐾4 + 𝜖2)) (𝜇 + 𝜃2 + 𝜙2) 𝜓1,

𝑎1 = − 𝛽𝛾1 (𝐾3 + 𝜖1 + (𝐾2𝜖1 + 𝐾3 (𝐾4 + 𝜖2)) 𝜙2𝜓1)

+ (𝜇 + 𝜃2) (−𝛽𝐾3 (𝐾4𝛾3 + 𝛾4𝜖2) 𝜓1 − 𝐾2 (𝛽 − 𝐾1) 𝐾3𝐾4

+ 𝛽𝜖1 (𝐾4𝛾2 + 𝛾4𝜓1)) .

(24)

Equation (23) has two solutions given by

𝜆ℎ0 = 0,

𝜆ℎ1 = 𝐾1𝐾2𝐾3𝐾4 (𝐾2𝐾4 (R𝐾 − 1) 𝐾6𝐾8 + R𝐾𝛾1𝐾9𝜙1

+ (R𝐾 − 1) 𝐾10𝐾8 + R𝐾𝛾1𝐾7𝜙2) 𝜓1

× ((𝐾2𝐾4𝐾9 (𝐾8 + 𝜙1) + 𝐾7 (𝐾8 + 𝜙2) 𝜓1)

× (𝐾5𝜓1 + 𝐾2 (𝐾4𝐾6 + 𝛾4𝜖1𝜓1)))
−1

,

(25)

where
𝐾5 = 𝐾3 (𝐾4𝛾3 + 𝛾4𝜖2) , 𝐾6 = (𝐾3 + 𝛾2𝜖1) ,

𝐾8 = (𝜇 + 𝜃2) , 𝐾9 = (𝐾3 + 𝜖1) , 𝐾10 = (𝐾2𝛾4𝜖1 + 𝐾5) .

(26)

From the solution 𝜆ℎ1, the conditionR𝐾 > 1 is necessary
for existence of the nontrivial endemic equilibrium and we
summarize this as follows.

Lemma 3. The model (2) has a unique endemic equilibrium
wheneverR𝑘 > 1.

Having proved the existence of the endemic equilibrium
point we now investigate its stability using the Centre
Manifold Theory [24] as described by Castillo-Chavez and
Song [25]. Consider the following general system of ordinary
differential equations with a parameter 𝜙

𝑑𝑥

𝑑𝑡

= 𝑓 (𝑥, 𝜙) , 𝑓 : R
𝑛

× R 󳨀→ R, 𝑓 ∈ 𝐶
2

(R × R) .

(27)
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Without loss of generality, it is assumed that 0 is an
equilibrium for system (27) for all values of the parameter 𝜙,
(i.e., 𝑓(𝜙, 0) ≡ 0 for all 𝜙).

Assume the following.

(A1): 𝐴 = 𝐷𝑥𝑓(0, 0) = ((𝜕𝑓𝑖/𝜕𝑥𝑗)(0, 0)) is the linearise
matrix of system (27) around the equilibrium 0 with
𝜙 evaluated at 0. Zero is a simple eigenvalue of 𝐴 and
all other eigenvalues of 𝐴 have negative real parts.

(A2): Matrix 𝐴 has a nonnegative right eigenvector 𝑤

and a left eigenvector V corresponding to the zero
eigenvalue.

Let 𝑓𝑘 be the 𝑘th component of 𝑓 and

𝑎 =

𝑛

∑

𝑘,𝑖,𝑗=1

V𝑘𝑤𝑖𝑤𝑗
𝜕
2
𝑓𝑘

𝜕𝑥𝑖𝜕𝑥𝑗

(0, 0) ,

𝑏 =

𝑛

∑

𝑘,𝑖=1

V𝑘𝑤𝑖
𝜕
2
𝑓𝑘

𝜕𝑥𝑖𝜕𝜙

(0, 0) .

(28)

The local dynamics of system (27) around 0 are totally
determined by 𝑎 and 𝑏.

(i) 𝑎 > 0, 𝑏 > 0. When 𝜙 < 0 with |𝜙| ≪ 1, 0 is
locally asymptotically stable and there exists a positive
unstable equilibrium; when 0 < 𝜙 ≪ 1, 0 is unstable
and there exists a negative and locally asymptotically
stable equilibrium.

(ii) 𝑎 < 0, 𝑏 < 0. When 𝜙 < 0 with |𝜙| ≪ 1, 0 is unstable;
when 0 < 𝜙 ≪ 1, 0 is locally asymptotically stable,
and there exists a positive unstable equilibrium.

(iii) 𝑎 > 0, 𝑏 < 0. When 𝜙 < 0 with |𝜙| ≪ 1, 0 is unstable,
and there exists a locally asymptotically stable nega-
tive equilibrium; when 0 < 𝜙 ≪ 1, 0 is stable, and a
positive unstable equilibrium appears.

(iv) 𝑎 < 0, 𝑏 > 0. When 𝜙 changes from negative to
positive, 0 changes its stability from stable to unsta-
ble. Correspondingly, a negative unstable equilibrium
becomes positive and locally asymptotically stable.
Particularly, if 𝑎 > 0 and 𝑏 > 0, then, a backward
bifurcation occurs at 𝜙 = 0.

We make the following change of variables: 𝑆 = 𝑥1,
𝐼 = 𝑥2, 𝐼𝑘 = 𝑥3, 𝑃 = 𝑥4, 𝑃𝑘 = 𝑥5, 𝑇 = 𝑥6, 𝐴 = 𝑥7, and
𝐴𝑘 = 𝑥8 so that 𝑁 = ∑

8

𝑛=1
𝑥𝑛. We now use the vector

notation 𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8)
𝑇. Then, model

system (2) can be written in the form 𝑑𝑋/𝑑𝑡 = 𝐹 =

(𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓8)
𝑇, such that

𝑥
󸀠

1
(𝑡) = 𝑓1 = Λ − (𝜆ℎ + 𝜇) 𝑥1 (𝑡) ,

𝑥
󸀠

2
(𝑡) = 𝑓2 = 𝜆ℎ𝑥1 (𝑡) − (𝜖1 + 𝜇 + 𝜓1 + 𝜙1) 𝑥2 (𝑡) ,

𝑥
󸀠

3
(𝑡) = 𝑓3 = 𝜖1𝑥2 (𝑡) − (𝜇 + 𝜓1 + 𝜙1 + 𝜏1) 𝑥3 (𝑡) ,

𝑥
󸀠

4
(𝑡) = 𝑓4 = 𝜓1𝑥2 (𝑡) − (𝜙2 + 𝜖2 + 𝜃1 + 𝜇) 𝑥4 (𝑡) ,

𝑥
󸀠

5
(𝑡) = 𝑓5 = 𝜖2𝑥4 (𝑡) + 𝜓1𝑥3 − (𝜙2 + 𝜃1 + 𝜇 + 𝜏2) 𝑥5 (𝑡) ,

𝑥
󸀠

6
(𝑡) = 𝑓6 = 𝜙1 (𝑥2 (𝑡) + 𝑥3 (𝑡)) + 𝜙2 (𝑥4 (𝑡) + 𝑥5 (𝑡))

− (𝜃2 + 𝜇) 𝑥6 (𝑡) ,

𝑥
󸀠

7
(𝑡) = 𝑓7 = 𝜃1𝑥4 (𝑡) + 𝜃2𝑥6 (𝑡) − (𝜖3 + 𝛿1 + 𝜇) 𝑥7 (𝑡) ,

𝑥
󸀠

8
(𝑡) = 𝑓8 = 𝜃1𝑥5 (𝑡) + 𝜖3𝑥7 (𝑡) − (𝛿1 + 𝛿2 + 𝜇) 𝑥8 (𝑡) ,

(29)

where

𝜆ℎ =

𝛾1𝑥6 + 𝑥2 + 𝛾2𝑥3 + 𝛾3𝑥4 + 𝛾4𝑥5

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6

. (30)

The Jacobian matrix of system (29) at the disease-free
equilibrium is given by

𝐽 (𝜉0) = (

𝛽 − 𝐾1 𝛾3𝛽 𝛾2𝛽 𝛾4𝛽 𝛾1𝛽

𝜓1 −𝐾2 0 0 0

𝜖1 0 −𝐾3 0 0

0 𝜖2 𝜓1 −𝐾4 0

𝜙1 𝜙2 𝜙1 𝜙2 −𝐾5

) , (31)

from which it can be shown thatR𝑘 is the same as in (14). If
𝛽
∗ is taken as a bifurcation point and if we consider the case

R1 = 1 and solve for 𝛽
∗

= 𝛽 gives

𝛽
∗

=

1

R𝑘
. (32)

The linearised systemof the transformed equations (29) at
𝛽
∗ has a simple zero eigenvalue. Hence, the Centre Manifold

Theory [24] can be used to analyse the dynamics of system
(29) near 𝛽

∗. It can be shown that the Jacobian of (29) at 𝛽
∗

has a right eigenvector associated with the zero eigenvalue
given by 𝑢 = [𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

𝑇, where

𝑢2 = 𝑢2 > 0, 𝑢3 =

𝑢2𝜓1

𝐾2

> 0,

𝑢4 =

𝑢2𝜖1

𝐾3

> 0, 𝑢6 =

𝑢2𝜙1 + 𝑢4𝜙1 + (𝑢3 + 𝑢5) 𝜙2

𝐾5

> 0,

𝑢7 =

𝑢2𝜃1 + 𝑢6𝜃2

𝐾6

> 0, 𝑢8 =

𝑢7𝜖3 + 𝑢4𝜃1

𝐾7

> 0,

𝑢1 = −

𝛽 (𝑢2 + 𝑢6𝛾1 + 𝑢4𝛾2 + 𝑢3𝛾3 + 𝑢5𝛾4)

𝜇

< 0.

(33)
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The left eigenvector of 𝐽(𝜉0) associated with the zero
eigenvalue at 𝛽 = 𝛽

∗ is given by V = [V1, V2, V3, V4, V5, V6,
V7, V8] where

V1 = V7 = V8 = 0, V2 = V2 > 0,

V3 =

𝛽V2𝛾3 + V5𝜖2 + V6𝜙2
𝐾2

> 0, V4 =

𝛽V2𝛾2 + V6𝜙1 + V5𝜓1
𝐾3

,

V5 =

𝛽V2𝛾4 + V6𝜙2
𝐾4

, V6 =

𝛽V2𝛾1
𝐾5

.

(34)

For the model system (2), the associated nonzero partial
derivatives of 𝐹 at the disease-free equilibrium are given by

𝜕𝑓
2

2

𝜕𝑥2𝜕𝑥2

= −

2𝛽𝜇

Λ

,

𝜕𝑓
2

2

𝜕𝑥2𝜕𝑥3

=

𝜕𝑓
2

2

𝜕𝑥2𝜕𝑥3

= −

𝛽𝜇 (1 + 𝛾2)

Λ

,

𝜕𝑓
2

2

𝜕𝑥2𝜕𝑥4

=

𝜕𝑓
2

2

𝜕𝑥4𝜕𝑥2

= −

𝛽𝜇 (1 + 𝛾3)

Λ

,

𝜕𝑓
2

2

𝜕𝑥2𝜕𝑥5

= −

𝜕𝑓
2

2

𝜕𝑥5𝜕𝑥2

=

𝛽𝜇 (1 + 𝛾4)

Λ

,

𝜕𝑓
2

2

𝜕𝑥2𝜕𝑥6

=

𝜕𝑓
2

2

𝜕𝑥6𝜕𝑥2

= −

𝛽𝜇𝑢6 (1 + 𝛾1)

Λ

,

𝜕𝑓
2

2

𝜕𝑥3𝜕𝑥3

= −

2𝛽𝜇𝛾2

Λ

,

𝜕𝑓
2

2

𝜕𝑥3𝜕𝑥4

=

𝜕𝑓
2

2

𝜕𝑥4𝜕𝑥3

= −

𝛽𝜇 (𝛾2 + 𝛾3)

Λ

,

𝜕𝑓
2

2

𝜕𝑥3𝜕𝑥5

=

𝜕𝑓
2

2

𝜕𝑥5𝜕𝑥3

= −

𝛽𝜇 (𝛾2 + 𝛾4)

Λ

,

𝜕𝑓
2

2

𝜕𝑥3𝜕𝑥6

=

𝜕𝑓
2

2

𝜕𝑥6𝜕𝑥3

=

𝛽𝜇 (𝛾1 + 𝛾2)

Λ

,

𝜕𝑓
2

2

𝜕𝑥4𝜕𝑥4

= −

2𝛽𝜇𝛾3

Λ

,

𝜕𝑓
2

2

𝜕𝑥4𝜕𝑥5

=

𝜕𝑓
2

2

𝜕𝑥5𝜕𝑥4

=

𝛽𝜇 (𝛾3 + 𝛾4)

Λ

,

𝜕𝑓
2

2

𝜕𝑥4𝜕𝑥6

=

𝜕𝑓
2

2

𝜕𝑥6𝜕𝑥4

= −

𝛽𝜇 (𝛾1 + 𝛾3)

Λ

,

𝜕𝑓
2

2

𝜕𝑥5𝜕𝑥5

=

2𝛽𝜇𝛾4

Λ

,

𝜕𝑓
2

2

𝜕𝑥5𝜕𝑥6

=

𝜕𝑓
2

2

𝜕𝑥6𝜕𝑥5

=

𝛽𝜇 (𝛾1 + 𝛾4)

Λ

,

𝜕𝑓
2

2

𝜕𝑥6𝜕𝑥6

=

2𝛽𝜇𝛾1

Λ

.

(35)

From (28), it follows that

𝑎 = −

1

Λ𝐾
2

2
𝐾
2

3
𝐾
2

4
𝐾
2

5

× (2𝛽𝜇𝑢
2

2
V2 (𝐾2𝐾4 (𝐾3 + 𝜖1) (𝐾5 + 𝜙1)

+ (𝐾2𝜖1 + 𝐾3 (𝐾4 + 𝜖2)) (𝐾5 + 𝜙2) 𝜓1)

× (𝐾3 (𝐾5 (𝑎4𝛾2 + 𝛾4𝜖2) + 𝛾1 (𝐾4 + 𝜖2) 𝜙2) 𝜓1

+ 𝐾2 (𝐾4 (𝐾5 (𝐾3 + 𝛾3𝜖1) + 𝛾1 (𝐾3 + 𝜖1) 𝜙1)

+𝜖1 (𝐾5𝛾4 + 𝛾1𝜙2) 𝜓1)))

< 0.

(36)

For the sign of 𝑏, it is associated with the nonvanishing
partial derivatives of 𝐹,

𝜕
2
𝑓2

𝜕𝑥2
𝜕𝛽𝑚

= 1,

𝜕
2
𝑓2

𝜕𝑥3
𝜕𝛽𝑚

= 𝛾2,

𝜕
2
𝑓2

𝜕𝑥4
𝜕𝛽𝑚

= 𝛾3,

𝜕
2
𝑓2

𝜕𝑥5
𝜕𝛽𝑚

= 𝛾4,

𝜕
2
𝑓2

𝜕𝑥6
𝜕𝛽𝑚

= 𝛾1.

(37)

From (28), it follows that

𝑏 = V2 [𝑢2

𝜕
2
𝑓2

𝜕𝑥2
𝜕𝛽𝑚

+ 𝑢3

𝜕
2
𝑓2

𝜕𝑥3
𝜕𝛽𝑚

+ 𝑢4

𝜕
2
𝑓2

𝜕𝑥4
𝜕𝛽𝑚

+𝑢5

𝜕
2
𝑓2

𝜕𝑥5
𝜕𝛽𝑚

+ 𝑢6

𝜕
2
𝑓2

𝜕𝑥6
𝜕𝛽𝑚

] > 0.

(38)

ByTheorem 11 in [25] we establish result in Lemma 4.

Lemma 4. Since 𝑎 < 0, then model system (2) has a forward
transcritical bifurcation and a unique locally stable endemic
equilibrium (E∗) guaranteed by Lemma 3 exists for R𝑘 > 1

but sufficiently close to 1.

3.4. Analysis of the Reproductive Number R𝑘. To analyze
the coinfection dynamics of KS and HIV, we investigate
the KS-induced reproductive number in (14). In (14), we
note that the partial reproductive numbers R𝐼, R𝐼𝐾 , R𝑃,
R𝑃𝐾 , andR𝑇 represent the contribution to the reproduction
number R𝑘 from the following classes of infectives HIV
only (𝐼), coinfected (𝐼𝑘), Pre-AIDS (𝑃), coinfected pre-AIDS
(𝑃𝑘), and those receiving HAART treatment (𝑇). The partial
reproductive number R𝑇 representing the contribution of
groups in receipt of ART is split into R𝑇1 , R𝑇2 , R𝑇3 , R𝑇4 ,
and R𝑇5 and represents the contribution of HIV infectives,
infectives dually infected with KS, Pre-AIDS infectives, and
Pre-AIDS infectives dually infected with KS, respectively,
who receive anti-retroviral therapy.

If we defineR0 to be the basic HIV reproductive number
in the absence of KS and HIV treatment and set parameters
related to KS and treatment to zero in (14) we obtain

R𝐾|𝜖1=𝜖2=𝜙1=𝜙2=0 = R0 = R𝐼 + R𝑃. (39)

If we define the partial reproductive number without
treatment to beR𝑁𝑇 and set parameters related to treatment
to zero then we obtain

R𝐾|𝜙1=𝜙2=0 = R𝑁𝑇,

= R𝐼 + R𝐼𝐾 + R𝑃 + R𝑃𝐾

> R0.

(40)
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Figure 2: (a) 3D plot ofR𝐾 against the rates of KS manifestation for infected and pre-AIDS classes for variable values of 𝜖1 and 𝜖2, all other
parameters constant as in Table 1, (b) contour plot map ofR𝐾 against 𝜖1 and 𝜖2, all other parameters constant as in Table 1, (c) 3D plot ofR𝐾
against the rates of ART administration for infected and pre-AIDS classes for variable values of 𝜙1 and 𝜙2, all other parameters constant as in
Table 1, and (d) contour plot map ofR𝐾 against 𝜙1 and 𝜙2, all other parameters constant as in Table 1.

If R0 > 1, then not providing treatment to all infective
classes worsens the HIV in this population. Note that even if
R0 < 1, the option not to provide treatment to all infective
classes could increase the reproduction number above 1.
Treatment to all infective classes is necessary to effectively
control the HIV disease spread. Using sensitivity analysis on
R𝐾, we have reinforced some of these findings as shown in
Figure 2.

From Figures 2(a) and 2(b) wem note that an increase
in the rate of infected people who develop KS will lead to
an increase in R𝐾 and consequently an increase in the HIV
epidemic. However, an increase in the rate of progress to dual
infection for people in the pre-AIDS class will result in a
marginal increase ofR𝐾 and hence the HIV epidemic.

Figures 2(c) and 2(d) show that treatment of infected
individuals and dually infected individuals will have a much

higher positive impact on R𝐾 and the epidemic than treat-
ment at the pre-AIDS stage and this leads us to conclude that
early administration of HAART on HIV infectives to curtail
the growth of opportunistic infections, such as KS, will have
a more positive impact than delayed therapy at the pre-AIDS
stage.

4. Numerical Simulations

Using the R programming environment, we ran numerical
simulations of the model. The following data were input as
initial conditions:

𝑁0 = [𝐼, 𝐼𝑘, 𝑃, 𝑃𝑘, 𝑇, 𝐴, 𝐴𝑘, 𝑆] = [1, 0, 0, 0, 0, 0, 0, 800] . (41)

Parameter values used in the numerical simulations of
model system (2) are shown in Table 1. HIV/KS coinfection
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Table 1: Parameter values and their estimates.

Parameter Symbol Value Source

HIV rate of transmission 𝛽 0.4801∗ Baggaley et al. [5],
Boily et al. [6]

Death due to AIDS 𝛿1 0.333 Malunguza et al. [7],
Mukandavire et al. [8]

Death due to AIDS with KS 𝛿2 0.067∗ Malunguza et al. [7],
Mukandavire et al. [8]

Rate of KS acquisition among HIV-infected cohort 𝜖1 0.001 Assumed
Rate of KS acquisition among pre-AIDS cohort 𝜖2 0.002 Assumed
Rate of KS acquisition among AIDS cohort 𝜖3 0.003 Assumed
Relative HIV infectiousness of an HIV-infected individual 𝛾1 0.8 Assumed
Relative HIV infectiousness of a coinfected individual 𝛾

2
1.1 Assumed

Relative HIV infectiousness of a pre-AIDS individual 𝛾3 1.2 Assumed
Relative HIV infectiousness of an AIDS individual 𝛾4 1.3 Assumed

Recruitment rate of sexually mature individuals Λ 800∗
Barley et al. [9],

Malunguza et al. [7]
Mukandavire et al. [8, 10, 11]

Natural mortality rate 𝜇 0.02 Mukandavire et al. [8]
Treatment rate of infected and coinfected cohorts 𝜙1 Varies Assumed
Treatment rate of pre-AIDS and pre-AIDS coinfected cohorts 𝜙2 Varies Assumed
Natural progression to pre-AIDS 𝜓1 0.01 Assumed
Rate of acute KS development in coinfected cohort 𝜏1 0.0001 Assumed
Rate of acute KS development in pre-AIDS coinfected cohort 𝜏2 0.0002 Assumed
Rate of acute KS development in AIDS coinfected cohort 𝜏3 0.0003 Assumed
Natural progression to AIDS 𝜃1 0.1 Mukandavire et al. [8, 10, 11]
Natural progression to AIDS after treatment 𝜃2 0.1 Assumed
∗Denotes a parameter obtained by modifying a value in the given source.

study is still in its infancy. A number of numeric values for
the parameters shown in Table 1 are reasonable estimates.
Someof the parameterswere estimated bymodifying baseline
values from published literature and these are denoted with
an asterisk in Table 1.

Our value for the rate of HIV transmission is the average
of the minimum (0.011) and maximum values (0.95) for the
same parameter in Baggaley et al. [5] and Boily et al. [6]. We
assumed that a death rate due to AIDS and KS coinfection
would be 0.4; in our model, 𝛿1 and 𝛿2 are summed. Our
recruitment rate is calculated by incorporating an annual
recruitment rate (0.029) from Malunguza et al. [7]. In this
study, we take the population of sub-Sahara Africa to be 767
million as in Mukandawire et al. [16] and Barley et al. [13].

Figure 3(a) shows that in the absence of treatment, the
number of individuals with the AIDS/KS coinfection exceeds
the number of those with just AIDS; that is, 54.0% of the total
AIDS population has KS by the end of the model. Merely
affecting a treatment rate of 1%, is enough to reverse this
relation as depicted in Figure 3(b) where 61.7% of all AIDS
patients are devoid of KS. If the treatment rate is increased to
10%, the AIDS population without the coinfection increases
to 85.7% as depicted in Figure 3(c). Using parameter values
in Table 1 causes the model to tend towards some endemic

equilibrium over time. In other words, the DFE is unstable,
and so we expect R0 > 1. In fact, carrying out these
computations with 𝜙1 = 𝜙2 = 0.1, we obtain R0 ≈ 4.55.
This value is slightly higher than estimated values of R0 for
HIV/AIDS in European countries, which is consistent with
our expectations [26].

Figure 3(d) provides an interesting insight into the pre-
dictions of our model. By providing treatment to 100% of
all infectives and pre-AIDS individuals the model fails to
eradicate the coinfection, and approximately an 8% preva-
lence of the coinfection among the full-blown AIDS cohort
exists. This result means that we need to be cognisant of two
objectives, namely, that we should have benchmark target
goals in the provision of treatment and that work should be
done to decrease the number of patients entering the pre-
AIDS coinfection class. It is entirely unrealistic to presume
that the coinfection can be eliminated entirely based on
providing treatment to infectives and pre-AIDS individuals
alone. In fact, Figure 3(d) shows that providing a treatment
rate of 𝜙1 = 𝜙2 = 0.2 results in about 90% of the AIDS
population losing the coinfection. Providing any further
increases to 𝜙1 and 𝜙2 results in only a 2% increase.

Our model makes no attempt to consider the cost
associated with providing the kind of treatment we have
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Figure 3: Epidemic curves for our model with the following treatment scenarios: (a) no treatment (𝜙
1

= 𝜙
2

= 0), (b) 1% treatment level
(𝜙1 = 𝜙2 = 0.01), and (c) 10% treatment level (𝜙1 = 𝜙2 = 0), (d) treatment rate versus AIDS population without coinfection. A treatment
level of 10% is sufficient at minimizing endemic populations in all the infective, untreated classes at the equilibrium.

discussed. However, it is noteworthy to consider that the
gains associated with providing treatment to any more than
20%of all infectives and pre-AIDS individuals areminimal. It
is clear that there is an 8% gap between where we would like
to see the percentage of the full-blown AIDS cohort without
coinfection and where our model currently estimates that
percentage to be. Assuming that it is unrealistic to completely
eradicate the coinfection, steps should be taken to shift the
curve in Figure 3(d) closer to 100%. We believe that a good
way to do this is by screening patients for the coinfection once
the HIV infection is first diagnosed. In general, this will serve
to decrease the total number of patients who become pre-
AIDS with the coinfection and, in turn, this will decrease the
total number of individuals presenting with the coinfection.

5. Discussion

In numerousHIV-positive cohorts, susceptibility toKSdevel-
opment is incredibly high. Recent findings that antiretroviral
treatment for HIV clinical symptoms can reverse KS in most
patients suggest that the only obstacle in preventing KS-
related complications (or even deaths) is one’s ability to access
the treatment itself. This is especially the case in sub-Saharan
Africa, where KS prevalence is higher than anywhere else in
the world, yet access to proper treatment remains low. We
have shown that providing treatment to just 10% of HIV-
infected individuals, regardless of their KS status, can offer
a significant reduction in the overall number of individuals
who end up with full-blown AIDS and KS. Certainly, we
expect that, as we increase the treatment rate, the disparity
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will become more and more favorable. However, our results
only apply to situations in which individuals develop KS on
their own—that is, in the absence of interaction with HHV-
8-infected individuals. While such a generalization may be
perfectly valid in sub-Saharan Africa, it will not apply to
other regions where HHV-8 needs to be acquired sexually or
through saliva. In other words, this model is very specific to
the sub-Saharan region.

In the future, we hope to extend this model to consider
all modes of HHV-8 transmission. One way to do this is
by introducing separate classes of HHV-8 infectious indi-
viduals. This will increase the overall reach of the model
and hopefully provide a positive influence on policy making
in areas affected by KS. For now, supporting KS education
and awareness needs to become as important as providing
universal access to antiretroviral treatment for HIV patients.
Most southern African countries already have programs in
place to encourage HIV screening; this is the perfect time to
also test for HHV-8 and provide KS counseling. Regardless of
how long the HIV/AIDS epidemic lasts in Africa, there is no
reason people should have to fight KS as well.
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