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Summary. von Willebrand factor (VWF) plays key roles

in both primary and secondary hemostasis by capturing

platelets and chaperoning clotting factor VIII, respec-

tively. It is stored within the Weibel–Palade bodies

(WPBs) of endothelial cells as a highly prothrombotic

protein, and its release is thus necessarily under tight con-

trol. Regulating the secretion of VWF involves multiple

layers of cellular machinery that act together at different

stages, leading to the exocytic fusion of WPBs with the

plasma membrane and the consequent release of VWF.

This review aims to provide a snapshot of the current

understanding of those components, in particular the

members of the Rab family, acting in the increasingly

complex story of VWF secretion.
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GTPase, von Willebrand factor, Weibel–Palade bodies.

Introduction

Endothelial von Willebrand factor (VWF) is well under-

stood to play a key role in hemostasis, acting directly to

recruit platelets to sites of vascular damage, and indirectly

by chaperoning clotting factor VIII to reduce its degrada-

tion and clearance. For VWF to be effective, it must be

secreted in a timely manner, at sufficient levels, and in an

appropriate structural format. These all rely on the proper

functioning of its carrier organelles, Weibel–Palade bodies

(WPBs). WPBs provide an environment in which the multi-

merization and folding of VWF can occur, they control the

quantum of VWF release via their size, and they are

actively involved in delivering VWF into the plasma. The

secretion of VWF is thus a complex process orchestrated

by intraorganellar events on the one hand, and cytoplasmic

machinery on the other.

WPBs were first seen by Ewald Weibel [1], then work-

ing with George Palade at Rockefeller University in New

York on St Valentine’s day 1962, and their initial charac-

terization during the early years has recently been well

described by their discoverer [2,3]. Their remarkable

shape might have made them a prime target for cell biol-

ogists, but, in fact, our understanding of these organelles

has lagged behind that of other, much less morphologi-

cally striking, anterograde carriers, such as chromaffin or

insulin granules. Recently, reviews of their structure and

function have become more frequent as interest in their

unique properties has increased [4–6]. Furthermore, the

number of other components associated with WPBs is

increasing in parallel with additional studies [7] (and ref-

erences therein). A brief overview of WPB formation and

function will be provided here for background, but this

review will focus on the most recently active areas of

research, in particular the machinery of exocytosis, the

modulation of exocytosis, and the roles of Rabs and their

effectors in these events. A schematic of the role of Rabs

in VWF secretion is shown in Fig. 1, and summaries of

the known WPB Rabs and their effectors are shown in

Tables 1 and 2, respectively.

Overview of VWF secretion

Two parallel interdependent activities underpin the release

of VWF. One is the biosynthesis of the remarkable struc-

ture that is the mature VWF protein assembly; multimer-

ized, coiled, and ready to be released. The other is the

formation and maturation of a cigar-shaped carrier,

which is enormous by comparison with other secretory

organelles. Without VWF, WPBs cannot form. Without

the specialized carrier, VWF cannot attain its functionally

active structure.

Biosynthesis of VWF

The VWF gene encodes a 2813 amino acid protein with

a 22 amino acid signal peptide and a 741 amino acid
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propeptide. Initially forming a dimer within the endoplas-

mic reticulum via C-terminal disulfide bonds, it travels

along the anterograde pathway into the Golgi apparatus,

where interchain disulfide bonds are formed, the propep-

tide is cleaved, and the remodeling of the multimerizing

protein into a proteinacious tubule commences. VWF is

incorporated into an immature carrier at the trans-Golgi

network (TGN), where the earliest-forming VWF tubules

can be seen by electron microscopy (EM) [8]. The imma-

ture WPB then carries the VWF towards the cell periph-

ery, and, during its subsequent maturation, the VWF

continues multimerizing and forming tubules [9]. At

exocytosis, very high molecular weight VWF is released

as long platelet-catching strings [10,11] that are par-

ticularly effective in primary hemostasis. Our rapidly

improving understanding of the structural aspects of mul-

timerization and tubulation has been recently reviewed

elsewhere [4,12].

Formation of WPBs

The formation of WPBs at the TGN has been evident

from the earliest EM investigations, even before it was

realized that the tubular content used as a marker of that
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Fig. 1. Formation and function of Weibel–Palade bodies (WPBs): focus on Rabs and their effectors. (1) The biogenesis of WPBs begins at the

trans-Golgi network, where tubules of von Willebrand factor (VWF) are inserted into the nascent storage organelle. This process is dependent

on the presence of a clathrin coat and the adaptor protein AP-1. Inhibition of either of these proteins results in a failure to form WPBs and

constitutive secretion of VWF (normally negligible). AP-1 also recruits the tripartite complex of aftipilin, p200, and c-synergin, which is

required (presumably by the recruitment of as yet unknown proteins) for the regulated release of VWF. Rab10 is also required for the rapid

regulated release of at least some VWF by a currently unknown mechanism. (2) Immature WPBs are trafficked by an as yet uncharacterized ki-

nesin(s) to the periphery of the cell along microtubules. (3) Immature WPBs can become anchored on F-actin by a tripartite complex consisting

of Rab27a, myosin and Rab27a-interacting protein (MyRIP), and myosin Va (MyoVa), and this allows peripheral localization and maturation

(further multimerization of VWF, condensation of tubules, and an increase in WPB length) of the WPBs for later regulated release; alterna-

tively, the immature WPBs are released basally at the cell surface, resulting in relatively short strings of VWF. WPBs also recruit Rab3B/

Rab3D and the Rab27a/Rab3 effector Slp4a (granuphilin), as well as Rab15 and the Rab27a/Rab15 effector Munc13-4. (4) Following secreta-

gogue stimulation, anchoring on actin is lost, and a Rab27a-dependent, Rab15-dependent and Munc13-4-dependent step at the cell surface is

required for exocytosis to occur (potentially via an interaction with Doc2a). (5) A Rab27a-dependent and Slp4a-dependent docking step is nec-

essary for release (potentially via an interaction with syntaxin or Munc18-1/Munc18-2). (6) VWF is released as high molecular weight strings at

the cell surface in a manner that is expedited by the contraction of a ring of actin.
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biogenesis reflected the presence of VWF [13]. This initial

formation is driven by the tubulation of VWF, as heterol-

ogous expression of VWF in certain other cell types

drives cigar-shaped WPB formation [14], and clear distor-

tion of the surrounding membrane accompanies even ini-

tial VWF tubulation [8]. Interestingly, a cytoplasmic

supporting structure is also required; a clathrin coat is

clearly present on the cytoplasmic face of forming WPBs

[15].

In the absence of the heterotetrameric clathrin adaptor

AP-1, a failure to recruit clathrin leads to the formation

of small VWF-containing carriers that are not capable of

supporting tubulation of VWF, and that do not respond

to secretagogue [15]. AP-1 also plays a more active role

in the formation of functional WPBs, because, in addition

to recruitment of the structural protein clathrin, it also

recruits the trimeric complex of p200, aftiphilin, and c-
synergin, a poorly understood complex that is essential

for the targeting of WPBs into the regulated secretory

pathway [16]. In their absence, AP-1 can still recruit

clathrin, and VWF is still organized into WPBs of identi-

cal morphology to controls, but there is a loss of regu-

lated secretion and a concomitant rise in basal secretion

(see below). The exact mechanism of aftiphilin–p200–c-
synergin action is enigmatic, but the localization of this

complex on immature perinuclear WPBs suggests the

early recruitment of a factor required for regulated release

or (less likely) of an inhibitor that blocks basal release.

AP-1 therefore coordinates the targeting and formation

of WPBs. In the absence of controlled delivery to the

blood (aftiphilin–c-synergin-dependent), formation of the

most highly prothrombotic forms of VWF (clathrin-

dependent) is also prevented. Thus, the most highly pro-

thrombotic forms of VWF cannot be made unless the

secretion of those organelles is regulated. Coupling of the

two processes via their mutual dependence on AP-1 thus

provides a useful checkpoint (Fig. 1).

After becoming independent of the TGN, WPBs are

redistributed via interactions with both microtubules (via

dynein and an as yet undefined kinesin[s]) and actin fila-

ments (via myosin Va [MyoVa]) in such a way as to shift

the overall distribution of the cell WPB population to the

periphery [17–20]. In parallel, recruitment of further com-

ponents, including the integral membrane protein CD63

[21,22] and the Rabs that play a major role in WPB func-

tioning (see below), occurs, as well as some remodeling of

Table 1 Rab proteins recruited to Weibel–Palade bodies (WPBs)

Rab Determination on WPBs Method

siRNA effect on

VWF release Comment Reference

Rab27a Endogenous expression and

overexpression

Western blot, RT-

PCR, and IF

Increase or decrease – [26,34,47,50]

Rab27b Overexpression RT-PCR Decrease Level of expression very low [47]

Rab3A Overexpression RT-PCR Decrease – [47]

Rab3B Endogenous expression and

overexpression

Western blot, RT-

PCR, and IF

No effect – [47,50]

Rab3D Endogenous expression and

overexpression

Western blot, RT-

PCR, and IF

Decrease or no

effect

Endogenous Rab3D weakly

detectable in 5% of cells

[47,50,52]

Rab15 Overexpression RT-PCR Decrease – [47]

Rab33a Overexpression RT-PCR No effect – [47]

Rab37 Overexpression RT-PCR No effect Low expression (cycle time 39.74) [47]

IF, Immunofluorescence microscopy; siRNA, small interfering RNA; VWF, von Willebrand factor.

Table 2 Rab effector proteins recruited to Weibel–Palade bodies (WPBs)

Rab effector

Determination on

WPB Method

siRNA effect

on VWF

release Comment Reference

MyRIP

(Slac2c)

Endogenous

expression and

overexpression

Western blot,

RT-PCR,

and IF

Increase Binds Rab27a* and MyoVa*/MyoVIIa [19,26,33,50,80]

Slp4a

(granuphilin)

Endogenous

expression and

overexpression

Western blot,

RT-PCR,

and IF

Decrease Binds Rab27a* (GTP-bound and GDP-bound), Rab3A-

D*, Rab8, syntaxin 1a, syntaxin 2, syntaxin 3,

Munc18-1, and Munc18-2

[50,55,56,81]

Munc13-4 Overexpression Western blot Decrease Binds Rab27a/b*, Rab15*, and Doc2a. [47,82,83]

MyoVa Endogenous

expression and

overexpression

Western blot,

RT-PCR,

and IF

Decrease Binds MyRIP*, Slp4a, Rab8, Rab3, Rab10, and

melanophilin

[19,59,84–86]

IF, Immunofluorescence microscopy; MyoVa, myosin Va; MyoVIIa, myosin VIIa; MyRIP, myosin and Rab27a-interacting protein; siRNA,

small interfering RNA; VWF, von Willebrand factor.*Interaction that has been shown to occur in endothelial cells.
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the WPB limiting membrane and the probable removal of

material. This remodeling process is especially poorly

understood, and is currently represented only by EM

images of clathrin-coated buds on WPBs [8]. Neither spe-

cific cargoes nor the adaptor(s) involved have yet been

identified.

Secretion of VWF can take place by one of three

pathways: regulated, secretagogue-stimulated release of

VWF from WPBs; basal, secretagogue-independent

release of VWF from WPBs; or constitutive, secreta-

gogue-independent release of VWF from non-WPB

anterograde carriers. Initially, most secretion of VWF

from endothelial cells was thought to occur constitutively

[23]. However, a study of the multimeric state of endo-

thelial releasates by Tsai et al. [24] challenged this view,

and suggested that the majority of VWF was secreted by

the regulated secretory pathway. Most recently, Giblin

et al. [25] revisited the issue, and concluded that most of

the VWF released in the absence of secretagogue stimu-

lation is from WPBs, i.e. by basal secretion. Release of

VWF from constitutive carriers is therefore only appar-

ent when a component of the cytoplasmic machinery

such as AP-1 is ablated [15].

Post-scission, the immature WPB will either undergo

exocytosis basally or become anchored to F-actin, where

maturation continues before exocytosis [26]. Regulated

exocytosis will follow activation of the endothelial cells

by any of a large number of different secretagogues [27].

Exocytosis of WPB; mechanisms and machinery

Bringing an organelle to the plasma membrane for subse-

quent exocytosis is a multistep process, involving sequen-

tial stages that may include tethering, docking, priming,

and fusion [28]. In the case of WPB exocytosis, much is

not yet understood, including which of the above stages

may exist in the endothelial regulated secretory system

(Fig. 1).

Peripheral anchoring of WPBs to allow maturation

There is an absolute physiologic requirement for the

release of high molecular weight VWF multimers, as an

absence of just the very highest molecular weight forms

results in a bleeding diathesis (such as observed in

type 2A and type 2B von Willebrand disease) [29]. Given

that multimerization continues in WPBs after their scis-

sion from the TGN [9], this places particular importance

on this maturation step. This pre-exocytic stage is sup-

ported by Rab27A, a GTPase that is often associated

with lysosome-related regulated secretory organelles,

where it generally acts via its effectors to link organelles

to cortical actin filaments [30–33]. Rab27A was the first

WPB Rab to be identified, and Hannah et al. showed

that this Rab is not only recruited to WPBs in endothelial

cells, but also recruited to the pseudo-WPBs induced by

the heterologous expression of VWF in HEK293 cells.

These data show that Rab27A is recruited by a remark-

able content-driven, maturation-dependent mechanism

that is independent of cell type [34].

Subsequent work by Nightingale et al., using small

interfering RNA (siRNA)-mediated suppression of

Rab27A, revealed a number of related phenotypes.

First, depletion in human umbilical vein endothelial cells

(HUVECs) over a period of 6 days led to a redistribu-

tion of WPBs from a peripheral to a more perinuclear

localization. Second, this redistribution was accompa-

nied by increases in both basal, phorbol-12-myristate-13-

acetate (PMA)-evoked and histamine-evoked release.

Third, the VWF released from Rab27a-deficient cells is

less highly multimerized than that released from con-

trols, and gives rise to shorter VWF strings under flow

(incidentally demonstrating a link between degree of

multimerization and length of strings). These data sug-

gest that Rab27A acts to modulate the maturation state

of the released VWF in a manner that is dependent on

the intracellular distribution of WPBs; Rab27A thus

acts to anchor the WPBs to filamentous actin and inhi-

bit release to allow appropriate maturation, and full

multimerization to be completed. Secretagogue activa-

tion of the endothelial cell leads to release from anchor-

age, and fusion with the plasma membrane, leading to

secretion of the VWF [26].

All Rabs act through their effectors. Rab27A has 11

reported effectors, and Nightingale et al. found that sev-

eral of these were expressed in HUVECs, including myo-

sin and Rab27a-interacting protein (MyRIP), granuphilin

(Slp4a), Slp3, Noc2, Munc13-4, and Slp2a. They analyzed

the role of MyRIP, the most highly expressed of these, in

HUVECs. They found that Rab27A is recruited to

maturing WPBs, that this is followed by recruitment of

MyRIP, and that the acquisition of MyRIP by WPBs is

associated with peripheral distribution. The effects of siR-

NA suppression of MyRIP were similar to those of siR-

NA suppression of Rab27a, i.e. an increase in PMA-

evoked release of VWF, and a marked loss of the more

peripherally located WPBs. The secretion phenotype

found following suppression of MyRIP was less marked

than that seen following suppression of Rab27a, suggest-

ing potential additional roles for other effector proteins

[26]. Subsequently, Pulido et al. [19] showed that the

actin-binding protein MyoVa binds to MyRIP, complet-

ing a tripartite link between F-actin and the WPB.

Modes of exocytic fusion events

The secretion of material from granules can occur in sev-

eral modes. In addition to simple exocytosis of secretory

carriers fusing individually with the plasma membrane, in

some cells compound multivesicular or cumulative fusion

has been reported [35]. The former refers to granules fus-

ing with each other and then the plasma membrane, as in
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mast cells, where massive simultaneous release of all

secretory cargoes occurs [36]. The latter is a variant

where, after initial fusion of a granule with the plasma

membrane, subsequent granules fuse to that same struc-

ture. Eosinophils use a mixture of both of these strategies

to produce a massive, but focused, release of cytotoxic

proteins [37].

Valentijn et al. used EM analyses of activated endothe-

lial cells to suggest that WPBs exocytose via multivesicu-

lar compound exocytosis. They describe a phenomenon

whereby there is intracellular homotypic fusion of WPBs

into a super-sized collapsed granule to produce a struc-

ture that they name a ‘secretory pod’ [38]. This then ini-

tially fuses to the plasma membrane via a thin tubule,

similar to that seen by Rosenthal et al. in one cryo-EM

image, where it is apparently connecting a single cigar-

shaped WPB to the plasma membrane [39]. The initial

description by Valentijn et al. leaves many unanswered

questions, such as whether this is an obligatory route for

release of VWF – which is improbable, as the movies

from other laboratories [40–44] overwhelmingly show

exocytosis from single granules – or a minor variant. If

the latter is the case, then under what physiologic circum-

stances might it be employed by endothelial cells, and

what would be the advantages and disadvantages for the

cell? Finally, the data currently available do not yet rule

out cumulative compound exocytosis as an additional

possibility for WPB fusion.

Even the fusion event itself is not simple in the case of

WPBs. A detailed analysis of WPB fusion by Babich

et al. [41] revealed that this is not an all or nothing event.

In common with other secretory systems [45], the exocytic

pore can remain open after initial fusion until all of the

content has been released (full fusion), or can reclose (kiss

and run). Babich found a stimulatory regime for endothe-

lial cells that drives WPBs into a state that they colorfully

describe as a long lingering kiss. This allows for the effec-

tive release of smaller molecules, such as cytokines, but

retains the VWF within the collapsed WPB (after fusion,

the open pore leads to a rise in intra-WPB pH, leading,

in turn, to a loss of the VWF tubular structures, and thus

a loss of the cigar shape). This could allow endothelial

cells to tune their response to different secretagogues,

allowing a release of content that has a lower ratio of

VWF to cytokines and is thus less thrombotic and more

inflammatory.

Thus, the overall mechanism by which WPBs engage

with the plasma membrane to release their content is still

not completely understood; and what of the molecular

machinery that will drive this multistep process?

Tethering, docking and fusion machinery

The first cellular machinery to be identified as likely to be

involved in tethering WPBs at the plasma membrane was

identified by Voorberg et al. They found the small

GTPase RalA to be associated with WPBs [46], and went

on to show that expression of mutants of this protein

could strongly affect the evoked release of VWF. RalA is

a component of the exocyst, a tethering complex that also

interacts with soluble N-ethylmaleimide-sensitive factor

(NSF) attachment protein receptors (SNAREs) and their

regulators, including Rabs – see below. In addition to

tethering factors, Munc13-4 [47] and Munc18c [48], a

member of another family of SNARE modulators – the

SM proteins – have been identified as playing a role in

VWF secretion. SM proteins can regulate exocytosis by

binding to syntaxins (plasma membrane Q-SNAREs) and

modulating their conformation [49]. It is noteworthy that

Munc13-4 was confirmed to be expressed in HUVECs by

Zografou et al. [47], and colocalizes with WPBs. It has

also been shown to act as an effector of Rab27A (see

below). Yet another regulator of fusion involved in endo-

thelial exocytosis is Slp4a/granuphilin. Granuphilin is a

positive regulator of VWF secretion [50] and is a third

effector of Rab27A. It has been shown to act in docking

insulin granules to the plasma membrane in pancreatic b-
cells [51].

It is noteworthy that Rab27A and (particularly) granu-

philin are located at the very tip of the WPB that then fuses

with the plasma membrane (Nightingale and Cutler,

unpublished data). Rab27a is thus involved in more than

one stage of secretion, acting in different ways on each

occasion. How this change in function is managed is not

clear, although it must be centered on a change in effector.

Finally, the annexin A2–S100A10 complex has also

been shown to be needed for VWF secretion [52], but,

although it probably acts late in exocytosis at the plasma

membrane (possibly playing a regulatory role via its lipid-

binding and calcium-binding properties), just how it fits

into the process is not yet clear.

In attempting to unravel some of the complexities of

VWF secretion, Bierings et al. [50] carried out a compara-

tive analysis of both MyRIP and Slp4a. Slp4a can bind

plasma membrane-associated syntaxins [53,54] and

Munc18 [55–57], to link secretory granules to exocytic

SNAREs. It can also interact with Rabs other than

Rab27A, including Rab3A, Rab3B, Rab3C, and Rab3D

[58], and with MyoVa [59]. They found that MyRIP is a

negative regulator of VWF release in response to hista-

mine, in agreement with Nightingale et al., whereas Slp4a

acts as a positive regulator. This suggests that Slp4a inter-

acts with the exocytic machinery in the endothelial sys-

tem, again suggesting that there may be a population of

WPBs within HUVECs that are somehow docked at the

plasma membrane, or a role for a docking phase distinct

from the earlier anchoring phase. They conclude by pro-

posing that the balance of the two effectors recruited by

Rab27A will determine the probability of release of

WPBs [50].

The other Rab that is associated with WPBs is Rab3D

[52], and overexpression of mutants of this Rab has been
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reported to interfere with WPB formation and thereby

affect VWF secretion. However, Bierings et al. reported

that siRNA suppression of Rab3B or Rab3D interferes

with the recruitment of Slp4a but not with VWF secre-

tion; they found that exocytosis was affected only via

suppression of Rab27A. They did, however, confirm the

inhibitory effect of overexpression of Rab3D on secretion,

but found that this was indirect, and resulted from com-

petition of Rab27a for Slp4a effector proteins. They also

mention that Rab3B is the major isoform, with 95% of

expression, with Rab3D representing only 5% of

expressed Rab3 [50].

A set of data from Zografou et al. [47] significantly

complicates this picture. They carried out an overexpres-

sion screen of green fluorescent protein-tagged Rabs in

HUVECs, and found not only those reported by others –
Rab27A, Rab3B, and Rab3D – but also that the other

isoforms of Rab3, the other isoform of Rab27, as well as

Rab15, Rab33A, and Rab37, are targeted to WPBs. Of

these, Rab15 is the most unexpected, as an established

endocytic Rab. They depleted these Rabs by siRNA abla-

tion, and, by examining their role in secretion with a mix-

ture of ATP, vascular endothelial growth factor and basic

fibroblast growth factor as secretagogues, determined that

Rab3A, Rab3D, Rab27A and Rab15 are all needed for

secretion of VWF. Thus, while confirming the role of

Rab27A, they introduce a further three Rabs as being

required for exocytosis of WPBs. Rab3A was not found

to be expressed in HUVECs by Bierings et al., although

overexpression of this isoform showed it to localize to

WPBs in HUVECs. Both Knop and Bierings have dem-

onstrated that Rab3D is expressed in HUVECs and colo-

calizes with WPBs, but Bierings and Zografou disagree as

to whether it functions in exocytosis. In overexpression

studies, Rab3D was reported by Knop to affect the for-

mation of WPBs, by Bierings, using siRNA ablation, not

to affect the release of VWF, but by Zografou, again

using siRNA, to indeed affect the release of VWF. Thus

far, only Zografou et al. have reported a WPB localiza-

tion and function for Rab15.

Zografou also introduce analyses of the third Rab

effector to be studied in endothelial cells, Munc13-4 [47].

This protein, identified as a Rab27A effector that is

widely expressed in hemopoietic cells, is involved in the

priming of secretory granules, and promotes SNARE

complex formation [60]. Zografou et al. have found that

siRNA suppression of Munc13-4 reduces VWF secretion

and that, in addition to Rab27A, it interacts with Rab15.

They suggest that both Rabs act through this effector.

The role of an endocytic Rab (15) in exocytosis of WPBs

is difficult to interpret, but they suggest that it might

relate to the well-known delivery from endosomes of

WPB components, including CD63, the essential cofactor

of the WPB integral membrane protein P-selectin [61].

The studies by Bierings et al. and Zografou et al. found

a fall in the evoked release of VWF from Rab27A-

depleted cells; this is in contrast to the increase in release

demonstrated by Nightingale et al. Bierings et al. did,

however, confirm the negative regulatory role for the

Rab27a effector MyRIP suggested by Nightingale et al.

The difference in Rab27a depletion phenotype between

these two studies may reflect the different timescales of

their depletion experiments. If MyRIP and Rab27a do, as

hypothesized, provide a brake that allows maturation,

then longer-term depletion of Rab27A could result in an

entirely immature population of WPBs that are hyperres-

posive to secretagogue. Such an effect may be masked by

the other Rab27a effectors (Munc13-4 and Slp4a) in a

shorter experimental timescale.

Many of these proteins are probably operating on the

fusion machinery at the heart of exocytosis. The core

components of this fusion machinery are the SNARE

complexes, and for WPBs in endothelial cells these are

currently thought to be Vamp3, syntaxin 4, and SNAP23.

Lowenstein et al. [62] first suggested that Vamp3 on the

WPBs, and syntaxin 4 and SNAP23 on the plasma mem-

brane, were the SNARE complexes involved in WPB

fusion in experiments exploring how nitric oxide inhibits

vascular inflammation. After identifying NSF nitrosyla-

tion as the cause of the reduced inflammatory response,

they showed that antibodies against VAMP3 and Syt4

reduced the secretion of VWF from permeabilized human

aortic endothelial cells. Fu et al. [48] followed this by

showing that Syt4 was phosphorylated following endothe-

lial activation, and that its suppression by siRNA reduced

P-selectin exposure at the plasma membrane of activated

human lung microvascular endothelial cells. More

recently, Pulido et al. [63] performed a focused study of

WPB SNAREs in HUVECs, using combinations of per-

meabilized cells, siRNA ablation, and mutant proteins,

and confirmed that Vamp3, Syt4 and SNAP23 are likely

to be the core components of the WPB exocytic SNARE

complex.

To further complicate analyses of VWF secretion with

another layer of regulatory machinery, Nightingale et al.

[44,64] have described yet another way in which endothe-

lial cells can modulate the secretory consequences of

fusion. They described a novel postfusion role for actin in

VWF secretion. In addition to F-actin providing a struc-

ture for Rab27A to anchor WPBs via MyRIP and My-

oVa (see above), thus facilitating their maturation, they

found that an actomyosin IIB ring or cup is rapidly

formed around the plasma membrane-distal end of the

WPB immediately after fusion, and that this is needed for

extrusion of VWF: Poisoning of myosin IIB allows the

fused WPB to remain fused at the plasma membrane with

its cargo of VWF sitting in the collapsed WPB.

Thus, mechanisms involved in tethering, docking, prim-

ing, fusion (albeit only as defined in other secretory sys-

tems) and cargo extrusion have been found, but these are

only the bare bones of the exocytic process for WPB;

how they interact, what other components are involved
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and how they interact with the signaling pathways arising

on endothelial activation (and which have been reviewed

elsewhere) are still to be established.

One interesting new way of finding new components

may be through genome-wide association studies of VWF

and FVIII plasma levels and the associated risk of throm-

bosis [65]. Recent analyses of this type have found that

not only a syntaxin-binding protein (syntaxin-binding

protein 5) but also another syntaxin (syntaxin 2) have

been associated with increases in the levels of plasma

VWF and thrombosis [66–69]. The former protein is also

known as tomosyn, and is thought to regulate exocytosis

in other systems [70,71], whereas the latter has not previ-

ously been thought to be involved in VWF secretion.

Whether components identified by broad genetic analyses

are directly involved in WPB exocytosis, or act more indi-

rectly, remains to be established. Indeed, whether a great

deal of further machinery is still to be found is unclear;

certainly, there are significant issues still unresolved.

One puzzle relates to the docking of WPBs in endothe-

lial cells. A conventional view of granule docking, mainly

derived from neuroendocrine granules, has developed

from a morphologic definition arising from the secretory

organelles being closely apposed to the plasma mem-

brane. In endothelial cells, this has not yet been estab-

lished, although the machinery for doing so may be

emerging, but ‘docking’ by anchoring to filamentous actin

has been described. Whether both of these processes

occur separately in the endothelium, and, if so, how they

relate to each other is as yet unclear.

Conclusions

As should be clear from the above discussion, the identity

and functioning of Rabs associated with WPBs has been

a particularly active area of WPB research in the last few

years. This is because the small GTPases of the Rab fam-

ily act as master controllers of cellular membrane biology,

acting from organelle formation to exocytosis [72], Thus

far, Rabs identified as localizing to WPBs have only been

found on mature organelles. These include Rab3A,

Rab3B, Rab3C, Rab3D, Rab15, Rab27A, Rab27B,

Rab33A, and Rab37 [26,34,47,50,52]. The other Rabs

playing a role in VWF secretion are Rab10 and Rab8A,

which do not colocalize with WPBs but are associated

with the Golgi in HUVECs, and were found to interact

genetically with AP-1 (in a Caenorhabditis elegans screen)

and therefore possibly play a role in WPB biogenesis [73].

It is interesting that Rab8 has also been shown to interact

with the exocyst, and is probably involved in exocytosis

(see above), but is also thought to act in trafficking from

the Golgi [74].

In addition, each Rab will act through its effectors,

recruited by the Rab in its GTP-loaded state, when it is

switched on. The list of investigated endothelial WPB-

associated effectors (MyRIP, Slp4a, and Munc13-4) is

therefore currently shorter than the numbers of Rabs,

and some are known to interact with more than one of

the identified Rabs. This very large collection of Rabs is

consistent with their playing more than one role in WPB

functioning and VWF secretion, which will make discov-

ering precisely what might be their individual contribu-

tion, within a system of cooperation and competition,

extremely challenging. As discussed above, the picture is

further complicated by discrepancies between the pub-

lished reports.

A necessarily speculative summary of the current Rab-

related data would place Rab27 at the center of the con-

trol of exocytosis. It acts to anchor WPBs to actin via

MyRIP and MyoVa to support maturation, and then

switches to other effectors to allow it to bind to the

SNARE complex at the plasma membrane via granuphi-

lin and/or Munc13-4 to support fusion. Rab3D and

Rab3B might assist in recruiting some effectors, and

Rab15 could play a role in reinforcing the later SNARE-

binding stages of exocytosis. In other organellar systems

where multiple Rabs are present on a single organelle, a

Rab cascade can occur, whereby an upstream Rab

recruits the GDP/GTP exchange factor for the down-

stream Rab; this cascade can be further bolstered by the

downstream Rab subsequently recruiting a GTPase-acti-

vating protein specific for the upstream Rab. This is best

understood for Rab5 and Rab7 [75–77], and has been

hypothesized for Rab9 with Rab32 and Rab38 [78]. Such

a cascade has been suggested for other regulated storage

organelles that recruit both Rab27a and Rab3, such as

the acrosome [79]. Where active Rab27a increases the

likelihood of the presence of GTP-loaded Rab3, such a

situation could allow the handover of common effector

proteins. This does not, however, fit with the release of

WPBs; first, Rab3 can be found on Rab27a-deficient

WPBs, and second, removal of Rab27a and of Rab3 give

different secretory phenotypes. As yet, it is unclear what

could allow the balance of Rab27a effectors to shift from

MyRIP to Slp4a or Munc13-4 (i.e. from negative to posi-

tive effector). Perhaps, as suggested by Bierings et al., it

could result from the fact that Slp4a can bind GDP-

bound Rab, or from the increased affinity of Slp4a as

compared to that of MyRIP for Rab27a. This will pro-

vide an interesting and active area of research.

In general, much of the data now available suggest that

differences between experimental conditions may affect

the outcome of experiments, and that interpretation of

such an overall picture will require caution and further

extensive analyses. Altogether, the state of play with

respect to VWF secretion is that many of the stages are

being defined, both morphologically and by molecular

mechanistic analyses, but that such studies are early

stages in the task of producing a fully integrated and

detailed picture of how such a complex process acts in an

integrated and physiologically responsive way. What can

be said at this early stage is that the secretion of VWF is
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likely to occur via one of the most highly regulated secre-

tory systems, and that the interest in this is unlikely to

disappear anytime soon.
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