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Abstract: Back reflection losses are a key problem that limits the performances of optical communica-
tion systems that work on wavelength division multiplexing (WDM) technology based on silicon (Si)
Multimode Interference (MMI) waveguides. In order to overcome this problem, we propose a novel
design for a 1 × 4 optical demultiplexer based on the MMI in silicon nitride (SiN) buried waveguide
structure that operates at the C-band spectrum. The simulation results show that the proposed device
can transmit four channels with a 10 nm spacing between them that work in the C-band with a low
power loss range of 1.98–2.35 dB, large bandwidth of 7.68–8.08 nm, and good crosstalk of 20.9–23.6 dB.
Thanks to the low refractive index of SiN, a very low back reflection of 40.57 dB is obtained without
using a special angled MMI design, which is usually required, using Si MMI technology. Thus, this
SiN demultiplexer MMI technology can be used in WDM technique for obtaining a high data bitrate
alongside a low back reflection in optical communication systems.

Keywords: BPM; FDTD; MMI; WDM; buried waveguide; SiN; PIC

1. Introduction

The vast growth of developments in the optical communication systems over the
C-band spectrum requires new and powerful waveguide components that can support
high-speed light communication [1] with low power losses, large bandwidth, and low back
reflection losses [2,3].

Optical demultiplexers are an important part of communication networks and can be
implemented with different technology techniques: Y-branch devices [4–6], Mach–Zehnder
interferometers [7], and Multimode Interference (MMI) couplers [8–10]. Wavelength di-
vision multiplexing (WDM) technology is used to increase the data transfer bitrate by
decreasing the spacing between peak wavelengths, and as a result, more channels can be
utilized for a single spectral band [11].

A buried waveguide is a simple structure built from a narrow high index region
surrounded by a cover of low index material [12]. This structure allows light to be strongly
confined and guided through it due to the total internal reflection effect [13].

MMI coupler devices are commonly used in photonic integrated circuits (PICs) due
to their large optical bandwidth, low losses [14], and compact structure [15,16]. MMI
waveguide operation is based on the self-imaging effect, by which the electric field profile
that enters the device is duplicated into multiple images at periodic intervals along the
propagation axis of the device [17].

One of the key problems that can affect the quality of the transmitter system is the back
reflection, especially the reflection of light in the opposite direction into the laser source.
The silicon (Si) MMI couplers can suffer from reflections because of the self-imaging effect
and also from the mismatch between the refractive indexes of Si and silica (SiO2) [18].

Research studies show the use of polycarbonate polymer optical fiber as an RGB
multiplexer/demultiplexer with transmission losses of 0.6 to 1.2 dB [19,20]. In addition, a
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gallium nitride (GaN) multi-slot waveguide structure was used to function as a four-green
light demultiplexer in the visible range [21]. MMI based on GaN material was used as
a demultiplexer for dividing four channels in the visible light spectrum [22] and eight
channels in the C-band spectrum [23]. However, in these studies, the back reflection effect
was not addressed, despite its being a critical parameter for the transmitter performances

In general, the MMI coupler can suffer from various kinds of reflections that can be
grouped into two types. The first type of reflection is internal resonance modes, which are
caused by several self-imaging co-occurs. The second type of reflection is a reflection back
into the access waveguides where there is a phase difference in the input to the MMI that
can lead to imaging of the input back to itself.

To solve this issue, a lower refractive index waveguide material that supports the
C-band range with low absorption was used, and the material is silicon nitride (SiN). In
addition, the study of the light coupling mechanism of SiN MMI couple waveguides was
demonstrated, for the first time, that it can be used as a four-channel demultiplexer device.
Moreover, researchers show the great potential of using SiN-buried-waveguide-based MMI
coupler structures [24] for designing splitters and wavelength demultiplexers in the C-band
range [13] due to their low back reflection loss and low thermal sensitivity, meaning that
there is a very slight change in the operating wavelength for every degree Celsius [25].

Previous research has shown the possibility of obtaining a very low insertion loss
using SiN by designing a device based on Mach–Zehnder interferometer lattice wavelength
demultiplexer [26] but with relatively high crosstalk. Moreover, the back reflection losses
were not discussed.

In this paper, we present a design of a 1 × 4 wavelength demultiplexer based on an
MMI coupler in a SiN buried waveguide structure that divides four channels in the C-band
light range. The selected wavelengths were found to be 1530, 1540, 1550, and 1560 nm.

The device design is based on a cascade of three 1 × 2 MMI couplers, three input
waveguide segments and tapers, six S-bends, and six output tapers. The geometrical
dimensions of the buried waveguide structure and the MMI couplers were analyzed to
obtain the self-imaging effect and to find the optimal parameters of the MMI couplers.
The simulations were carried out by using the beam propagation method (BPM) [27–29]
combined with finite difference time domain (FDTD), which was analyzed and processed
by using Python scripts.

2. The 1 × 4 Demultiplexer Design and Theoretical Aspect

Figure 1a demonstrates the XY plane cross-sectional view at Z = 0, where the red
color area represents SiN, and the magenta color area represents the SiO2 cover. Hstrip is
the height of the SiN layer, and Wsrtip represents its width. Moreover, nstrip and ncover are
the refractive indexes of the SiN strip, and the SiO2 cover, and their values are 1.989 and
1.444, respectively.
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Figure 1b demonstrates the XZ plane cross-sectional view at Y = 0, where the three
cascaded MMI couplers designed for the 1 × 4 demultiplexer device are presented. The
width of the MMI coupler is WMMI, and their lengths are LMMI1, LMMI2, and LMMI3.

The width of the input waveguide segment was chosen to be 500 nm, with a height
of 310 nm. The length of the input tapers for MMI1, MMI2, and MM3 couplers was set to
be 40 µm, and the width varied between 0.5 and 0.75 µm. The length of the output tapers
for MM1, MMI2, and MMI3 couplers was set to be 35 µm, and the width varied between
0.9 and 0.5 µm. The gap (Gt) between the output tapers for each MMI coupler is 0.78 µm.

The MMI1 coupler in the three cascade is designed to be suitable for dividing four
wavelengths, which are 1530 nm (λ1), 1540 nm (λ2), 1550 nm (λ3), and 1560 nm (λ4). The
pair (λ2/λ4) is propagated into the MMI2 coupler, and the pair (λ1/λ3) is propagated into
the MMI3 coupler, as shown in Figure 1b.

The width of S-bends was chosen to match the output width of the taper, which was
set to 0.5 µm, with a length that varies from 69 to 80 µm. The distance between the outputs
of the S-bends (Gs) was chosen to be 16.5 µm for MMI1 and 11.5 µm for MMI2 and MMI3.
The full device length is 6.63 mm.

According to the self-imaging effect, every wavelength that enters the multimode
region of the device produces a direct or mirrored image of itself periodically. The distance
from the entry to the point of the first image is called the beat length (Lπ), and it is given by
the following [14]:

Lπ ≈
4neffW2

eff
3λn

; n = 1, 2, 3, 4 (1)

where λn stands for the operating wavelengths for n = 1,2,3,4, and neff is the effective
refractive index of SiN for the electrical fundamental mode. This parameter was calculated
by using the BPM mode solver. The effective width of the MMI coupler is Weff, which takes
into account the lateral penetration depth of each mode field at the strip boundaries. In the
case of transverse electric (TE) mode, the Weff size is given by the following [14]:

Weff = WMMI + (
λn

π
)
(

neff
2 − ncover

2
)− 1

2 (2)

where WMMI is the physical width of the MMI coupler, as seen in Figure 1b.
In order to separate two pairs of different wavelengths by using the MMI1, MMI2, and

MMI3 couplers, these conditions must be met for each coupler:

LMMI2= p1Lλ1
π = (p 1+q1) Lλ3

π ; LMMI3= p2Lλ2
π = (p 2+q2) Lλ4

π (3)

LMMI1 = p3Lλ1
π =

(
p3 + q3

)
Lλ2
π =

(
p3 + q3 + 1

)
Lλ3
π =

(
p3 + q3 + 2

)
Lλ4
π (4)

where q is an odd number, and p is an integer.
It is possible to shorten the propagation distance by a factor of three by canceling

the third mode from inside the MMI. In order to do so, the input taper of the MMI must
be shifted by an offset of ± (1/6) Weff from its center. Moreover, these conditions can be
optimized to obtain better performances by using BPM simulations.

The insertion loss of the demultiplexer is given by the following:

Loss(dB) = –10 log
(

Pout

Pin

)
(5)

where Pin is the input power, and Pout is the output power.
The crosstalk loss of the demultiplexer is given by the following:

CTn =
1
3

4

∑
m=1

10 log
(

Pm

Pn

)
(6)

where Pn is the desirable port power, and Pm is the power that is interfering in the other ports.
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To minimize the bend loss, the dimensions of the S-bend regions were chosen carefully.
According to Zamhari and Ehsan, the optimal S-bend offset is 5 µm for Si [30]. There-
fore, in our case, the offset is around 5 µm, and the radius of the S-bend is given by the
following equation:

R =
1
O

(
L2+O2

4

)
(7)

where O is the S-bend offset, and L is the S-bend length.

3. Results

The simulations of the three MMI couplers and the buried structure were performed
by using Rsoft photonic CAD software based on BPM and FDTD tools, while python scripts
were used to process the results data to find the optimal values.

Figure 2a shows the TE fundamental mode profile inside the SiN strip for an oper-
ating wavelength of 1530 nm at the XY plane, and Figure 2b shows the horizontal cut
(Y = 0.15 µm). The strong confinement is shown with the red color, and the spot size of
the mode is 2.36 µm × 2.22 µm, which can be increased by using an adiabatic taper to
obtain better coupling between the device and the laser source. A similar mode profile
is obtained for all the other operating wavelengths. The mode solution was used as the
launch condition for the cascaded MMI couplers at the input waveguide.
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The effective refractive indexes (neff) values were calculated and found by solving the
fundamental mode for each of the operating wavelengths, as shown in Table 1.

Table 1. The effective refractive index values for the operating wavelengths.

λ (nm) 1530 1540 1550 1560

neff 1.48388 1.48234 1.48084 1.47939

Figure 3 shows the optimizations for the selected optimal value of the SiN height,
which is 320 nm, and the tolerance range ±20 nm (which is ±6.25% from the optimal
value) around the optimal value to obtain normalized power (relative to the input power
of the whole device) 46–64%. As can be seen in Figure 3, the max power is obtained for
the 310 nm height value. However, from a fabrication point of view, this value does not
satisfy the limit of fabrication error that can be handled today. This limit is a result of the
geometrical dimensions error for the fabrication process with a high accuracy, which is
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usually around ±20 nm from the optimal value. Thus, the proposed device can function
well with a standard error of ±20 nm in the SiN layer thickness.
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Figure 4 shows the optimal MMI coupler width value, which is 3.5 µm, and the
tolerance range around the optimal value by ±20 nm (which is ±0.6% from the optimal
value) to obtain normalized power (relative to the input power of the whole device) of
56–64%. This limit is chosen because of the geometrical dimensions error for the fabrication
process with a high accuracy, which is usually around ±20 nm from the optimal value.
These fabrication results can be utilized for the prototype test structure.
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The beat length was calculated by using Equation (1) for each wavelength and using
python scripts, and the parameter p was calculated to be 65 for MMI2 and MMI3, which
resulted an MMI length of 2072 and 2088 µm, respectively. For MMI1, p = 131, resulting an
MMI length of 4208 µm.

Using the Equations presented above, (3) and (4), combined with BPM simulation, the
optimized MMI coupler lengths were calculated. To ensure max output power with good
fabrication error, LMMI1, LMMI2, and LMMI3 were chosen to be 4153, 2067, and 2078 µm,
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respectively. Figure 5a–c shows a tolerance range of 5 µm (which is ±0.12% for LMMI1 and
±0.24% for LMMI2 and LMMI3 from the optimal value) around the peak value for each MMI
length in correlation with the relevant wavelengths to obtain normalized power (relative
to the input power for each coupler independently) of 68–74%. This large tolerance range
gives us good flexibility from the fabrication point of view. In other words, the MMI
coupler lengths can easily deal with a large error dimension over ±250 nm without losing
a significant power.
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These fabrication results are shown in Figures 3–5 and can be utilized for the prototype
test structure for understanding the physical error of the geometrical parameter (Wmmi,
Height, LMMI1, LMMI2, and LMMI3) to improve the experimental results.

The intensity profile of the 1 × 4 SiN MMI demultiplexer device is shown in Figure 6a–d
for the operating wavelengths at the XZ plane. The light enters the input waveguide segment,
where Z = 0, and travels through the input taper into MMI1 section. The division of four
wavelengths into two pairs (λ2/λ4 and λ1/λ3) occurs where Z = 4243 µm (MMI1 output).
Afterward, the light propagates into the next MMIs through the S-bends, and further divi-
sion occurs at MMI2 output for 1540 nm (λ2) (b) and 1560 nm (λ4) (a), where Z = 6515 µm,
and at MMI3 output for 1530 nm (λ1) (c) and 1550 nm (λ3) (d), where Z = 6526 µm. Finally,
the light propagates into the four output ports through the S-bends, where Z = 6630 µm.
These figures show the coupling length behaver of the SiN MMI coupler, which is higher
compared to the Si MMI coupler, thus leading to a larger footprint size.
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in this range, and then it was inserted into the optimal design for solving the demultiplexer,
and the data were processed with python codes.
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The crosstalk and insertion losses and full width half maximum (FWHM) were calcu-
lated by using Equations (5) and (6) combined with the normalized spectral power in the
C-band for each port, as can be seen in Table 2. The crosstalk ranges between 20.908 and
23.665 dB, insertion losses range between 1.986 and 2.351 dB, and the bandwidth ranges
between 7.68 and 8.08 nm. These results can be utilized in the WDM system for increasing
data bitrate by four and without suffering from crosstalk. To obtain good calculation
accuracy, the optimized grid size for the x-axis and y-axis was set to 50 nm, and the grid
size for the z-axis was set to 40 nm for all BPM simulations.

Table 2. Crosstalk, losses, and FWHM values for each port.

λ (nm) 1530 1540 1550 1560

Port 3 2 4 1

Crosstalk (dB) 21.498 23.665 20.908 22.713

Losses (dB) 2.351 1.986 2.255 2.197

FWHM (nm) 7.68 7.68 8.08 8.08

Another important characteristic of the MMI coupler is the back reflection into the
input segment, which can be very problematic to the laser source. In this work, we used
the SiN material to minimize the back reflection power coming from the MMI coupler due
to the self-imaging.

To calculate the back reflection power, a monitor was placed in the input waveguide
to collect all the light that was reflecting back from the MMI coupler, as shown in Figure 8.
Back reflection losses were calculated by using FDTD simulation and are shown in Table 3.
As expected, a lower back reflection is obtained through the C-band window by using the
SiN MMI coupler waveguides and without the need for a special angled MMI coupler. The
optimal grid size for the x-axis, y-axis, and z-axis was set to 10 nm to obtain good mesh
convergence for all FDTD simulations.
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Table 3. Back reflection loss values for the operating wavelengths.

Wavelength (nm) 1530 1540 1550 1560

Back Reflection (dB) −41 −40.8 −40.5 −40

To emphasize our SiN MMI technology advantages over other demultiplexer designs,
comparison of the key characteristics between previously published works to our design
was performed. Table 4 shows the comparison between the SiN MMI demultiplexer design
proposed in this work and other types of demultiplexers. The key characteristics that were
compared are insertion losses, crosstalk, FWHM, spectrum, and back reflection losses. As
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can be seen in Table 4, our design has benefits in each aspect over the other demultiplexer
designs, i.e., lower insertion loss, better crosstalk, and a larger FWHM. In addition, most
of the research does not include back reflection loss. Moreover, our design has a lower
back reflection loss, as expected of using SiN waveguide technology that can be utilized for
working with lasers that are sensitive to the back reflection effect.

Table 4. Characteristics comparison between various demultiplexer designs.

Demultiplexer Type Insertion
Losses (dB)

Crosstalk
(dB)

FWHM
(nm) Band Range Back

Reflection (dB)
Device

Footprint (µm2)

1 × 4 Si modified-T
demultiplexer [31] ~2.31 ~21.1 ~0.455 C-Band N/A 536

1 × 8 Si MMI
demultiplexer [32] ~3.09 N/A N/A C-Band N/A 18 × 18,000

1 × 4 MMI GaN
slot-waveguide [22] ~0.11 ~22.7 ~9.15 Visible Light ~36.495 3.8 × 700

1 × 4 GaN multi-slot
waveguide [21] ~0.127 ~24.1 ~9.1 Visible Light ~36.5 3.2 × 104

1 × 4 Mach-Zehnder SiN
lattice demux [13] ~2.8 ~11.5 N/A O-Band N/A 900 × 2500

1 × 4 MMI SiN buried
waveguide [in this work] ~2.197 ~22.196 ~7.88 C-Band ~40.57 32 × 6630

4. Conclusions

This paper presented a design of a new and novel 1 × 4 demultiplexer in the C-band,
using three cascaded MMI couplers based on a SiN buried waveguide structure.

The results show the optimized parameters that should be used to divide four wave-
lengths of the MMI coupler by using the SiN buried waveguide. The wavelengths are 1530,
1540, 1550, and 1560 nm.

The total propagation length of the device is 6.63 mm, with losses ranging between
1.986 and 2.351 dB, excellent crosstalk ranging between 20.908 and 23.668 dB, and FWHM
ranging between 7.68 and 8.08 nm. These results suggest that such a device could be
useful in long-distance optical communication networks that use WDM technology in the
C-band spectrum.

Moreover, it is shown that the proposed device has a low back reflection loss, ranging
between 40 and 41 dB, without using a special angled MMI design, and this is because of
the use of SiN as the core material.

The results show the promising potential for such a device to be implemented in WDM
technology communications systems to increase the data bitrate.

Because of the good flexibility in tolerance range (±2.5 µm) for the MMI coupler
lengths, the proposed device design can be fabricated by using the fab processes that are
available today.

The simple design of the device makes it easier to expand the number of channels by
cascading multiple MMI couplers and adjusting their geometrical parameters accordingly.

Although this device was presented as a 1 × 4 demultiplexer, the direction of light can
be reversed, and it can be utilized as a 4 × 1 multiplexer.
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