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Abstract

Metaphyseal chondrodysplasia, Schmid type (MCDS) is characterized by mild short stature and growth plate hypertrophic
zone expansion, and caused by collagen X mutations. We recently demonstrated the central importance of ER stress in the
pathology of MCDS by recapitulating the disease phenotype by expressing misfolding forms of collagen X (Schmid) or
thyroglobulin (Cog) in the hypertrophic zone. Here we characterize the Schmid and Cog ER stress signaling networks by
transcriptional profiling of microdissected mutant and wildtype hypertrophic zones. Both models displayed similar unfolded
protein responses (UPRs), involving activation of canonical ER stress sensors and upregulation of their downstream targets,
including molecular chaperones, foldases, and ER-associated degradation machinery. Also upregulated were the emerging
UPR regulators Wfs1 and Syvn1, recently identified UPR components including Armet and Creld2, and genes not previously
implicated in ER stress such as Steap1 and Fgf21. Despite upregulation of the Chop/Cebpb pathway, apoptosis was not
increased in mutant hypertrophic zones. Ultrastructural analysis of mutant growth plates revealed ER stress and disrupted
chondrocyte maturation throughout mutant hypertrophic zones. This disruption was defined by profiling the expression of
wildtype growth plate zone gene signatures in the mutant hypertrophic zones. Hypertrophic zone gene upregulation and
proliferative zone gene downregulation were both inhibited in Schmid hypertrophic zones, resulting in the persistence of a
proliferative chondrocyte-like expression profile in ER-stressed Schmid chondrocytes. Our findings provide a transcriptional
map of two chondrocyte UPR gene networks in vivo, and define the consequences of UPR activation for the adaptation,
differentiation, and survival of chondrocytes experiencing ER stress during hypertrophy. Thus they provide important
insights into ER stress signaling and its impact on cartilage pathophysiology.
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Introduction

Many inherited connective tissue diseases are caused by

mutations in genes encoding structural components of the

extracellular matrix (ECM), or enzymes that regulate their post-

translational modification and assembly [1]. Often the mutations

introduce premature termination codons (PTCs), leading to

nonsense-mediated decay and haploinsufficiency in the ECM, or

interfere with ECM protein folding and assembly, inhibiting their

secretion from the cell and disrupting their activity in the ECM

when they are secreted, in a dominant-negative manner [1].

Therefore the prevailing paradigm for inherited diseases of the

ECM has involved a predominantly extracellular molecular

pathology.

More recently it has become clear that intracellular conse-

quences may influence the pathology of these conditions as well.

Studies investigating effects of disease-causing missense mutations

on assembly and secretion of several ECM components have

shown that a common consequence of misfolding and intracellular

accumulation of mutant ECM proteins is induction of endoplas-

mic reticulum (ER) stress [1,2,3]. While the role of ER stress and

the resulting unfolded protein response (UPR) is well known in the

pathology of diseases involving professional secretory tissues, such

as pancreas or liver [4,5,6,7], the relative contribution of the UPR

versus dominant extracellular effects to the pathology of ECM

protein disorders has been a matter of recent debate. In the case of

collagen X misfolding mutations, which cause metaphyseal

chondrodysplasia, Schmid type (MCDS), this has been resolved

by our recent study characterising two mouse models of the

human growth plate disease [8]. The first model (Col10a1

p.Asn617Lys, or Schmid) was generated by knocking in a

disease-causing p.N617K mutation in the trimerization-controlling

NC1 domain of endogenous collagen X. The second model

(ColXTgcog, or Cog) carried a Col10a1 promoter-driven transgene

encoding a misfolding and ER stress-inducing, Tgcog form of

thyroglobulin. Both models displayed essential phenotypic hall-
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marks of MCDS, which include mild short stature and

hypertrophic zone elongation [9], and exhibited ER stress due

to constitutive expression of misfolding proteins during chondro-

cyte hypertrophy. These data demonstrated that ER stress

targeted to the hypertrophic zone was sufficient to induce the

MCDS phenotype, irrespective of the misfolded protein, and thus

highlighted the central importance of the UPR in the pathology of

this disease [8].

Classically, the UPR has been understood to alleviate ER stress

by enhancing the protein-folding capacity of the ER by upregulat-

ing molecular chaperones and foldases, by increasing the cells ability

to dispose of irreparably misfolded proteins by upregulating

catabolic mechanisms such as the proteasome-mediated ER-

associated degradation (ERAD) pathway, and by reducing the ER

protein load through translational attenuation [10,11,12]. The

UPR is initiated when the ER-resident chaperone immunoglobulin-

heavy-chain-binding protein (BiP) is sequestered by misfolded

proteins from the ER-luminal domains of transmembrane ER

stress sensors, including activating transcription factor 6 (Atf6),

inositol requiring enzyme 1 (Ire1), and double stranded RNA-

activated protein kinase-like ER kinase (Perk), rendering the sensors

active. Activated Atf6 is cleaved by proteolysis in the Golgi complex

yielding a 50 kDa fragment which drives the transcription of ER

stress-responsive genes, including X-box binding protein 1 (Xbp1)

[13,14]. Activated Ire1 has both kinase and endoribonuclease

activities, catalysing the unconventional cytoplasmic cleavage and

splicing of Xbp1 mRNA, converting it into a potent transcription

factor (Xbp1s) which regulates the expression of a host of ER-

resident molecular chaperones [15,16,17]. Ire1 also degrades

multiple transcripts encoding components of the secretory pathway,

providing rapid alleviation of the ER protein load, and allowing

reconfiguration of the secretory pathway molecular machinery to

enable an optimal response to ER stress conditions [18,19].

Activated Perk undergoes dimerization and trans-autophosphory-

lation, and is then able to phosphorylate the eukaryotic translation

initiation factor 2-alpha (Eif2a), preventing formation of the

translational initiation complex [20]. In the event of prolonged,

unresolved ER stress, the UPR may initiate apoptosis [12,21,22,23].

It has also been suggested recently that cells may alleviate ER stress

by cellular reprogramming, or dedifferentiation. Specifically, it was

reported that hypertrophic chondrocytes of a transgenic mouse

model of MCDS responded to ER stress induced by expression of

misfolding collagen X by deploying a ‘‘reprogram, recover, and

survive’’ adaptive mechanism, in which collagen X expression is

reduced at both the RNA and protein levels by dedifferentiating

hypertrophic chondrocytes to a prehypertrophic chondrocyte-like

state [24].

Here, we took a holistic approach to resolve how hypertrophic

chondrocytes in the Schmid and Cog mice respond to ER stress.

Our analyses revealed surprisingly similar UPRs in the Schmid and

Cog mice involving upregulation of highly specific subsets of

molecular chaperones and foldases, upregulation of ERAD genes,

and downregulation of genes encoding secreted proteins. Despite

the severity and duration of ER stress, and upregulation of Chop/

Cebpb signalling, a widely recognized marker of ER stress-induced

apoptosis [12,21,22,23], apoptosis was not elevated in the Schmid

hypertrophic zone. Electron microscopic analysis of Schmid and

wildtype growth plate hypertrophic zones revealed chondrocytes in

the mutants characterized by both engorged ER, indicative of

mutant protein retention, and several ultrastructural features more

consistent with proliferative chondrocytes, suggesting that mutant

chondrocytes undergo developmental arrest as a result of misfolded

protein-induced ER stress, failing to become fully hypertrophic.

Additional transcriptional profiling analyses measuring the expres-

sion of wildtype growth plate zone gene signatures in mutant and

wildtype hypertrophic zones were then performed to establish the

differentiation status of ER-stressed chondrocytes in the hypertro-

phic zones of the mutant mice, by determining the extent to which

they express wildtype proliferative and hypertrophic zone genes.

This unbiased approach confirmed that Schmid and Cog growth

plate chondrocytes undergo developmental arrest characterized by

impaired expression of many hypertrophic zone genes and retained

expression of many proliferative zone genes.

This work provides important insights into ER stress signaling

and its impact on cartilage pathophysiology. Specifically, our

findings reveal the highly complex changes in gene expression

which take place when the UPR is initiated in response to different

misfolding proteins in hypertrophic cartilage, and what effects this

has on the developmental programming of hypertrophic chondro-

cytes. Moreover, they provide for the first time global transcriptional

maps of two mammalian disease-model UPRs in vivo, characterized

in each case by the activation of all three ER stress sensors, and the

upregulation of highly comparable and specific suites of molecular

chaperones and foldases, as well as ERAD machinery and the Chop/

Cebpb pathway, without resultant apoptosis. That many genes were

co-regulated in the Schmid and Cog mice identifies them as core

components of the chondrocyte UPR.

Results

Canonical ER stress sensors are activated in Schmid and
Cog hypertrophic zones

Previously we showed that Atf6 is proteolytically cleaved in

Schmid and Cog cartilages [8], indicating its involvement in the

UPRs of these mice. Here we set out to determine whether the

remaining canonical ER stress sensors, Ire1 and Perk, are also

involved. To determine the activity of Ire1 in the Schmid and Cog

UPRs, PCR was performed using primers flanking the Xbp1 ER

stress-responsive splice site, on cDNA derived from microdissected

wildtype and mutant hypertrophic zones. In wildtype samples, a

single 174 bp RT-PCR product representing unspliced Xbp1 was

detected (Figure 1A). In the heterozygous Schmid (Het), homozy-

gous Schmid (Schmid), and Tgcog (Cog) mice, a smaller, 148 bp

RT-PCR product representing spliced Xbp1 was detected, in

addition to the 174 bp product seen in the wildtype samples

(Figure 1A). These results confirmed that Ire1 was activated in both

mutants. To assay Perk activity in the mutant mice, we performed

Western blot analysis of whole cartilage extracts from wildtype and

mutant mice using an antibody specific for phosphorylated Eif2a.

Increased quantities of phosphorylated Eif2a were detected in

Schmid compared with wildtype, but not in Cog (Figure 1B). Taken

together, our results for Atf6, Ire1, and Perk indicate that each of the

canonical ER stress sensors are active in the UPRs of the Schmid

mice, and that at least two are active in the Cog mice.

Next, microarray analyses were performed in triplicate on

amplified RNA (aRNA) derived from wildtype, Schmid, and Cog

hypertrophic zones, comparing each mutant genotype against

wildtype. Each microarray dataset was filtered for probes showing

differential expression greater than two-fold, and an adjusted p

value of #0.05. For the Schmid versus wildtype analysis, 1927

probes (1645 genes) registered a fold change of $2.00, and 1595

probes (1423 genes) recorded a fold change of #22.00 (Table S1).

For the Cog versus wildtype analysis, 424 probes (375 genes)

recorded a fold change of $2.00, while 141 probes (134 genes)

registered a fold change of #22.00 (Table S2). Cog mice carrying

the transgene on one chromosome (hemizygous) versus those

carrying the transgene on two chromosomes (homozygous) were

not discriminated for these analyses; thus gene expression data

The UPR and Its Effects on Chondrocyte Hypertrophy
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from hemizygous and homozygous Cog mice were most likely

included. Experimental noise generated under these circumstances

could explain the smaller number of statistically significant

upregulated and downregulated genes observed in the Cog versus

wildtype analysis, by comparison with the Schmid versus wildtype

analysis. Importantly however, such noise could produce false

negative results, but is unlikely to produce false positive results.

The full Schmid and Cog microarray datasets are available from

NCBI’s Gene Expression Omnibus [25] and are accessible

through GEO series accession number GSE30628 (http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE30628).

Volcano plots were then generated in which expression data for

each microarray probe were plotted according to relative fold

change (logFC, mutant versus wildtype) along the x-axis, versus

adjusted p value (210log(adjusted p value)) along the y-axis

(Figure 2). As expected, in the Schmid versus wildtype analysis

(Figure 2A) UPR markers including BiP, Grp94, and Chop were

upregulated in the mutant (Figure 2A) while genes encoding

secreted ECM cartilage markers such as Col9a2, Col9a3, Matn1,

and Matn2 were downregulated. Similar overall patterns were

observed in the Cog versus wildtype analysis (Figure 2B), although

statistical significance was not reached for a number of these.

Microarray analyses were also depicted by uploading the

differential expression data into the Endoplasmic Reticulum Stress

Canonical Pathway from the Ingenuity Pathways Analysis

(Ingenuity SystemsH, www.ingenuity.com) library of canonical

pathways, further revealing similarity between the UPRs of the

Schmid (Figure 2C) and Cog mice (Figure 2D).

Validation of Schmid and Cog microarray data
Using cDNA derived from the aRNA interrogated by micro-

array analysis, we performed qPCR on selected genes as a

technical validation of the microarray data (Figure 3A). qPCR was

performed on BiP (Figure 3Ai), Calr (Figure 3Aii), Derl2

(Figure 3Aiii), Derl3 (Figure 3Aiv), Edem1 (Figure 3Av), ERdj4

(Figure 3Avi), Erp72 (Figure 3Avii), Fgf21 (Figure 3Aviii), and Luman

(Figure 3Aix). For each marker, a close correlation was observed

between the expression profiles determined by either technique. As

further validation, we performed in situ analysis on sagittal sections

from 7 day old wildtype and Schmid tibiae (Figure 3B). To

demarcate hypertrophic zones of wildtype and mutant growth

plates, we performed in situ analysis for Col10a1 (Figure 3Bi,ii).

Novel gene expression was validated using probes specific for Armet

(Figure 3Biii,iv), Creld2 (Figure 3Bv,vi), Fgf21 (Figure 3B, vii,viii),

Steap1 (Figure 3Bxi,xii), Syvn1 (Figure 3Bxiii, xiv), and Wfs1

(Figure 3Bxv, xvi), all of which were found by microarray analysis

to be highly upregulated in the Schmid and Cog hypertrophic

zones compared with wildtype (Tables S1,S2). Additionally, in situ

analysis was performed using a probe specific for Luman

(Figure 3Bix,x), which was upregulated in Schmid only

(Figure 3Aix). Gene expression detected by ISH confirmed the

expression profiles determined by microarray analysis, and

resolved the spatial distribution of expression for these genes

within the mutant growth plate. Armet, Creld2, Fgf21, Luman, Steap1,

Syvn1, and Wfs1 expression was not observed in the wildtype

growth plate, whereas in the Schmid growth plate each gene was

highly expressed throughout the hypertrophic zone (Figure 3Biii–

xvi).

Gene ontology analyses reveal the adaptive nature of the
UPR in ER-stressed hypertrophic chondrocytes

Gene ontology (GO) analyses were conducted to identify

clusters of functionally related genes being co-ordinately expressed

in the hypertrophic chondrocytes of the Schmid and Cog mice.

Genes were filtered such that those with a signal intensity of

$11.0, fold change of $2.00 or #22.00 versus wildtype, and

adjusted p value of #0.05 were selected for ontological analysis.

The resultant gene lists were interrogated online using DAVID 6.7

Figure 1. Xbp1 splicing and Eif2a phosphorylation in Schmid and Cog mouse growth plate hypertrophic zones. (A) RT-PCR performed
on aRNA derived from 14 day old wildtype (Wt), heterozygous Schmid (Het), homozygous Schmid (Schmid), and Tgcog (Cog) mouse tibial growth
plate hypertrophic zones, using primers specific for sequences flanking the mouse Xbp1 ER stress-responsive splice site [17]. The 174 bp RT-PCR
product represents the unspliced form of Xbp1. The 148 bp RT-PCR product represents the spliced form of Xbp1. (B) Western blots from SDS-PAGE
gels run under reducing conditions with 20 micrograms of whole rib cartilage extracts from Wt, Het, Schmid, and Cog mice, and probed with Eif2a
and phospho-Eif2a antibodies.
doi:10.1371/journal.pone.0024600.g001

The UPR and Its Effects on Chondrocyte Hypertrophy

PLoS ONE | www.plosone.org 3 September 2011 | Volume 6 | Issue 9 | e24600



(http://david.abcc.ncifcrf.gov/) to generate GO clusters, of which

those with enrichment scores of $1.3 [26] are shown in Tables S3

and S4. For the Schmid ontological analysis (Table S3), several

GO terms identified using genes significantly upregulated in

mutant versus wildtype related to protein misfolding, assembly,

trafficking, and secretion pathways, while those identified using

genes significantly downregulated in mutant versus wildtype

related to secreted proteins – such as those involved in skeletal

development and extracellular matrix maturation, cytoskeletal

organization, and vasculature development. Many of the genes

encoding secreted proteins are shown in Table S5, which details

the expression profiles of cartilage markers in Schmid, Cog, and

wildtype. Interestingly, Col10a1 was not found to be significantly

differentially expressed in either of the mutant mice compared

with wildtype (Table S5). In situ analysis (Figure 3Bi,ii) on Schmid,

Cog, and wildtype, and qPCR performed on cDNA derived from

microdissected mutant and wildtype hypertrophic zones (Figure

S1) subsequently demonstrated that Col10a1 was not differentially

expressed between mutant and wildtype. The Cog ontological

analysis (Table S4) yielded similar results as for Schmid, but with

fewer GO terms. Overall nevertheless, the Schmid and Cog

ontological analyses both appear to reflect alterations in gene

expression designed to restore ER homeostasis in ER-stressed

chondrocytes, by enhancing the efficiency of protein folding and

trafficking, as well by attenuating transcription of genes encoding

secreted proteins in order to reduce the rate at which proteins

enter the ER for post-translational modification.

Similar gene networks are involved in the unfolded
protein responses of the Schmid and Cog hypertrophic
zones

To explore the gene networks involved in these UPRs in greater

detail, we examined the Schmid versus wildtype and Cog versus

wildtype microarray datasets with respect to the differential

expression of genes involved in protein folding, ER-stress, and

its downstream consequences (Table S6). Of the canonical ER

stress sensors, Atf6 was upregulated in both mutants, in addition to

being activated (Fig. 1B) [1]. Perk was significantly upregulated in

Schmid, but we could not detect upregulation in Cog. While Ire1

was not differentially expressed in the hypertrophic zones of either

the Schmid or Cog mice (Table S6), Xbp1 splicing demonstrated

Ire1 activation (Figure 1A). Key downstream targets of each sensor

were also upregulated (Table S6). Striking similarity was observed

between both mutants for which known targets of the stress sensors

were activated. In both models, transcriptional targets of Atf6

including Armet [27] and Grp94 [28], of Ire1 such as BiP [29],

Figure 2. Volcano plots describing differential gene expression in Schmid and Cog mouse growth plate hypertrophic zones. aRNA
derived from 14 day old wildtype (Wt), homozygous Schmid (Schmid), and Tgcog (Cog) tibial growth plate hypertrophic zones was labelled with Cy3
and subjected to microarray analysis. (A) Schmid versus Wt and (B) Cog versus Wt analyses expressed as volcano plots showing differential expression
plotted along the x-axis in LogFC, versus statistical significance plotted along the y-axis in 210log(adjusted p-value). Genes with adjusted p values
#0.05 are coloured red; genes with adjusted p values $0.05 are shaded grey. Selected cartilage extracellular matrix and unfolded protein response
(UPR) markers are highlighted with yellow spots. (C,D) Schematic diagrams generated using Ingenuity Pathways Analysis (IngenuityH Systems, www.
ingenuity.com), depicting the relationship, and differential expression of key UPR markers in the (C) Schmid versus Wt and (D) Cog versus Wt analyses.
doi:10.1371/journal.pone.0024600.g002
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ERdj4 [30], and Syvn1 [31], and of Perk including Chop, Gadd34

[30], and Wfs1 [32] were all upregulated. In addition to activation

of canonical UPR sensors in Schmid and Cog, we also revealed the

expression profiles of the other known transmembrane bZIP

transcription factors with homology to Atf6 – Aibzip, Bbf2h7, Crebh,

Luman (as noted above), and Oasis. Only Bbf2h7 and Luman were

expressed at appreciable levels in the mutant cartilages; and both

were expressed more highly than Atf6. Bbf2h7 however, was not

found to be differentially expressed, whereas Luman was signifi-

cantly upregulated in Schmid but not Cog (Table S6).

We observed remarkable similarity between the two strains

regarding which molecular chaperones, protein disulphide isom-

erases, and ERAD components were upregulated. Among the

molecular chaperones, a specific subset of genes was upregulated

in both models, although many were not found to be differentially

expressed. In addition to BiP, five more molecular chaperones

(ERdj3, ERdj4, Grp94, and p58IPK) were upregulated in both

Schmid and Cog. Interestingly, a further 9 molecular chaperones

(Dnaja3, Dnajb1, Dnajc13, Hspa2, Hspa4, Hspb1, Hspb8, Hspd1, and

Hsph1) were highly upregulated in the Schmid mouse but not the

Cog mouse, whereas no molecular chaperones were upregulated

in the Cog mouse alone (Table S6). Of the protein disulphide

isomerases and ERAD components, Derl3 was most highly

upregulated in both models, followed by Erp72, Ero1lb, P5, and

Herpud1. Ero1l was highly upregulated in Schmid, but was not

found to be differentially expressed in Cog (Table S6). Having

established broad similarity between the Schmid and Cog mutant

mice, we focussed primarily on the Schmid mouse for further

analysis due to its greater medical relevance.

Chondrocytes in mutant hypertrophic zones express
multiple components of the Chop pathway but do not
undergo apoptosis

Amongst the genes most highly upregulated in both mutants

was Chop, which has been widely reported to promote ER stress-

induced apoptosis [12,21,22,23]. Its dimerization partner Cebpb

and their transcriptional targets including Car6 [22] and Trib3 [33]

were also upregulated in Schmid and Cog (Table S6). Therefore,

we performed TUNEL analysis on wildtype and Schmid growth

plates to determine whether apoptosis is a feature of MCDS ER

stress. No statistically significant differences were observed with

respect to the relative number or spatial distribution of TUNEL-

positive chondrocytes between wildtype and Schmid mice

(Figure 4A), with the average rate of TUNEL-positive chondro-

cytes in wildtype hypertrophic zones being 2.63% compared with

2.90% in the Schmid hypertrophic zones (Figure 4C).

ER stress in the Schmid and Cog growth plates disrupts
the maturation from proliferative chondrocyte to
hypertrophic chondrocyte

Our TUNEL analysis revealed that the nuclei of wildtype

hypertrophic chondrocytes were refractory to DAPI, whereas the

nuclei of chondrocytes in Schmid hypertrophic zones stained as

strongly with DAPI as proliferative chondrocytes (Figure 4A,B).

Moreover, haematoxylin and eosin staining (Figure S2) displayed a

similar pattern as DAPI, as the intensity of haematoxylin staining

of chondrocytes throughout the Schmid hypertrophic zones was

much greater than that of wildtype hypertrophic chondrocytes,

and equivalent to that of proliferative chondrocytes. Subsequent

ultrastructural analysis of chondrocytes throughout the wildtype

and Schmid growth plates by transmission electron microscopy

(TEM) further defined similarities between chondrocytes in the

mutant hypertrophic zones and proliferative chondrocytes

(Figure 5). As expected, mutant proliferative chondrocytes were

indistinguishable from wildtype proliferative chondrocytes

Figure 4. TUNEL analysis of wildtype and Schmid tibial growth
plates. (A) Representative 7 day old tibial growth plate cryosections
analysed by Terminal deoxynucleotidyl transferase dUTP nick end
labelling (TUNEL; green) with 49,6-diamidino-2-phenylindole (DAPI)
counterstaining (blue). TUNEL-positive cells are indicated with white
arrowheads. Dashed lines demarcate approximate growth plate zone
boundaries: P – Proliferative Zone, H – Hypertrophic Zone. Boxes inset
show magnified representative areas of the hypertrophic zones
containing TUNEL-positive chondrocytes. (C) TUNEL analysis of at least
6 tibial growth plate sections from each of 3 Wt and homozygous
Schmid mice, expressed as the ratio of TUNEL-positive cells to DAPI-
stained nuclei within the hypertrophic zone (TUNEL:DAPI), and showing
standard deviation around the mean. Statistical analysis performed
using Student’s t-test, p#0.05.
doi:10.1371/journal.pone.0024600.g004

Figure 3. Validation of differential gene expression profiles determined by microarray analysis of aRNA derived from Schmid and
Cog mouse growth plate hypertrophic zones. (A) qPCR performed in triplicate on the aRNA samples described in Figure 2, using selected
markers of the unfolded protein response (UPR) and endoplasmic reticulum associated degradation pathway, including (i) BiP, (ii) Calr, (iii) Derl2, (iv)
Derl3, (v) Edem1, (vi) ERdj4, (vii) Erp72, (viii) Fgf21, and (ix) Luman. Expression profiles are expressed as fold difference for homozygous Schmid (Schmid)
or Tgcog (Cog) compared with wildtype (Wt), with profiles determined by the microarray analyses described in Figure 2 shaded dark grey, and profiles
determined by qPCR shaded light grey. Error bars indicate standard deviation around the mean. (B) In situ analyses performed on 7 day old Wt and
Schmid tibial growth plate cryosections using digoxigenin-labelled riboprobes specific for (i,ii) Col10a1 as well as novel markers of the UPR including
(iii,iv) Armet, (v,vi) Creld2, (vii,viii) Fgf21, (ix,x) Luman, (xi,xii) Steap1, (xiii,xiv) Syvn1, and (xv,xvi) Wfs1. Dashed lines demarcate approximate growth plate
zone boundaries: R – Resting Zone, P – Proliferative Zone, H – Hypertrophic Zone. Boxes inset show magnified representative areas of the
hypertrophic zones, to highlight the extent of riboprobe hybridization in these zones. Scale bars = 500 mm.
doi:10.1371/journal.pone.0024600.g003
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(Figure 5A–D), prior to the expression of collagen X and the onset

of ER stress in the mutant hypertrophic zone. In the Schmid upper

(Figure 5G,H), mid (Figure 5K,L), and lower (Figure 5O,P)

hypertrophic zones most chondrocytes were characterized by

grossly distended ER, typical of cells expressing misfolded proteins

with compromised secretion. Most chondrocytes throughout the

Schmid hypertrophic zone were further typified by a relative

paucity of glycogen when compared with wildtype, presumably

reflecting the significant energetic demands involved in responding

to ER stress. Also, chondrocytes in the mutant hypertrophic zone

displayed several subcellular hallmarks of proliferative chondro-

cytes, including having a smaller, flattened appearance, prolifer-

ative chondrocyte-like nuclear ultrastructure, and highly devel-

oped protein secretory machinery including abundant Golgi

complexes and vesicles presumably involved in protein transport

and secretion. A smaller proportion of chondrocytes in the Schmid

hypertrophic zone displayed a more typical hypertrophic ultra-

structure. Therefore most, but not all chondrocytes throughout the

hypertrophic zones of the Schmid growth plate displayed signs of

severe ER stress and developmental arrest, resembling prolifera-

tive chondrocytes on the basis of nuclear staining and TEM

ultrastructural analysis.

To characterize the disruption to chondrocyte maturation in the

mutant growth plates further, we took a gene expression profiling

approach. Thus we microdissected hypertrophic zones and prolifer-

ative zones from two week old wildtype mouse tibiae and linearly

amplified the isolated RNA. To validate the RNA, we performed

qPCR using hypertrophic zone markers Adamts1, Col10a1, and Mmp9

[34,35], and proliferative zone markers Fmod, Gdf10, and Prelp

[35,36,37] (Figure S3). Each marker was significantly more highly

expressed in the expected growth plate zone, validating the samples.

Gene expression microarray analyses were then performed on each

sample. To establish gene expression signatures which define wildtype

hypertrophic and proliferative zones based on these microarray

analyses, genes were regarded as defining the hypertrophic zone if

they were $2-fold more highly expressed in the hypertrophic zone

than the proliferative zone with an adjusted p value #0.05, and

defining the proliferative zone if they were $2-fold more highly

expressed in the proliferative zone than the hypertrophic zone with

an adjusted p value #0.05. A cohort of 510 genes comprised the

wildtype hypertrophic zone gene expression signature (Table S7),

while a cohort of 773 genes comprised the wildtype proliferative zone

gene expression signature (Table S8). Ontological analysis of each

cohort using DAVID 6.7 software authenticated the gene expression

signatures, yielding GO terms related to programmed cell death,

vasculature development, and skeletal system development for the

hypertrophic zone signature (Table S9), and cell cycle regulation,

DNA metabolism, and chromosomal structure for the proliferative

zone signature (Table S10).

Next, we used these signatures as references for determining the

differentiation status of chondrocytes in the mutant hypertrophic

zones. Thus, we performed two analyses. In the first, we analysed

our existing Schmid and Cog microarray datasets for the relative

expression (log fold change) of the wildtype hypertrophic zone gene

signature, to determine the extent to which wildtype hypertrophic

zone markers were upregulated in the mutant hypertrophic zones.

The results of this analysis are represented by the heatmap in

Figure 6A, which indicates that in terms of the expression of the

wildtype hypertrophic zone gene signature, chondrocytes in the

Schmid and Cog hypertrophic zones resemble each other more

closely than those of either wildtype sample, but more closely

resemble wildtype proliferative chondrocytes than wildtype hyper-

trophic chondrocytes. Gene set tests were highly significant for both

Schmid versus wildtype and Cog versus wildtype (p#0.001 in each

case). Therefore, a significant number of hypertrophic zone

signature genes were expressed at abnormally low levels in the

Schmid and Cog hypertrophic zones by comparison with the

wildtype hypertrophic zone. In the second analysis, we re-examined

the same microarray datasets, this time for the relative expression of

the wildtype proliferative zone gene signature, to determine the

extent to which wildtype proliferative zone markers were downreg-

ulated in the mutant hypertrophic zones. The results of this analysis

are represented by the heatmap in Figure 6B, which indicates that in

terms of the expression of the wildtype proliferative zone gene

signature, chondrocytes in the Schmid and Cog hypertrophic zones

resemble each other more closely than either wildtype sample.

Unlike the first analysis however, the gene set test for Schmid versus

wildtype was significant (p#0.001), but the gene set test for Cog

versus wildtype was not significant (p$0.1). Therefore, a significant

number of proliferative zone signature genes were expressed

abnormally highly in chondrocytes in the Schmid hypertrophic

zone by comparison with the wildtype hypertrophic zone, however

the same genes were not found to be significantly abnormally

expressed in the Cog hypertrophic zone.

To validate the microarray analyses, qPCR was performed on

wildtype and Schmid growth plate zone cDNA for a cohort of highly

differentially expressed genes. Col13a1, Hbb-b1, Ibsp, and Mmp9

(Figure 6C,E) were found by microarray analysis to be more highly

expressed in the wildtype hypertrophic zone compared with the

wildtype proliferative zone, and Eef1a1, Ncam1, Prnp, and Ung

(Figure 6D,F) were more highly expressed in the wildtype

proliferative zone compared with the wildtype hypertrophic zone.

Consistent with the microarray data, each hypertrophic zone marker

gene was found by qPCR to be expressed very lowly in the

proliferative zone compared with the wildtype hypertrophic zone

(Figure 6C), and in the Schmid hypertrophic zone compared with

the wildtype hypertrophic zone (Figure 6E). Conversely, each

proliferative zone marker gene was found by qPCR to be expressed

very highly in the proliferative zone compared with the wildtype

hypertrophic zone (Figure 6D), and in the Schmid hypertrophic zone

compared with the wildtype hypertrophic zone (Figure 6F). Thus we

confirmed that in the Schmid hypertrophic zone, the wildtype

hypertrophic zone gene signature is not fully upregulated, while the

proliferative zone gene signature is not fully downregulated.

Next, the disrupted differentiation of ER-stressed growth plate

chondrocytes was further explored by in situ analyses, using probes

specific for Eef1a1 (Figure 7A,B), Ncam1 (Figure 7C,D), and Prnp

(Figure 7E,F), to show the spatial distribution of proliferative zone

marker expression in wildtype and mutant tibial growth plates. In

the wildtype growth plate, expression of each gene was observed in

the non-hypertrophic zones, and most strongly in the proliferative

zone, but excluded from the wildtype hypertrophic zone

(Figure 7A,C,E). In Schmid, the expression pattern for each gene

observed in the non-hypertrophic zones of the wildtype growth

plate was maintained, but unlike wildtype the domain of

expression extended in the mutant into the hypertrophic zone,

and as far as the ossification front (Figure 7B,D,F). Thus our in situ

analyses further validated the abnormal growth plate zone marker

expression patterns determined by microarray analysis and qPCR

in Schmid and Cog, and confirmed that chondrocytes in the

mutant growth plates undergo developmental arrest, failing to

undergo full hypertrophy, and retaining significant elements of the

proliferative chondrocyte phenotype.

Discussion

Several studies investigating inherited connective tissue disor-

ders have implicated the UPR as a feature of the disease
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mechanism. Our recent work, in which the MCDS phenotype was

recapitulated by expressing different misfolding proteins in the

mouse growth plate hypertrophic zone, was the first study to

demonstrate unequivocally the central importance of the UPR in

the molecular pathology of such diseases [8]. Here we used a gene

expression profiling approach to characterize the UPRs of our

mutant mice, identify novel components of these regulatory

networks in chondrocytes, and define consequences of the UPRs

for the differentiation of chondrocytes in the hypertrophic zone.

The Schmid and Cog UPRs are characterized by
activation of the canonical ER stress-signalling pathways

We showed previously that chondrocytes in the hypertrophic

zones of Schmid and Cog mice upregulate and proteolytically

cleave Atf6 in response to ER stress [8]. Here we show that Atf6

gene expression was increased in these mutants as well (Table S6).

Ire1 was not found to be differentially expressed between mutant

and wildtype, but Xbp1 splicing in the Schmid and Cog

hypertrophic zones confirmed Ire1 activity in the UPR of both

mutants (Figure 1A). Perk expression and activity was found to be

increased in the Schmid hypertrophic zone, but in Cog we were

unable to detect significant upregulation or activation of Perk

(Table S6; Figure 1B). The lack of observed Perk mRNA

upregulation and lack of apparent Eif2a phosphorylation may

indicate that Tgcog thyroglobulin elicits less ER stress in growth

plate cartilage than p.N617K collagen X. This is consistent with

the finding that the hypertrophic zone expansion, apparent in both

mice at younger ages, is resolved in the Cog mice alone by 6 weeks

of age [8], suggesting a milder pathological effect. Regardless, each

of the canonical ER stress sensors was activated in Schmid, and at

least two of these sensors were also activated in Cog mouse

hypertrophic cartilage.

Figure 5. Ultrastructural analysis of wildtype and Schmid tibial growth plates. Transmission electron micrographs of representative
chondrocytes from the (A–D) proliferative, (E–H) upper hypertrophic, (I–L) mid-hypertrophic, and (M–P) lower hypertrophic zones of 7 day old
wildtype (Wt) and homozygous Schmid (Schmid) tibial growth plates. Italicized letters indicate intracellular features as follows: ER – endoplasmic
reticulum, Gl – glycogen, Go – Golgi complex, N – nucleus, P – proteoglycan, V – vesicles. Scale bars = 1 mm.
doi:10.1371/journal.pone.0024600.g005
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This is the first study to implicate all three sensors in the

molecular pathology of a skeletal disease. While Xbp1 splicing was

confirmed previously in a transgenic mouse model of MCDS [24],

neither Atf6 proteolysis nor Eif2a phosphorylation were demon-

strated in that study. In contrast, mild ER stress underpinning a

p.T583M Comp mutant model of pseudoachondroplasia was found

to involve Atf6 cleavage and Eif2a phosphorylation, but not Xbp1

splicing [38]. It remains unknown whether Xbp1 splicing, Atf6

proteolysis, or Eif2a phosphorylation occur in other mouse models

of skeletal dysplasias characterized by ER stress, including the

p.V194D Matn3 mutant model of multiple epiphyseal dysplasia

[39], and an Aga2-mutant model of osteogenesis imperfecta [40].

Nevertheless, activation of all three sensors is understood to be the

common response of ER-stressed cells, and the combination and

kinetics of sensor activation is thought to influence cell fate [41].

Another putative chondrocyte ER-stress sensor, Luman, was

upregulated in Schmid, although it was not found to be

differentially expressed in the Cog hypertrophic zone (Table S6;

Figure 3Aix, 3Bix,x). Luman encodes an ER membrane-resident

[42] type II transmembrane glycoprotein [43], within the

cytoplasmic portion of which resides a basic domain leucine

zipper transcription factor [44]. As with its structural homologs

Atf6 [45], Bbf2h7 [46], and Oasis [47], Luman may be cleaved

and thereby activated via S1P proteolysis [43]. Activated Luman

targets the ERSE consensus sequence in the promoters of multiple

UPR genes, including ERAD markers Edem [45] and Herp [48]. It

is unclear why Luman was upregulated in Schmid but no significant

differential expression was observed in Cog, or whether proteolytic

activation of Luman occurs in Schmid. Therefore, despite its

transcriptional upregulation we cannot confirm that Luman

contributes functionally to the Schmid UPR. Another Atf6

homolog, Aibzip [49], was also upregulated specifically in Schmid,

although at a much lower level than other Atf6 homologs (Table

S6). Bbf2h7, which modulates physiological ER stress in chondro-

cytes by regulating components of the protein secretory pathway

during early chondrogenesis [50], and Oasis [49], were not

differentially expressed in either model. Importantly however, as

with Luman, their roles in modulating pathological ER stress in

chondrocytes cannot be ruled out until proteolytic cleavage has

been tested in suitable mouse models.

The Schmid and Cog UPRs are surprisingly similar
Consistent with activation of the canonical ER stress sensors, our

microarray analyses also revealed upregulation of several of their

gene targets (Figure 2, Table S6). In both Schmid and Cog, we saw

upregulation of specific and highly comparable subsets of molecular

chaperones including BiP, ERdj4, and Grp94, foldases such as Erp57,

Erp72, and Ero1lb, and components of the ERAD pathway such as

Derl3 and Syvn1 (Table S6). Erp57 is a glycoprotein-specific protein

disulphide isomerase, and is important in the formation of

disulphide bonding intermediates during thyroglobulin biosynthesis

[51,52]. It is known that Ero1lb expression may be induced in

mammalian cells in response to chemical inducers of ER stress [53].

This study however, is the first to confirm upregulation of Ero1lb in

response to ER stress in an in vivo mammalian disease model. Syvn1

is an E3 ubiquitin ligase which has recently been shown to co-

operate with Wfs1 (also significantly upregulated in both Schmid

and Cog; Table S6) in suppressing the UPR by enhancing the

proteasomal degradation of Atf6 [54]. Thus it is an intriguing

possibility that the deleterious effects of chronic ER stress in Schmid

and Cog chondrocytes are modulated in part by the Syvn1/Wfs1-

mediated degradation of Atf6.

Wildtype collagen X and thyroglobulin contrast significantly in

their biosynthesis. Mature collagen X consists of three a1(X) chains,

each containing a helical, collagenous domain flanked by N- and C-

terminal non-collagenous domains [55,56]. Collagen X biosynthesis

has been extensively reviewed [57,58]. Briefly, a1(X) monomers

become aligned via their NC1 domains within the ER lumen for

homotrimer assembly, which occurs through triple helix formation

at the alpha-helical collagenous domain. Except for bovine collagen

X, post-translational modification and assembly of wildtype

collagen X does not involve disulphide bond formation [59]. In

contrast, thyroglobulin is a 660 kDa homodimeric glycoprotein,

whose intracellular assembly requires extensive post-translational

modifications including glycosylation, the formation of 60 disulfide

bonds, phosphorylation, proteolysis, and iodination [60,61]. In view

of this, the similarity between the Schmid and Cog UPRs was

particularly surprising. This unexpected similarity may be recon-

ciled by the finding that while intracellular assembly of wildtype

collagen X does not involve disulphide bond formation, MCDS

mutations including p.N617K can cause aberrant disulphide bond

formation to occur in mutant collagen X assembly [62]. Therefore,

the molecular machinery involved in the post-translational

modification of the mutant proteins may differ from those involved

in biosynthesis of their wildtype counterparts, making it potentially

difficult to predict the UPRs based on knowledge of wildtype

biosynthetic pathways. The differences between Schmid and Cog

UPRs are an important area of future study and further detailed

molecular comparisons may reveal additional complexities in UPR

regulation and downstream signalling.

However, the extent of co-regulation observed between the

Schmid and Cog UPRs suggests that the UPR is largely not protein-

specific, and that most UPR target genes are part of a generic, or

default response to ER stress. This possibility raises the hope that

new, ‘‘generic’’ treatment strategies may be developed which can

ameliorate the deleterious consequences of unresolved chondrocyte-

specific UPRs by targeting components of common pathways.

Expression of novel UPR markers revealed by microarray
analysis of Schmid and Cog hypertrophic zones

Our microarray analyses also identified several genes recently

implicated in the UPR, including Armet and Creld2, and other genes

never previously associated with ER stress, such as Steap1 and Fgf21.

Each of these genes was highly upregulated in Schmid and Cog

compared with wildtype (Table S6; Figure 3). Armet (arginine-rich,

mutated in early stage tumours; also called Manf – mesencephalic

Figure 6. Expression of wildtype hypertrophic and proliferative growth plate zone gene signatures in Schmid and Cog
hypertrophic zones. (A) Heatmap depicting the relative fold difference (log fold change) of 510 wildtype (Wt) hypertrophic zone (HZ) signature
genes following the comparison of datasets generated by microarray analyses of Wt proliferative zone (PZ), Wt HZ, homozygous Schmid (Schmid) HZ,
or Tgcog (Cog) HZ aRNA (N = 3). (B) Heatmap depicting the relative expression (log fold change) of 773 Wt PZ signature genes following the
comparison of datasets generated by microarray analyses of Wt PZ, Wt HZ, Schmid HZ, or Cog HZ aRNA (N = 3). For both heatmaps, each Wt growth
plate zone signature gene is represented by a single bar, colour-coded according to relative expression as indicated, with downregulated genes
coloured yellow, and upregulated genes coloured red. (C–F) Validation of (A) and (B) by quantitative PCR (qPCR) using (C) Wt PZ and Wt HZ cDNA for
markers of the Wt HZ gene signature, (D) Wt PZ and Wt HZ cDNA for markers of the Wt PZ gene signature, (E) Schmid HZ and Wt HZ cDNA for the Wt
HZ markers used in (C), and (F) Schmid HZ and Wt HZ cDNA for the Wt PZ markers used in (D); N = 3, expression profiles expressed as Fold Difference
versus Wt HZ, microarray data shaded dark grey, qPCR data shaded light grey, qPCR error bars indicate standard deviation around the mean.
doi:10.1371/journal.pone.0024600.g006
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astrocyte derived neurotrophic factor) is a soluble 18 kDa protein [63]

which localizes to the ER but may also be secreted [64]. Armet is a

robust UPR marker, inducible in vitro with chemical ER stressors

[63,64,65], as well as in the brain following experimentally induced

ischemia [64], or by misfolding Matn3 expressed in a mouse model of

multiple epiphyseal dysplasia [39]. Armet expression is regulated by

Xbp1s and Atf6 [65], and mediated by an ERSE-II element in its

promoter [63]. The function of Armet is not fully resolved, though it is

known to impair cell proliferation and protect against ER stress-

induced cell death [64]. Intrastriatal injection of exogenous Armet has

proven efficacious in the treatment of an experimental model of

Parkinson’s disease, a neurodegenerative disorder related to ER stress

in, as well as loss of, dopaminergic neurons [66,67]. Thus, Armet

appears to have a prominent role in the UPR, and it will be important

to determine whether its manipulation can ameliorate not only

Parkinson’s disease, but other ER stress disorders as well, including

MCDS.

Creld2 (cysteine rich with EGF-like domains 2) encodes an ER-

resident [68,69], 60 kDa glycoprotein [68]. Like Armet, Creld2 is

inducible in vitro using chemical ER stressors, and is regulated by

Atf6 via an ERSE element in its promoter [68]. The function of

Creld2 is unknown, however it was shown to be highly upregulated,

along with Armet, in a Matn3 mutant model of multiple epiphyseal

dysplasia [39]. Thus, the upregulation of Creld2 observed in the

Schmid and Cog UPRs here represents the second time this gene

has been implicated in the UPR of a mouse model of an ER stress-

related disease. Upregulation in response to various in vitro and in

vivo stressors strongly implicates Creld2 as having an important role

in the UPR which is neither stimulus- nor cell type-specific, and

highlights the need for further research into the function of this

conspicuous, novel ER stress marker.

Less is known about Steap1 (six transmembrane epithelial

antigen of the prostate 1), a protein which is widely expressed

and which has recently been identified marker of various types of

cancer [70]. Steap1 bears greater than 60% homology to three

other family members – Steap2, Steap3, and Steap4 [71], none of

which were upregulated in either Schmid or Cog (Table S6). In

addition to their structural homology, all four Steap proteins have

been found to localize to endosomes [71]. This is the first study, to

our knowledge, to demonstrate the upregulation of Steap1 in

response to any kind of ER stress. Therefore Steap1 may constitute

a novel, chondrocyte-specific component of the UPR.

Fibroblast growth factor 21 (Fgf21) belongs to the endocrine-

acting Fgf19 subfamily of the Fgf superfamily [72]. Under normal

conditions, Fgf21 is widely expressed in metabolically important

tissues including liver, fat, muscle, and pancreas, and accordingly

is involved in multiple metabolic processes including adaptation to

starvation [73]. Fgf21 signalling is known to be mediated by either

of Fgfr1, -2, or -3 in conjunction with the co-regulator b-klotho

[72]. To our knowledge, this is the first study to report the

upregulation of Fgf21 in response to ER stress. Intriguingly, we

also found a putative ERSE element in the mouse Fgf21 promoter

positioned 310 bp upstream of the Fgf21 start codon (Figure S4).

This sequence closely resembles the previously reported consensus

sequence for ERSE I elements, which are cis-acting regulatory

motifs that favour the upregulation of UPR target genes and

glucose-regulated proteins [74]. It is unclear what role Fgf21 has in

the UPR of the Schmid or Cog mice. While it is possible that

Fgf21 may play a currently unrecognised direct role in the UPR, it

may also be that Fgf21 is upregulated in ER-stressed Schmid and

Cog chondrocytes as an adaptive response to ‘‘starvation’’ caused

by the significant energetic cost of UPR activation. Such costs are

reflected by the appreciable depletion of glycogen deposits in the

ER-stressed chondrocytes of the upper hypertrophic zone

compared with wildtype (Figures 5F,H).

Downregulation of genes encoding secreted proteins in
ER-stressed Schmid chondrocytes

Genes encoding secreted proteins were widely downregulated in

Schmid (Table S3), including cartilage ECM components such as

Matn1, Matn2, Col9a2, Col9a3, Col11a2, Chad, as well as proteases,

including Mmp9 (Table S5). ECM integrity is critical for providing

Figure 7. In situ analysis of growth plate proliferative zone
gene signature markers. In situ analyses performed on 7 day old
wildtype (Wt) and homozygous Schmid (Schmid) tibial growth plate
cryosections using digoxigenin-labelled riboprobes specific for the
selected growth plate proliferative zone gene signature markers (A,B)
Eef1a1, (C,D) Ncam1, and (E,F) Prnp. Dashed lines demarcate approx-
imate growth plate zone boundaries: R – Resting Zone, P – Proliferative
Zone, H – Hypertrophic Zone. Boxes inset show magnified represen-
tative areas of the hypertrophic zones, to highlight the extent of
riboprobe hybridization in these zones. Scale bars = 500 mm.
doi:10.1371/journal.pone.0024600.g007

The UPR and Its Effects on Chondrocyte Hypertrophy

PLoS ONE | www.plosone.org 11 September 2011 | Volume 6 | Issue 9 | e24600



structural support, as well as signalling information during normal

tissue development [1]. Thus, while the downregulation of

cartilage ECM and protease genes observed in ER-stressed

Schmid chondrocytes would significantly reduce their ER protein

load, favouring their survival, we anticipate it having deleterious

effects on mutant growth plate function as well. It is known for

example that Vegf, which mediates vascularisation during

endochondral ossification [75], may be stored bioactively bound

to the ECM, and released as a soluble angiogenic factor in

response to protease activity [76]. Mmp9 and Mmp13 may be

important for Vegf release from the hypertrophic zone to mediate

growth plate vascularisation, and loss of either protease from the

growth plate results in hypertrophic zone elongation [77,78].

Therefore impaired vascularisation of the mutant growth plates

may be caused not only by reduced Vegf expression, as we observed

previously in the lower half of Schmid hypertrophic zones [8], but

also by reduced bioavailability of Vegf and other growth factors,

due to disrupted development of mutant hypertrophic cartilage

matrices caused by UPR-mediated transcriptional attenuation of

ECM and protease genes. That the pathology of MCDS involves

impaired growth plate vascularisation is further supported by the

much lower expression of Hbb-b1 [34] (Table S1, Figure 6C,E),

along with other genes related ontologically to vasculature

development (Table S3), in the mutant hypertrophic zones

compared with wildtype.

Interestingly, Col10a1 was not found to be differentially

expressed in our microarray analyses of 2 week old Schmid and

Cog tibiae compared to wildtype (Table S6). That Col10a1 is not

differentially expressed between Schmid and wildtype in 1 week

old tibial growth plates was then demonstrated by in situ analysis

(Figure 3Bi,ii). By contrast, we [8] and others [24] previously

observed downregulation of mutant Col10a1 in the hypertrophic

zones of 3 week old MCDS mouse growth plates. The growth rate

of wildtype and Schmid mice is maximal between 3–4 weeks [8].

Accordingly, it may be that the level of mutant collagen X passing

through the ER of Schmid mice is also maximal at 3 weeks,

resulting in a more severe ER stress than at 1–2 weeks. Thus, the

different Col10a1 expression patterns observed in MCDS growth

plates here and previously may reflect different levels of ER stress

severity during the time course of the disease.

Apoptosis is not a feature of the UPR in Schmid or Cog
ER-stressed chondrocytes

Apoptosis was not increased in the Schmid hypertrophic zone

compared with wildtype (Figure 4), despite upregulation of Chop,

Cebpb, and key transcriptional targets in mutant hypertrophic

zones by comparison with wildtype (Table S6). Chop is widely

regarded as a marker of ER-stress induced apoptosis. Numerous

studies have shown that its over-expression promotes apoptosis,

while its inhibition favours cell survival [79,80,81]. More recently

however, others have demonstrated that Chop can play pro-

survival roles in the UPR [82]. As already noted, the fate of ER-

stressed cells is thought to depend on the combination and kinetics

of the stress sensors they activate. ER-stressed cells activate at least

Ire1, Atf6, and Perk, however Ire1 (and Atf6) activity may be

transient [41]. Indeed Tsang et al previously demonstrated Xbp1

splicing only in the upper portion of the hypertrophic zone in their

transgenic model of MCDS [24], suggesting transient Ire1 activity

in ER-stressed chondrocytes in this disease. The kinetics and

duration of Ire1 activity is important, but controversial. Some

suggest that its activity favours cell survival, while its loss, coupled

with persistent Perk activation, favours apoptosis [41]. Others

however, have correlated the Xbp1-independent kinase activity of

Ire1 with increased apoptosis [19]. These studies, and ours,

highlight the complexities involved in trying to understand how

the regulation of cell fate during ER stress is modulated.

ER-stressed Schmid and Cog chondrocytes undergo
developmental arrest and retain ultrastructural and
molecular features of proliferative chondrocytes

We have revealed significant histological and ultrastructural

similarities between chondrocytes in the Schmid hypertrophic

zone and proliferative chondrocytes (Figure 5). Moreover, our

gene expression profiling analyses revealed that chondrocytes in

the Schmid hypertrophic zone do not fully upregulate wildtype

hypertrophic zone markers (Figure 6A,C,E), or downregulate

proliferative zone markers (Figure 6B,D,F). Crucially, the

abnormal nuclear staining (Figure S2; Figure 4A), proliferative

chondrocyte-like ultrastructural features (Figure 5), and growth

plate zone marker expression (Figure 7) were present in

chondrocytes throughout the hypertrophic zones of the mutant

mice. These findings differ from those of Tsang et al, who reported

loss of proliferative and pre-hypertrophic (late proliferative) zone

marker expression in the upper portion of the hypertrophic zone

of their MCDS mouse model, followed by resumed expression in

the lower hypertrophic zone, and who argued on this basis that

MCDS growth plate chondrocytes become hypertrophic before

de-differentiating to a pre-hypertrophic chondrocyte-like state, to

ameliorate mutant collagen X-induced ER stress [24]. Rather, our

data on the Schmid mutant suggest that with the onset of

hypertrophy, expression of misfolding collagen X and the

subsequent onset of ER stress disrupts further maturation of

growth plate chondrocytes due to UPR-mediated dysregulation of

normal gene expression. Consequently, ER-stressed mutant

chondrocytes in this MCDS model undergo developmental arrest,

retaining significant elements of the proliferative chondrocyte gene

signature, failing to acquire the full gene signature of wildtype

hypertrophic chondrocytes, and continuing to display several key

subcellular ultrastructural hallmarks of proliferative chondrocytes.

As a result, it is likely that they are unable to provide vital

microenvironmental cues required to facilitate growth plate

remodelling and vascularisation such as proteases and pro-

angiogenic signaling molecules (discussed above), accounting for

the hypertrophic zone elongation characteristic of the MCDS

growth plate.

Materials and Methods

Ethics Statement
Col10a1 p.Asn617Lys mice (Schmid) and ColXTgcog mice (Cog),

which were generated as described previously [8], as well as

wildtype littermates, and Swiss white mice were sacrificed in

accordance with Institutional Animal Ethics guidelines at one

week or two weeks post-partum, as indicated.

Western Blotting
Whole cartilage extracts and Western blots were generated as

described previously [8].

Microdissection of mutant and wildtype growth plate
zones

One tibia from each of three two week old Schmid, wildtype

(Schmid background), Cog, and wildtype (Cog background) mice

was used for hypertrophic zone microdissection (Figure 8). One

tibia from each of three two week old Swiss White mice was used

to microdissect hypertrophic and proliferative zones for wildtype

growth plate zone gene signature analyses. Tibiae were dissected
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and embedded in Tissue-Tek OCT (Sakura Fine Technical), snap-

frozen in isopentane, and stored at 280uC. 10 mm tibial sections

were prepared using a cryostat (Leica CM1850), mounted on

RNAse-free SuperFrost Plus slides (Biolab Scientific), and stored at

280uC. Immediately prior to microdissection, sections were fixed

in 70% ethanol, rinsed in RNAse-free water, and dehydrated in

70%, 95%, and 100% ethanol for 30 seconds each, and air-dried.

Schmid, Cog, and wildtype hypertrophic zones, and Swiss White

hypertrophic and proliferative zones were microdissected from

slides immobilized on the stage of an inverted light microscope

(Leica DM IL) using an ophthalmic scalpel (Feather) fixed to the

scanning xy-object guide. Light microscopy was performed using

an Eclipse 80i light microscope (Nikon).

RNA Preparation
Microdissected tissues were collected in TRIzol reagent

(Invitrogen) for RNA extraction and purification, which was

performed following the manufacturer’s specifications. All total

RNA samples were subjected to two rounds of linear amplification

using the MessageAmp II aRNA Amplification Kit (Ambion),

following the manufacturer’s protocol. 100–150 ng of first-round

amplified aRNA was used as template for each second round

amplification. Following total RNA extraction and amplification,

the yield, purity, and integrity of all RNA samples were validated

by capillary electrophoresis with a Bioanalyzer 2100 (Agilent

Technologies), using a Series II RNA 6000 Pico Kit (Agilent

Technologies), according to the manufacturer’s specifications.

Amplified RNA samples (2 mg) were labelled with Cy3 using the

ULS Fluorescent Labeling Kit for Agilent Arrays (Kreatech

Diagnostics), according to the manufacturer’s specifications.

Fluorophore incorporation and yield were determined by

spectrophotometry using a Nanodrop ND-1000 spectrophotome-

ter (Thermo Fisher Scientific).

PCR Analysis
Polymerase chain reaction (PCR) analysis was used to detect

Xbp1 splicing, and to generate templates for in situ hybridization

(see below) riboprobes. To generate cDNA for PCR reactions,

reverse transcriptions were performed on equal quantities of

aRNA, using the Transcriptor High Fidelity cDNA Synthesis Kit

(Roche Applied Science), according to the manufacturer’s

specifications. For Xbp1 splicing, PCR was performed on equal

quantities wildtype, Schmid, and Cog hypertrophic zone cDNA

using primers flanking the Xbp1 ER stress-responsive splice site

[17]. To synthesize in situ hybridization riboprobes, PCR product

were generated from cDNA as appropriate using primers spanning

39-biased regions of the gene of interest ranging from 500–700 bp

in length. Quantitative PCR (qPCR) was used for quantitative

validation of the differential expression of specific genes between

wildtype and mutant hypertrophic zones, and between wildtype

proliferative and hypertrophic zones. qPCR was performed using

the LightCycler 480 Probes Master kit (Roche Applied Science) in

10 ml reactions comprised of 5 ml LightCycler 480 Probes Master

26 concentrate, 50 ng cDNA, 100 nM UPL Probe (Roche

Applied Science), and 200 nM each primer. qPCR primers were

designed online (https://www.roche-applied-science.com/sis/

rtpcr/upl/adc.jsp). Thermal cycling was conducted on a Light-

Cycler 480 II qPCR machine (Roche Applied Science), as follows:

initial denaturation at 95uC for 10 minutes, followed by 50 cycles

of denaturation at 95uC for 30 seconds, annealing and polymer-

ization at 60uC for one minute. qPCR data were analysed using

LightCycler480 Software release 1.5.0 (Roche). All primer

sequences are available on request.

Microarray hybridizations and Bioinformatic Analyses
All aRNA samples were interrogated by microarray analysis

using single-colour hybridizations to 44 K whole mouse genome

microarrays, according to the manufacturer’s specifications

(Agilent Technologies). The arrays were then scanned at 5 mm

resolution on a G2565BA DNA Microarray Scanner (Agilent

Technologies), and the features extracted using Feature Extraction

9.5.3 software (Agilent Technologies). The raw data were then

processed in statistical language R, using the limma package

[83,84], performing Normexp (offset = 50) for background correc-

tion and quantile normalization, with control probes removed and

duplicate spots averaged. One array (ID 251486826813_3

(Proliferative)) was removed from the analysis due to quality

control issues. Data were adjusted for multiple testing using the

Benjamini and Hochberg’s method to control false discovery rate.

Gene set tests were performed within limma.

In Situ Hybridization
In situ hybridisation was used to investigate the expression of

candidate genes identified by microarray analyses. 10 mm tibial

cryosections from one week old Schmid, Cog, and wildtype mice

prepared as above were fixed in 4% paraformaldehyde (PFA) in

PBS, and subjected to in situ hybridization, as briefly follows. DIG-

labelled antisense RNA probes were prepared from PCR products

subcloned into pGEMT-Easy cloning vector (Promega). Probes

were hybridized to cryosections overnight at 65uC in hybridization

Figure 8. Microdissection of growth plate hypertrophic zones from wildtype and mutant mice. Representative 10 mm tibial growth plate
cryosections from 14 day old wildtype (Wt), Schmid homozygous (Schmid), or Tgcog (Cog) mice, stained with Toluidine Blue and Fast Green, and
following microdissection of hypertrophic zones. Microdissected sections are shown in the upper panel; non-microdissected serial sections are shown
in the lower panel. Dashed lines demarcate approximate growth plate zone boundaries: R – Resting Zone, P – Proliferative Zone, H – Hypertrophic
Zone. Scale bar = 500 mm.
doi:10.1371/journal.pone.0024600.g008

The UPR and Its Effects on Chondrocyte Hypertrophy

PLoS ONE | www.plosone.org 13 September 2011 | Volume 6 | Issue 9 | e24600



buffer, comprised of 16 salts (0.2 M NaCl, 10 mM Tris-HCl

pH 7.5, 1 mM Tris Base, 5 mM NaH2PO4.2H2O, 5 mM

Na2HPO4, 50 mM EDTA), 1 mg/ml tRNA, 16 Denhardt’s

solution, 10% dextran sulphate, 50% deionized formamide.

Hybridized cryosections were washed three times for 30 minutes

at 65uC in washing solution (16SSC, 50% formamide), then twice

for 30 minutes at room temperature in TBTX (50 mM Tris-HCl

pH 7.5, 150 mM NaCl, 0.1% Triton X-100). Cryosections were

then treated with blocking solution (TBTX, 2% blocking reagent

(Boehringer), 20% sheep serum) for $1 hour at room tempera-

ture, followed by antibody solution, comprised of 1:1000 DIG

anti-Fab fragments (Roche) in blocking solution overnight at room

temperature. Next, cryosections were washed four times for

20 minutes in TBTX, and stained using 4.5 ml/mL nitro blue

tetrazolium chloride (NBT) and 3.5 ml/mL 5-Bromo-4-chromo-3-

indolyl phosphate (BCIP) in alkaline phosphatase staining buffer

(100 mM NaCl, 50 mM MgCl2, 100 mM Tris pH 9.5) until

strong, specific signal was detected.

Histology
Mouse tibial growth plate sections were characterized histolog-

ically with Harris’s Haematoxylin and Eosin Y (CliniPure, HD

Scientific Supplies Pty Ltd), and for proteoglycans with Toluidine

Blue and Fast Green (BDH Laboratory Supplies) counterstaining

as previously described [85], but with the following exceptions.

Because OCT-embedded cryosections were used rather than

paraffin-embedded microtome sections, de-waxing steps involving

xylene treatments were discarded. Instead, sections which had

already been fixed in ethanol in preparation for microdissection

were washed in water prior to staining, while fresh sections were

fixed in 4% PFA for 10 minutes, and washed in water. For H&E

staining, following haematoxylin treatment, sections were treated

for 30 seconds each in 1% HCl and 1% ammonia water, and

washed for 1 minute each under running tap water between and

following each of these three treatments. For Toluidine Blue/Fast

Green staining, following Toluidine Blue treatment and tap water

rinse, sections were counterstained with Fast Green for three

minutes, rinsed in tap water, and differentiated twice for one

minute each in 100% isopropanol, before preparing for mounting

in Pertex mounting medium (HD Scientific Pty Ltd) by treatment

with xylene.

TUNEL Staining
Terminal deoxynucleotidyl transferase dUTP nick end labelling

(TUNEL) was used to detect cells undergoing DNA fragmentation

at the end stages of apoptosis. Six tibial growth plate cryosections

from each of three wildtype and three Schmid mice were assayed

by TUNEL using the In Situ Cell Death Detection Kit, Fluorescein

(Roche) according to the manufacturer’s specifications. Wildtype

cryosections treated with recombinant DNase I (Roche) for

20 minutes at room temperature prior to TUNEL staining were

used as positive controls. 49,6-diamidino-2-phenylindole (DAPI)

was added to TUNEL reactions as a nuclear counterstain at a

concentration of 200 ng/ml. Fluorescent microscopy was per-

formed using an Axio Imager M1 fluorescence microscope (Zeiss).

A ratio was calculated for the number of TUNEL-positive nuclei

to the total number of nuclei per hypertrophic zone, to normalize

for the length differential between wildtype and Schmid

hypertrophic zones.

Transmission Electron Microscopy
Specimens of growth cartilage collected from tibiae of 1 week

old mice were fixed in Karnovsky’s fixative supplemented with

0.7% (v/v) safranin O, a modified procedure used to enhance

structural preservation and stabilization of cartilage proteoglycans

[86]. After decalcification in 0.15 M EDTA samples were post-

fixed in 1% osmium tetroxide/1.5% potassium ferrocyanide and

embedded in Spurr’s resin. Semi-thin sections (0.5 mm) were

stained with 1% methylene blue. Ultra-thin sections were

contrasted with uranyl acetate and Reynold’s lead citrate and

examined with a Philips 300 transmission electron microscope at

60 kv.

Supporting Information

Figure S1 qPCR analysis of Col10a1 expression in
wildtype and mutant hypertrophic zones. qPCR performed

for Col10a1 on cDNA derived from hypertrophic zones microdis-

sected from wildtype (Wt), homozygous Schmid (Schmid), or Tgcog

(Cog) tibial growth plates; N = 3, expression profiles expressed as

Fold Difference versus Wt, error bars indicate standard deviation

around the mean.

(TIF)

Figure S2 Haematoxylin and eosin staining of wildtype
and Schmid growth plates. Representative 10 mm tibial

growth plate cryosections from 7 day old wildtype (Wt) or Schmid

homozygous (Schmid) mice, stained with haematoxylin and eosin.

Dashed lines demarcate approximate growth plate zone bound-

aries: R – Resting Zone, P – Proliferative Zone, H – Hypertrophic

Zone. Boxes inset show magnified representative areas of the HZs,

to highlight the differential staining between Wt and Schmid in

these zones. Scale bars = 500 mm.

(TIF)

Figure S3 qPCR validating aRNA derived from wildtype
mouse growth plate hypertrophic and proliferative
zones. qPCR performed on cDNA derived from hypertrophic

zones (HZ) or proliferative zones (PZ) microdissected from

wildtype (Wt) mouse tibial growth plates, using (A) HZ markers

Adamts1, Col10a1, and Mmp9, and (B) PZ markers Fmod, Gdf10, and

Prelp, and expressed as Fold Difference for Wt PZ versus Wt HZ;

N = 3, error bars indicate standard deviation around the mean.

(TIF)

Figure S4 Putative ERSE I element in the Fgf21 promot-
er. Portion of Fgf21 genomic DNA sequence, from 334 bp

upstream of the start codon, to 40 bp downstream of the start

codon. Non-coding sequence denoted by lower-case font; coding

sequence denoted by upper-case font. Start codon denoted by

bold, blue font. Putative Fgf21 ERSE I sequence denoted by bold,

red font, with nucleotides matching the ERSE I consensus

sequence underlined.

(TIF)

Table S1 Schmid versus wildtype differentially ex-
pressed genes.

(PDF)

Table S2 Cog versus wildtype differentially expressed
genes.

(PDF)

Table S3 Schmid versus wildtype GO analysis.

(DOCX)

Table S4 Cog versus wildtype GO analysis.

(DOCX)

Table S5 Cartilage-specific collagens and ECM compo-
nents in schmid or cog versus wildtype.

(DOCX)
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Table S6 ER stress sensors, their targets, and down-
stream pathways.

(DOCX)

Table S7 Wildtype hypertrophic zone gene expression
signature.
(DOCX)

Table S8 Wildtype proliferative zone gene expression
signature.
(DOCX)

Table S9 Wildtype hypertrophic zone gene expression
signature GO analysis.

(DOCX)

Table S10 Wildtype proliferative zone gene expression
signature GO analysis.
(DOCX)
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