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Abstract

Objective.—Accurate inference of functional connectivity is critical for understanding brain 

function. Previous methods have limited ability distinguishing between direct and indirect 

connections because of inadequate scaling with dimensionality. This poor scaling performance 

reduces the number of nodes that can be included in conditioning. Our goal was to provide a 

technique that scales better and thereby enables minimization of indirect connections.

Approach.—Our major contribution is a powerful model-free framework, graphical directed 

information (GDI), that enables pairwise directed functional connections to be conditioned on the 

activity of substantially more nodes in a network, producing a more accurate graph of functional 

connectivity that reduces indirect connections. The key technology enabling this advancement 

is a recent advance in the estimation of mutual information (MI), which relies on multilayer 

perceptrons and exploiting an alternative representation of the Kullback–Leibler divergence 

definition of MI. Our second major contribution is the application of this technique to both 

discretely valued and continuously valued time series.

Main results.—GDI correctly inferred the circuitry of arbitrary Gaussian, nonlinear, and 

conductance-based networks. Furthermore, GDI inferred many of the connections of a model 

of a central pattern generator circuit in Aplysia, while also reducing many indirect connections.

Significance.—GDI is a general and model-free technique that can be used on a variety of scales 

and data types to provide accurate direct connectivity graphs and addresses the critical issue of 

indirect connections in neural data analysis.
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1. Introduction

Extracting the functional connectivity among a network of neurons has remained a daunting 

challenge in systems neuroscience. A variety of techniques [1–6] have addressed the 

causality present within connectivity and accordingly assign directionality to connections. 

For example, some research [1, 5] has focused on causality among fine-scale neuronal 

networks where binned spike times are used to determine directed functional connectivity 

between individual neurons. In contrast, other research has taken a large-scale approach 

by inferring directed functional connectivity between brain regions via electrocorticography 

(ECoG) [2–4] and electroencephalography (EEG) [6] recordings. In either case, progress 

has been hindered significantly by the inability to fully condition model-free connectivity 

inferences on the activity of the other nodes within the network being analyzed, the 

consequence of which is analyses that may include indirect connections. Prior work has 

included applying model assumptions such as Gaussianity [6] or conditioning on only one 

other node [1]. A better way to realize directed information (DI) graphs [7] is to develop 

an estimator that is model-free and that scales well with dimensionality so that conditioning 

can be applied to many nodes in a graph. Therefore, our first major goal was to develop 

a framework that produces directed functional connectivity inferences that are conditioned 

on many of the nodes in the network and are completely free of any model assumptions. 

Importantly, conditioning means that our connectivity analyses result in a graph [7] where 

connectivity more accurately expresses conditional dependence rather than dependence 

contaminated by other nodes’ activity, meaning that these graphs preserve direct connections 

and minimize indirect connections. Our second goal was to develop a framework which can 

easily be applied at any scale of recordings ranging from spike times to voltage recordings.

DI [3, 5, 8, 9] is a useful tool in quantifying directed functional connectivity, primarily 

because it has no inherent model assumptions. This feature is critical in the case of neural 

data, which is unlikely to be non-Gaussian. Accordingly, DI and transfer entropy, which 

can be parameterized to be equivalent to DI, have gained traction in the neuroscience 

community [10–12]. However, estimation of DI and transfer entropy has been plagued by 

the dimensionality issues, which have been a key limiting factor preventing the conditioning 

of directed functional connectivity estimates on the entire graph. For example, one study 

on ECoG only considered pairwise DI [2], whereas others on ECoG [3] and spike times 

[1] at best considered conditioning on one single other node. Recently, advances [13, 

14] in the estimation of mutual information (MI) between high dimensional variables 

have been achieved and these approaches have already led to the estimation of pairwise 

directed functional connectivity in DI [15] and transfer entropy [16]. However, no work 

to our knowledge has been done on using this estimator to condition directed functional 

connectivity estimates on other nodes in a network to produce a graph [7]. We leverage 

this approach by introducing graphical DI (GDI), which builds on prior DI graph work 

[7] by incorporating this estimation technique to overcome previous limitations preventing 

model-free conditioning of DI estimates on many other nodes.

Although previous DI tools have generally focused on either discretely valued time series 

[1, 5, 17] such as binned spike times (taking on the values 0 or 1) or continuously valued 

time series such as voltages obtained from ECoG [2–4] or EEG [6], our framework that is 
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based on a prior conditional MI estimator [14] can be universally applied to either type of 

data. This universality is because likelihood ratio estimation is at the heart of our estimation 

approach, which means it is independent of the nature of the likelihoods. In particular, 

using this ratio provides abstraction from whether likelihoods are based on probability 

density functions for continuously valued data or based on probability mass functions for 

discretely valued data. Therefore, whether data consists of spikes, ECoG recordings, or 

another modality, it can be easily inserted into our estimator to produce a DI graph.

To begin, we present background on DI, introduce GDI, and describe how to estimate such 

quantities as well as how to perform sign inference in regards to whether a connection is 

excitatory or inhibitory. Then, we present a series of results demonstrating the necessity of 

a graphical method such as GDI in assessing connectivity. We begin with two continuously-

valued simulations consisting of 11 nodes as an analog to ECoG or EEG voltage time series 

data. The first simulation is a Gaussian case where the analytic solution is known and can 

be compared with our GDI estimates. Because neural data is unlikely to be Gaussian or have 

linear relationships, we follow our Gaussian analysis with a nonlinear network analysis that 

shows GDI’s generality. We continue with results on discretely-valued data in the form of 

simulated binned spike times from 11 and 13 node networks of conductance-based neurons. 

Finally, we discuss how our findings demonstrate the power and flexibility of GDI.

2. Methods

2.1. Directed information

DI [3, 5, 8, 9] is an information theoretic tool that measures the causal influence of one 

entity upon another without any model constraints. In order to define DI, we begin by 

defining the MI between two continuous random variables X and Y [18]:

I(X; Y ) = DKL pX, Y ∥ pXpY (1)

= ∫SY
∫SX

pX, Y (x, y) log  pX, Y (x, y)
pX(x)pY (y) dxdy, (2)

where DKL is the Kullback–Leibler (KL) divergence, pX,Y is the joint probability density 

associated with X and Y, pX and pY are the marginal probability densities for X and 

Y, and finally SX and SY are the support of X and Y where pX(x) > 0 and pY(y) > 0. 

Importantly, MI quantifies the statistical dependence between X and Y, including when they 

are non-Gaussian or discrete. We also note that MI can be defined in terms of differential 

entropies h [18]:

I(X; Y ) = ℎ(X) + ℎ(Y ) − ℎ(X, Y ), (3)

where ℎ(X) = − ∫SXpX(x) log pX(x)dx, ℎ(Y ) = − ∫SY pY (y) log pY (y)dy, and 

ℎ(X, Y ) = − ∫SX, SY pX, Y (x, y) log pX, Y (x, y)dxdy [18].
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Importantly, MI can be conditioned on other random variables, such as W, to produce 

Conditional MI (CMI) [18]:

I(X; Y ∣ W ) = I(X; Y , W ) − I(X; W ) . (4)

The DI from the random process X to the random process Y can then be defined as a 

particular formulation of conditional MI [3, 8, 19–21]:

I(X Y) = I Xi − M, …, Xi − 1; Y i ∣ Y i − M, …, Y i − 1 , (5)

where Xi and Yi refer to the ith samples of X and Y, respectively, and M is the memory 

parameter that refers to how many past samples in both processes affect a given current 

value of Y. In essence, DI is the MI between past values of X and the current value of Y at 

any given time i conditioned on Y’s own past to just capture causal influence from X to Y.

2.2. Graphical directed information (GDI)

Equation (5) can be extended to condition not only on the past of Y but on the past of other 

random processes as well. The motivation for performing such conditioning is to be able 

to identify and eliminate indirect relationships which can occur as a result of the network 

motifs displayed in figure 1. For example, a proxy connection [5] (figure 1(a)) occurs 

when two nodes appear to be connected because of an intermediate third node. Additional 

intermediate nodes can create an extended path (figure 1(b)) where multiple indirect 

connections appear along the path. However, conditioning can do more than eliminate the 

indirect connections present in these motifs. For the case of a sink (figure 1(c)), which is a 

node influenced by multiple other nodes, conditioning increases the strength of connections 

to the sink which has the advantage of making such direct connections more likely to be 

detected.

In order to define our graphical methodology, which addresses such network motifs, we first 

consider the case where X and an additional random process W both influence Y. We can 

capture the effect that X has on Y by accounting for the influence of W on Y in the form of 

conditional DI (CDI) [3]:

I(X Y ∣ W) = I Xi − M, …, Xi − 1; Y i ∣ Y i − M, …, Y i − 1, W i − M, …, W i − 1 . (6)

To take this concept to the limit and consider an entire graph, we now change our notation 

by replacing the three lettered random processes X, Y, and W with R indexed random 

processes X(1), X(2), …, X(R), which can each be considered nodes in the graph. As in prior 

work [7], considering DI for this network results in what we refer to as GDI:

IG X(j) X(k) = I X(j) X(k) ∣ X( * ) , (7)

where X(*) = {X(1), X(2), …, X(R)} \ {X(j), X(k)}.This formulation allows DI to be 

implemented in a fashion true to graph theory, where an edge from node j to node k 
represents conditional dependence quantified by IG(X(j) → X(k)). Finally and formally, 

similar to [7], we define a DI graph as a directed weighted graph G:
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G = (V , E, w) (8)

V = v(1), v(2), …, v(R) (9)

E = (j, k): j, k ∈ V  and w(j, k) > 0 (10)

w(j, k) = S(j, k) × IG X(j) X(k) , (11)

where V denotes the set of nodes, E denotes the set of edges, w(j,k) defines the edge weights 

as signed GDI, and S(j,k) is formally defined later in (19) as the sign for GDI and is either −1 

to indicate inhibition or +1 to indicate excitation. In the next subsection, we consider a new 

GDI estimation approach.

2.3. GDI estimation

DI has been estimated via a variety of data-driven methods in the past such as an empirical 

plug-in method [7], context-tree weighting (CTW) [17, 22], context-tree maximizing (CTM) 

[1, 23, 24], kernel density estimation (KDE) [3, 25], and k-nearest neighbors (k-NN) [2, 

26]. Part of the reason for this variety is due to the different ways that DI can be defined: 

CTW, CTM, and KDE, as well as the plug-in method, use probability distributions, k-nn 

uses entropies, and for our work we use an alternative representation of the KL-divergence 

[14, 27]. Critically, the CTW, CTM, KDE, and k-nn methods of DI estimation are known to 

scale poorly with dimensionality [1, 14]. Prior studies using CTM [1], KDE [3], and k-nn [2] 

commented on this scaling difficulty, and in practice only conditioned on at best one other 

node. Importantly, implementation of DI estimation via the KL-divergence has been shown 

to scale very well with dimensionality in the continuously valued case [14] even compared 

to k-nn, and our scaling results presented later indicate strong scaling performance for the 

discretely valued case as well.

The two key features that allow for this leap in DI estimation are the exploitation of 

an alternative representation of the KL-divergence [13, 27] combined with multi-layer 

perceptrons’ strong classification performance [14]. Notably, DI can be represented as the 

difference of two MI terms (4) which can each be represented in terms of KL-divergences 

(1). Therefore, we begin by showing the Donsker-Varadhan representation of the KL-

divergence which enables the use of a classifier for its estimation [13, 14, 27]:

DKL pX ∥ qX = sup 
f ∈ ℱ

E
x pX(x)

[f(x)]−log  E
x qX(x)

[exp(f(x))] , (12)

where ℱ is a function class defined to consist of the functions that produce finite 

expectations. It turns out that the optimal function is known [13, 14] to be the point-

wise log-likelihood ratio f*(x) = log
pX(x)
qX(x) , and therefore this ratio is estimated from data. 

Prior work [14] found estimation of this ratio via a multi-layer perceptron trained with a 
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binary cross entropy loss function to outperform a gradient boosted decision tree approach 

in estimating the KL-divergence when ultimately estimating CMI. Therefore, we use 

this approach to ultimately estimate DI because it is a particular formulation of CMI. 

Considering that one has Np samples from pX(x) and Nq from qX(x) with individual samples 

referred to respectively as xn,p and xm,q, a binary classifier implemented via a neural 

network can be trained to identify data from pX(x) as label ℓ = 1 and data from qX(x) as label 

ℓ = 0 [14, 28, 29]. Intuitively, if pX(x) and qX(x) are different, then classification accuracy 

should deviate from the random guess accuracy of 0.5. For a given point k, the point-wise 

likelihood ratio can then be computed as ℒ xk =
P ℓ = 1 ∣ xk

1 − P ℓ = 1 ∣ xk
 and this can substituted 

into (12) to produce an estimate of the KL-divergence [14]:

DKL pX ∥ qX = 1
Np

∑
n = 1

Np
logℒ xn, p − log  1

Nq
∑

m = 1

Nq
ℒ xm, q . (13)

In essence, the estimates of the point-wise likelihood ratio coming from a neural network 

applied to the data are plugged into a series of equations ((13), (1), and (4)) to estimate DI 

and similarly GDI, which is elaborated in the final paragraph of this subsection.

We use the implementation provided by prior work (https://github.com/sudiptodip15/CCMI) 

[14] which bootstraps classifiers. One bootstrap iteration consists of randomly selecting 

two-thirds of the data to be used for training the classifier, while the remaining one-third of 

data is used for testing the classifier. The test data corresponds to the Np samples from pX(x) 

and Nq from qX(x) referred to previously. Additional bootstrap iterations each randomly split 

the data between training and testing sets, and a final DKL pX ∥ qX  estimate is obtained 

by averaging across the individual DKL pX ∥ qX  estimates obtained via each bootstrap 

iteration. Increasing the number of bootstrap iterations leads to a more reliable estimate.

Figure 2 illustrates how this classifier-based KL-divergence estimation approach can be 

applied to estimate the GDI between two nodes X and Y conditioned on two other nodes 

W and V. For the more general case, consider recordings from R channels where we want 

to estimate the GDI between channels j and k. The definition of CMI (4) allows this to be 

formulated as a difference of two MI terms:

I X(j) X(k) ∣ X* = I Xi − M
(j) , …, Xi − 1

(j) ; Xi
(k) ∣ Xi − M

(1) , …, Xi − 1
(1) , …,

Xi − M
(R) , …, Xi − 1

(R) (14)

= I Xi − M
(j) , …, Xi − 1

(j) ; Xi
(k), Xi − M

(1) , …, Xi − 1
(1) , …, Xi − M

(R) , …, Xi − 1
(R)

− I Xi − M
(j) , …, Xi − 1

(j) ; Xi − M
(1) , …, Xi − 1

(1) , …, Xi − M
(R) , …, Xi − 1

(R) ,
(15)

where the second half of the I expressions on the right-hand side exclude Xi − M
(j) , …, Xi − 1

(j) . 

To estimate a given MI term in (15), non-overlapping windows of length M + 1 of each 

of the R channels are taken as shown in figure 2(b). The first M values of each window 
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of a given channel r can be used as samples of the terms Xi − M
(r) , …, Xi − 1

(r) , while the 

last value of each window of channel k can be used as samples of the term Xi
(k). All 

of these samples are effectively being drawn from a massive joint distribution pX (13) 

which describes the relationships manifested in the data. However, in order to use (13) to 

estimate MI we also need samples drawn from qX, which represents the distribution where 

all variables are independent. An approach is to simply permute the samples of pX [14], 

because this will simulate independent drawings (figure 2(c)). A portion of these samples 

for pX and qX can then be used to learn ℒ via training a binary classifier to distinguish 

between samples from these two distributions. This allows the remainder of the samples to 

be plugged into (13) to provide a single MI estimate (figure 2(d)). The training and testing 

procedure is then repeated a number of times in a bootstrapped manner as outlined in the 

previous paragraph in order to provide an average MI estimate. By applying this overall 

KL-divergence approach to each MI term in (15), we arrive at the estimate of IG(X(j) → 
X(k)).

2.4. Connection sign inference

Although information theoretic methods are powerful because of their generality, such 

methods do not indicate the positivity or negativity of a relationship. In the case of 

neural data, this means that DI alone cannot indicate whether a connection is excitatory or 

inhibitory, and therefore we need a sign inference method integrated into the GDI approach. 

Prior methods to infer the sign of a connection have included the use of cross-correlations 

[30] or a similar approach [1] where a presynaptic spike increasing the probability of 

a postsynaptic spike indicates an excitatory connection while a decrease would indicate 

inhibition. The chief issue that these pairwise methods fail to account for is the possibility of 

such inferences being contaminated by the influences of other nodes.

Consequently, we implement the partial correlation technique as a function of a time 

lag, which is similar to the approach of [31] and also similar to that of [32], which 

did not include a time lag. Although this is a linear method, we find that it is an 

effective approximation in practice. Similar to [33], we introduce the time-lagged correlation 

coefficient (TLC):

ρXY(τ) =
∑i xi − x yi − τ − y

∑i xi − x 2∑i yi − τ − y 2 , (16)

where x and y denote the means of each time series while τ is the time lag between X and 

Y. This centering of the data performed by mean subtraction provides clear intuition for 

the TLC: if X and Y tend to be above (and below) their mean together then the TLC will 

be positive, while it will be negative if X tends to be above its mean while Y is below its 

mean and vice-versa. Identifying a relationship from X to Y as excitatory or inhibitory then 

reduces to simply taking the sign of the TLC where positive corresponds to excitatory and 

negative corresponds to inhibitory, which is similar to one step taken in [30]. Overall, this is 

basically a translation of another prior technique [1] that was focused on spike trains to now 
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be used on continuously valued time series. We note that this translated approach alleviates 

the need of selecting a window width parameter required in the baselining approach [30].

However, none of these exclusively pairwise methods consider the influence of other nodes, 

and therefore one additional step must be taken. This final step is the introduction of the 

time-lagged partial correlation coefficient (TLPC) [31, 34]:

ρXY ∣ W(τ) = ρXY(τ) − ρXW(0)ρWY(τ)
1 − ρXW

2 (0) 1 − ρWY
2 (τ)

, (17)

which captures the TLC between X and Y adjusted for the activity of a third time series W. 

In considering more time series, {X(1), X(2), …, X(R)}, TLPC can in fact be further extended 

to condition on an arbitrary number of time series and we display a recursive definition of 

this with simplified notation for presentation purposes [31]:

ρjk ∣ * (τ) = ρjk ∣ ( * ∖ i)(τ) − ρji ∣ ( * ∖ i)(0)ρik ∣ ( * ∖ i)(τ)
1 − ρji ∣ ( * ∖ i)

2 (0) 1 − ρik ∣ ( * ∖ i)
2 (τ)

, (18)

where subscripts i, j, k, and * denote X(i), X(j), X(k), and X(*), and because X(*) = {X(1), 

X(2), …, X(R)} \ { X(j), X(k)}, the subscript (* \ i) denotes X(*)\ X(i). We then use TLPC to 

infer the nature of a connection in a manner reminiscent of [30]:

S(j, k) = sgn ρjk ∣ * τ* ,
τ* = arg maxτ ∈ ℤ − ρjk ∣ * (τ) , (19)

where sgn is the sign function and S(j,k) will either be −1 (inhibition) or +1 (excitation). To 

summarize, one first finds the delay τ* that is less than zero and that produces the maximum 

absolute value of the partial correlation between X(j) and X(k) conditioned on all other time 

series. Then, the sign of the partial correlation at that delay is taken to be the sign of the 

connection from X(j) to X(k), and this sign is applied to GDI estimates. The edge weights in 

the resulting DI graph are each quantified by the signed GDI as w(j,k) = S(j,k) × IG(X(j) → 
X(k)) as per (11).

To demonstrate the advantage of the conditional approach to sign inference, we use an 

example for both the continuously-valued case (figure 3) and the discretely-valued case 

(figure 4). Although the simulated networks of the results will involve 11 and 13 node 

systems where many nodes are conditioned, we consider a three-node system here for 

demonstration purposes. Formally, node X inhibits Y and node W excites Y, both with a 

delay of 0.125 s in their effects (figure 3(a)). The key feature of this simulation is that 

although X inhibits Y, this effect is almost completely masked by the excitatory effect of 

W on Y (figure 3(b)). There is a moment in each cycle of the system where X experiences 

a dip in its activity, which is reflected later as a momentary increase in the activity of Y 
because it is less inhibited. If this dip did not exist, then it would be impossible to identify X 
as inhibitory since the excitatory effect of W would fully mask the influence of X. Notably, 

neither the normalized CC RXY nor TLC ρXY notice the inhibitory effect of X on Y, instead 

clearly labeling the effect as excitatory as evidenced by both methods detecting a (positive) 
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peak (figure 3(c)). The TLPC method overcomes this issue by regressing out other time 

series before considering the correlation between two particular time series, which is an 

equivalent approach to computing TLPC (18) [35]. In particular, one would use simple linear 

regression where xi = β(w, x)wi + ϵi
(x) and yi − τ = β(w, y)wi + ϵi

(y) to estimate the residuals ϵi
(x)

and ϵi
(y), which are shown in figure 3(d), and the TLPC would then be the correlation 

coefficient between these two residuals. We note that the residual for Y is shown with a 

delay τ corresponding to −0.125 s in order to highlight the inhibitory effect of X on Y that 

is clear after regressing out W. This inhibitory effect is correctly identified by TLPC (figure 

3(e)), i.e. the correlation coefficient between these residuals, where a clear negative trough is 

detected in contrast to the positive peaks seen in the normalized CC and TLC resulting from 

not adjusting for W. We conclude by noting that all three methods do identify the excitatory 

effect from W to Y correctly, which is sensible because its effect is not masked by X.

Figure 4 closely follows the explanation presented in the prior paragraph, however 

discretely-valued data reminiscent of binned spike times replaces the continuously-valued 

simulation used in figure 3. The key finding is the same between these figures, namely that 

TLPC is able to identify an inhibitory connection from X to Y that would otherwise remain 

hidden when using CC or TLC because of the masking effect of the excitatory connection 

from W to Y. Using this partial correlation approach on discretely-valued data in the form of 

binned spike times means that xi and yi−τ will take on 0 (no spike) or 1 (spike).

3. Results

We begin by illustrating how the GDI technique scales with sample size, dimensionality, 

and bootstrapping. We then apply GDI to a variety of models where many nodes are 

conditioned in order to highlight the importance of a graphical method in network analysis. 

Initially, we apply GDI to continuously valued data analogous to voltage time series in 

a Gaussian simulation and a nonlinear simulation. Next, we apply GDI to binned spike 

times generated by networks consisting of conductance-based realistic spiking neurons, 

where the first network is arbitrary and the second network is a model of a central pattern 

generator (CPG) circuit in Aplysia. The general finding of these results is that GDI’s 

conditioning performance provides significant reductions in indirect connectivity, producing 

more accurate connectivity analyses.

3.1. Scaling performance

Figure 5 illustrates how the GDI estimator performs with regards to the sample size N 
used for estimation, the number of dimensions dz being conditioned, and the number of 

bootstrap iterations used to train and test the classifiers. Because dz is proportional to 

the number of nodes being conditioned, it provides a measure of how GDI scales with 

network size. We consider both continuously-valued (figure 5(a)) and discretely-valued 

(figure 5(b)) examples. For the continuously-valued simulation, we implement a bivariate 

Gaussian model where Xi − 1, Y i N 0 0 , 1 ρ; ρ 1  with ρ = 0.6. This means that the DI 

between X and Y is simply a function of the covariance, i.e. I(X Y) = − 1
2 log 1 − ρ2

[18]. For the discretely-valued simulation, we implement a binary symmetric channel model 
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where Pr Y i = Xi − 1 = p and Pr[Yi = Xi−1] = 1 − p, where Xi − 1 denotes the logical 

complement of Xi − 1 and p = 0.1 which is the probability of a bit flip. We further note 

that Xi−1~Bernoulli(0.3) which means that the analytic GDI can be computed exactly by the 

discrete version of (2).

When we consider the effects of the number of dimensions dz being conditioned, we 

use two different models. For the continuously-valued scenario, independent unit Gaussian 

random variables are being conditioned. For example, dz = 10 means that the DI estimate 

from X to Y is being conditioned on 10 Gaussian variables. For the discretely-valued 

scenario, independent discrete uniform random variables defined on the set {0, 1} are being 

conditioned. Increasing dz provides a sense of how GDI scales with dimensionality.

The first scaling analysis compares GDI estimates with the number of samples N (figures 

5(a1) and (b1)), where each point is the average estimate across 50 independent simulations 

with 10 bootstrap iterations used per estimate. Each trace corresponds to a particular 

dimensionality dz of what is being conditioned in the GDI estimate. As expected, estimates 

across dz values improve with the number of samples. Notably, in the continuous-valued 

case the estimates with N = 2500 samples where dz = {0, 10, 20} differ by little despite large 

differences in dimensionality. Moreover, the performance of the GDI estimator is better for 

the discretely-valued simulation for N = 2500 samples, where reliable estimates for even dz 

= 100 are seen. In general, the variance of estimates is very low. We finally point out that 

dz = 0 corresponds to regular, pairwise DI, which displays how this technique performs as a 

standard DI estimator.

The second scaling analysis compares GDI estimates with the dimensionality dz of what is 

being conditioned for given sample sizes (figures 5(a2) and (b2)), which is an alternative 

way to look at the analysis considered in figures 5(a1) and (b1). As expected, estimates 

decay relative to the true value with increasing dz, no matter what sample size is used. 

However, for the majority of considered sample sizes the decay is quite linear, which is 

notable given the dimensionalities being considered.

The third scaling analysis compares GDI estimates with the number of bootstrap iterations 

used to train and test the classifier that is at the core of GDI estimation (figures 5(a3) 

and (b3)). A GDI estimate is the average of bootstrapped estimates, which each come 

from randomly splitting the data into training and testing sets for the classifier used in 

GDI estimation. Therefore, we plot the cumulative average GDI estimate over bootstrap 

iterations for given runs of the simulations (figures 5(a3) and (b3)) with dz = 0 and N = 

2500 samples. These plots show that GDI estimates converge when given enough bootstrap 

iterations. For the remaining results, we use at minimum 100 bootstrap iterations to help 

with convergence of our GDI estimates except for the final CPG result where a different 

scheme is used. In general, we recommend consideration of the level of variability that can 

occur in GDI estimates depending on the number of bootstrap iterations used, particularly 

since the analyses for figures 5(a3) and (b3) are specific to a given model and parameters for 

that model.
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Overall, scaling analysis reveals that GDI can condition on many nodes without requiring an 

inordinate number of samples. This scaling performance enables the following network-level 

analyses.

3.2. Gaussian network

We begin our first of two analyses analogous to studying voltages over time by considering 

a simulation of continuously valued time series where the analytic GDI is known. 

Knowledge of the analytic GDI enables the quantification of our estimator’s performance. 

Formally, consider R random processes {X(1), X(2), …, X(R)} where the kth process or 

node at time i follows the form xi
(k) = ∑j = 1

R β(j, k)xi − 1
(j) + α(k)zi

(k) where zi
(k) N(0, 1) and 

∑j = 1
R β(j, k) + α(k) = 1. Simply put, each time series is a linear combination of a noise term 

and past values of other time series, which is inspired by a prior model for two nodes [3]. A 

graphical representation of a constructed version of this network is illustrated in figure 6(a). 

In this representation the presence of an edge from a given node j to node k indicates that 

|β(j,k)| > 0, where the linewidth is proportional to |β(j,k)| and the sign of β(j,k) is indicated 

by a triangle (excitatory) or by a circle (inhibitory). The network contains four features: an 

extended path consisting of a series of connected nodes, a sink consisting of a single node 

influenced by multiple nodes simultaneously, a multipath connection from node 6 to node 

10, and an isolated node. DI and GDI estimates from the simulated data of this network use 

a memory parameter of M = 3 past samples because the maximum lag within the network 

is 3 because of the extended path from node 6 to 11. We further note that 1e5 samples were 

used, and that 100 bootstrap iterations were used for splitting data into training and testing 

sets for the classifier used in GDI estimation.

If we only consider pairwise estimates of the signed DI between nodes (figures 6(b1) and 

(c1)), then a number of false connections are detected because there is no conditioning 

done on other nodes that may causally explain such links. Because it is known that ten 

true connections exist, it is interesting to analyze the ten DI inferences with the highest 

absolute values (figures 6(b1)). The extended path 6 → 1 → 4 → 11 is massively distorted 

by the pairwise DI analysis. Although pairwise DI detects the direct connections along the 

path, it also detects 5 different false indirect connections. Nodes 3 and 5 of the multipath 

structure become falsely associated with node 4 as part of the extended path, representing 2 

of these false connections. Overall, these results can be connected with the data processing 

inequality (DPI), a well known concept in information theory which states that for a Markov 

chain X → Y → Z the following inequality must hold: I(X; Z) ⩽ I(X; Y) [18]. This 

extends naturally to DI and is observed in figure 6(b1) such as when I(X(6) → X(4)) < I(X(6) 

→ X(1)). Notably, the true direct connections from nodes 3 and 5 to node 10 as well as 

those from nodes 6, 8, and 9 to node 2 all have pairwise DI estimates below those of the 

displayed indirect connections. Because some indirect connections have greater DI estimates 

than those of direct connections, we cannot simply remove the indirect connections via 

thresholding and preserve all of the direct connections with pairwise DI alone. Considering 

all of the inferred values beyond the ten highest reveals that DI detected additional false 

connections (figure 6(c1)). Finally, we note that for the connections that pairwise DI 

Young et al. Page 11

J Neural Eng. Author manuscript; available in PMC 2022 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



correctly identifies, the TLC infers the correct sign values. For the signed GDI analysis, 

we implement the partial version of this (TLPC).

In contrast to the errors made by signed pairwise DI, the ten highest signed GDI (figures 

6(b2) and (c2)) values accurately recover the true connectivity structure without identifying 

any indirect connections, and the use of TLPC for sign inference yields the correct 

connection signs S(j,k) as well. In particular, unlike pairwise DI the extended path structure 

is fully recovered by GDI because of its ability to condition on the activity of other nodes. 

Furthermore, GDI analysis removes the indirect connections that pairwise DI had incorrectly 

identified from nodes 3 and 5 to node 4. In summary, GDI’s conditioning ability has allowed 

us to threshold all of the indirect connections and preserve all of the direct connections, 

which we were unable to do with pairwise DI alone. Furthermore, all other GDI values apart 

from the ten true connections identified are negligible (figure 6(c2)).

Apart from structural accuracy, it is important to comment on the differences in the 

magnitude of edge weights between DI and GDI. The comparison between GDI and 

pairwise DI is similar to how partial correlations capture the unique covariation between two 

variables by controlling for other variables while correlations capture all covariation. For 

example, GDI (figure 6(c2)) in the sink structure is greater than pairwise DI (figure 6(c1)) 

because by conditioning the analysis of a single connection on the other 3 connections, 

which means that we remove the influence of the other 3 nodes on node 2, the influence of 

the single connection will appear relatively larger than inference without such removal. Later 

analytical analysis will mathematically clarify this point, and this same effect is realized for 

the connections from nodes 3 and 5 to node 10. The connections from node 6 to nodes 1, 3, 

and 5 are unaffected by conditioning because no other past activity would help explain the 

target nodes’ activity, resulting in DI and GDI being identical for these connections. Finally, 

we consider differences between DI and GDI for the last two connections of the extended 

path. GDI from node 1 to 4 is lower than DI because activity of node 6 is controlled for 

(removed), meaning GDI solely captures activity unique to node 1 that is causally expressed 

in node 4. This effect is seen to an even greater extent in the connection from node 4 to 11 

where not only is the activity of node 6 controlled for but also that of node 1, resulting in 

GDI being significantly lower than DI.

Furthermore, despite the estimation of GDI being a 34-dimensional problem as one must 

consider the past 3 values for each of the 11 nodes along with the current value of the target 

node, our estimates are very accurate when compared with the true analytical GDI values 

(figures 6(c2) and (c3)) which are derived in the following paragraph. We emphasize that the 

values in the heatmap are not thresholded. In other words, the conditioning ability of GDI 

reduced estimates of indirect connections to nearly zero, as no indirect connections have a 

high enough value to visibly register on the heatmap (figure 6(c2)). We do note that there is 

the slight presence of estimation bias where estimated values tend to be lower than the true 

values, but the heatmaps make it clear that this bias is rather minor.

The analytical GDI values for this network can be determined by considering an analytical 

solution to a simpler problem from prior work [3]. Consider the scenario where only one 

node j influences one node k, i.e. xi
(k) = β(j, k)xi − 1

(j) + α(k)zi
(k). Both xi − 1

(j)  and zi
(k) follow a 
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standard Gaussian distribution N(0, 1), which means that the variance of β(j, k)xi − 1
(j)  will be 

β(j, k) 2
 and the variance of α(k)zi

(k) will be α(k) 2 The DI from node j to node k is then 

simply [3]:

I X(j) X(k) = 1
2log  1 +

β(j, k) 2

α(k) 2 , (20)

which is the DI for the connections from nodes 1 to 4 and nodes 4 to 11, and which will 

also equal both the DI and GDI for the connections from node 6 to nodes 1, 3, and 5. For a 

connection in the sink structure or in the multipath structure from nodes 3 or 5 to 10, other 

connections will appear to increase the noise variance when estimating DI. This means that 

the DI from node j to k would be similar to (20) but with an increase in the denominator 

(noise) term:

I X(j) X(k) = 1
2log  1 +

β(j, k) 2

α(k) 2 + ∑l β(l, k) 2 , (21)

where l ∈ {1, 2, …, R} \ {j, k}. For connections in the sink structure GDI will condition 

and remove the influence of the other nodes meaning that their appearance as noise will 

disappear and GDI is simply (20). This results in GDI being greater than DI for the sink 

connections because what is effectively the signal-to-noise ratio (SNR) term is inherently 

higher in the GDI equation than in the DI equation. The remaining terms IG(X(1) → 
X(4)), IG(X(4) → X(11)), IG(X(3) → X(10)), and IG(X(5) → X(10)) can be found to follow 

the form of (20) where the fraction inside log additionally includes (α(j))2 and becomes 

(β(j,k))2(α(j))2/(α(k))2.

3.3. Nonlinear network

It is unlikely that voltage recordings of neural activity are completely Gaussian and have 

completely linear interrelationships. As a demonstration of the generality of GDI, we 

consider a simulation (figure 7(a)) that has the same connectivity structure as the prior 

subsection but contains non-Gaussian activity and nonlinear interactions. More specifically, 

although the β and α values are the same as the previous values, two changes were 

implemented.

First, the values at any given time of source nodes 6, 8, and 9, as well as the isolated node 

7, are drawn from continuous uniform random variables defined on the range (0, 1). Even 

though the additive noise terms (zi) in the other nodes remain Gaussian random variables, 

the introduction of uniform random variables at the source nodes causes non-Gaussian 

activity to be propagated throughout the entire network.

Second, we introduce nonlinearity into the network by replacing the linear relationship 

between past values of source nodes and current values of target nodes with a 

square relationship, which is a causal network version of a previously considered 

model [3]. Mathematically, activity of target nodes can now be modeled as 
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xi
(k) = ∑j = 1

R β(j, k) xi − 1
(j) 2 + α(k)zi

(k). Again, the zi terms in target nodes are still drawn from 

Gaussian random variables, however the variance is now 0.25 rather than 1 in order to 

counter the low xi − 1
(j) 2

 values resulting from the square of a number less than 1.

Just as with the prior subsection (figure 6), DI and GDI estimates from the simulated data of 

this network use a memory parameter of M = 3 past samples, 1e5 samples of the simulation 

were generated, and 100 bootstrap iterations were used for the classifiers. We note that 

unlike the linear Gaussian example of the prior subsection, no analytic solutions are known 

for the DI and GDI values of this network, however we are still able to compare our results 

with what we know to be the true connectivity structure displayed in figure 7(a).

If we only consider the ten greatest pairwise estimates of the signed DI between nodes 

(figure 7(b1)), then two indirect connections are included because of unawareness of the 

activity of other nodes that may causally explain such links. One of these is from node 1 to 

node 11, distorting the true nature of the extended path motif. The other included indirect 

connection is within the multipath structure, being from node 6 to node 10 which similarly 

distorts the true structure. As in the prior subsection, these results can be connected with 

the DPI [18] when we observe in figure 7(b1) that I(X(1) → X(11)) < I(X(1) → X(4)) and 

I(X(6) → X(10)) < I(X(6) → X(3)). Notably, the true direct connections from nodes 8 and 9 

to node 2 both have pairwise DI estimates below those of the displayed indirect connections. 

As before, this means that with pairwise DI alone we cannot simply threshold the indirect 

connections and preserve all of the direct connections. Furthermore, considering all pairwise 

DI estimates (figure 7(d1)) in comparison with a heatmap of the true connectivity structure 

(figure 7(c)) reveals that non-GDI misidentified other indirect connections as well. Finally, 

we note that for the connections that pairwise DI correctly identifies, the TLC infers the 

correct sign values except for the connection from node 5 to node 10. This sign inference 

error shows that although our linear approach to sign inference performs well, it does have 

limitations in addressing more complex phenomena and this applies not only to TLC but 

also to TLPC.

In contrast to the errors made by signed pairwise DI, signed GDI (figures 7(b2) and 

(d2)) recovers the true connectivity structure without identifying any indirect connections. 

Importantly, the ten greatest values of signed GDI (figure 7(b2)) are the true direct 

connections, and all other GDI estimates are negligible (figure 7(d2)). With the exception 

of the connection from node 5 to node 10, the use of TLPC for sign inference yields the 

correct connection signs S(j,k) as well. Unlike pairwise DI, the extended path structure is 

fully recovered by GDI in a fashion similar to that of the prior example. Furthermore, the 

indirect connection from node 6 to node 10 is removed and the connections from nodes 8 

and 9 to node 2 are recovered. In essence, GDI’s conditioning performance has enabled us to 

threshold all of the indirect connections and retain all of the direct connections, which was 

not possible with pairwise DI alone.
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3.4. Network with conductance-based spiking neurons

We next examined the ability of a graphical method to exclude indirect connections by 

applying GDI to discretely-valued data such as binned spike times from physiological 

network models. In particular, we examined two conductance-based neuronal models 

implemented via SNNAP (Simulator for Neural Networks and Action Potentials) [36–

39]. Figure 8(a) displays the network structure of the first model, which consists of 

both excitatory and inhibitory connections in the same configuration as the two previous 

samples, except the weights have been altered. Linewidths in figure 8(a) are proportional 

to synaptic strengths. The files Zenodo (https://doi.org/10.5281/zenodo.4207536) for this 

network simulation, which contain the relevant parameters, are included at the link provided 

in the Data availability section. A snapshot of the raster plot resulting from a simulation of 

this network is shown in figure 8(b). The simulation was run for 300 s, a bin with of 35 ms 

was used for binning the spike times, and a memory parameter of M = 3 was used for DI and 

GDI estimation with the number of bootstrap iterations set to 500.

In addition, for the discretely-valued analyses, a normalization factor from prior work [1] 

has been employed that changes the scale of DI so that it ranges from 0 to 1, because 

without the factor DI is non-negative but otherwise unbounded. An added benefit of this 

factor is that, relative to the target node’s information, incoming information is normalized 

[1]. We use this factor for GDI as well so that values between DI and GDI can be compared. 

Furthermore, because a lower sample size than the prior two examples is being considered, 

we have GDI only condition on other nodes that also have significant DI equal to or greater 

than 0.01 with the target node, a threshold based on prior work [1] that will improve 

accuracy by keeping dimensionality low. We note that this will cause dimensionalities to be 

different between GDI estimates, which means the bias and variance of such estimates will 

differ. However, this is preferable to the alternative strategy of unnecessarily conditioning on 

every other node which will introduce greater bias and variance in general.

With figure 8(c) serving as a reference for the true connectivity structure, figure 8(d1) 

and figure 8(d2) display the connectivities extracted via simple pairwise DI analysis and 

via GDI, respectively. Non-GDI does identify the true direct connections, however it also 

misidentifies many false positives (figure 8(d1)). By contrast, GDI minimizes the vast 

majority of indirect connections while preserving the direct connections (figure 8(d2)). For 

example, a number of false connections that DI (figure 8(d1)) misidentified in roughly 

the top left quadrant have been reduced or eliminated by GDI (figure 8(d2)). Notably, the 

false connection from neuron 1 to 11 misidentified by DI (figure 8(d1)) was completely 

eliminated by GDI (figure 8(d2)). Overall, the conditioning ability of GDI has adjusted edge 

weights so that more of the connections are true direct connections than in comparison to the 

weights found by simply pairwise DI analysis.

3.5. Aplysia central pattern generator (CPG) circuit

As further exploration of the use of GDI in inference of neuronal network connectivity 

via binned spike times, we move from an arbitrary network to a model of a CPG circuit 

in Aplysia, which mediates feeding behavior [40]. Figure 9(a) shows a raster plot of the 

spikes generated with SNNAP for individual identified neurons, highlighting the periodic 
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and bursty nature of this circuit. B31, B51 and B64 were modeled with two compartments. 

Only the activity in the axonal compartments were examined by DI and GDI. In total, 400 

s of data was simulated and used to perform the analyses. Network activity was elicited 

by simulated constant current injection of 1.3 nA into neuron CBI2 starting at 2 s to the 

end of the simulation. Figure 9(b) displays the synaptic connections present within the CPG 

model. Many of the CPG synaptic connections are complex, for example containing an early 

excitatory component followed by slow inhibitory component. Therefore, the physiological 

synaptic strength does not correspond linearly with the value of the synaptic conductance. 

Consequently, the strength of the synaptic connections was measured by the shift in the 

minimum current necessary to elicit a spike in the postsynaptic neuron (i.e. rheobase) during 

presynaptic spike activity. The rheobase was determined by delivering a stepwise series of 

current pulses (0.035–0.1 nA) with each successive step having a duration of 250 ms and a 

total duration of 8.5 s. The procedure was repeated during a 4 Hz, 8.5 s train of spikes in the 

presynaptic neuron elicited by a train of depolarizing current pulses (4 Hz, 30 ms, 12 nA) 

while the potential of all other neurons was held at −60 mV. This stimulation protocol was 

performed for each neuron pair with a 20 s interval between each measurement.

In order to estimate the connectivity of the network from the simulated spike times, we 

must take into account that the network incorporates both rapid and slow, traditional and 

modulatory synapses. Accordingly, although we fix M = 3 in order to keep dimensionality 

low, we estimate DI and GDI across a variety of bin widths ranging from 15 to 40 ms in 

steps of 5 ms, meaning that the history length accounted for ranges from 45 to 120 ms. The 

resulting DI and GDI values are then averaged across bin widths to produce the estimates 

shown in figure 9(c1) and (c2). Estimates for individual bin widths used 50 bootstrap 

iterations of splitting the data into training and testing sets for the underlying classifiers. 

As with the prior subsection, the DI values associated with a particular bin width were 

normalized and then set to zero if less than 0.01 [1], and the corresponding GDI estimates 

only conditioned on nodes having a DI value with the target node that was greater than or 

equal to 0.01. Sign inference is performed for each bin width, and then an average is taken 

to infer the sign overall. Specifically, for a given connection the signs are computed at the 

bin widths that produce non-zero DI/GDI estimates, and then the sign of the average of the 

individual sign values is used. Note again that our DI and GDI results use TLC and TLPC 

for sign inference, respectively.

The non-GDI estimates averaged across bin widths (figure 9(c1)) do identify many of 

the true connections, such as B63→B20, B63→B34, B51→B8, B64→B4, and B20→B8. 

However, a fair number of false positives were also identified. In particular, DI incorrectly 

identifies connections B30↔B20, B20→B34, CBI2↔B4, B51→CBI2, and B51→B4 

(figure 9(c1)).

GDI averaged across bin widths (figure 9(c2)) generally preserves the stronger true 

connections to some degree while reducing many of the false connections incorrectly 

identified in the DI analysis. For example, the strong true connections B63→B20, 

B63→B34, B51→B8, B64→B4, and B20→B8 returned large GDI values (figure 9(c2)). 

Whereas DI incorrectly identified connections B30↔B20 and B20→B34 (figure 9(c1)), 

GDI successfully minimized these false connections (figure 9(c2)). Furthermore, the 

Young et al. Page 16

J Neural Eng. Author manuscript; available in PMC 2022 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



incorrectly inferred mutual inhibition between CBI2 and B4 by DI has been practically 

eliminated by GDI. Similar success was achieved by GDI for the false connections from B51 

to CBI2 and B4.

We do note that the strong true connection from B51 to B64 is detected by DI but 

significantly reduced by GDI. Notably, the activity (figure 9(a)) of B64 and B4 overlap 

completely, whereas B51 and B64 are visually less related. For example, B51 does not 

fire during the final burst shown of B64 (figure 9(a)). The GDI value for B51→B64 is 

therefore fairly low while the value for B4→B64 is still reasonably high. This clear (but not 

synaptically-induced) pairing between B4 and B64 also likely contributes to the significant 

reduction incurred by GDI upon the strong true connection B64→CBI2. Because GDI 

captures unique influence between neurons, it does not significantly differentiate whether B4 

or B64 is in fact synaptically inhibiting CBI2.

4. Discussion

DI measures of functional connectivity have been attractive because of their ability to make 

model-free causal inferences that account for nonlinear relationships. In neuroscience, DI 

and the related transfer entropy have become increasingly popular [10–12]. However, a 

long-standing issue that has been faced by DI has been the conditioning of inferences on 

more than one other node’s activity without model assumptions. In network neuroscience, 

this issue is of fundamental importance because being able to condition on all relevant 

nodes is critical to making the distinction between direct and indirect connections between 

brain regions or individual neurons [41]. Previous methods have been unable to achieve 

such wide-scale conditioning because of their poor scaling performance with regards to 

dimensionality, which increases with the inclusion of more and more nodes in conditioning.

Our GDI results show that recent advances [13, 14] allow one to solve high-dimensional 

problems with good scaling performance and thereby significantly address indirect 

connectivity issues common to connectivity analysis. Although we show strong performance 

for a linear and Gaussian network, the performance of GDI on a nonlinear network involving 

uniform random variables is notable and of significance for neural recordings which 

are unlikely to be simply linear and Gaussian. GDI also exhibits excellent conditioning 

performance on networks with conductance-based realistic neurons, particularly in its ability 

to detect connections while ruling out numerous indirect connections in a model of the CPG 

in Aplysia. These simulations not only highlight the ability of GDI to characterize many-

node networks but also reveal another unique feature of our framework: GDI is universal 

in that it can be applied both to continuously-valued and discretely-valued problems. 

Therefore, GDI can be used on data types ranging from binned spike times to voltage 

recordings such as ECoG or EEG. One limitation of our study is that GDI was not applied to 

such real data, and therefore an immediate objective of future work should be to use GDI on 

actual recordings.

The GDI approach also provides a sign inference methodology that conditions on the 

activity of other nodes unlike some prior connectivity inference methods [1, 30]. These 

prior approaches only look at pairwise interactions for sign inference, which falls short of 

Young et al. Page 17

J Neural Eng. Author manuscript; available in PMC 2022 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the multivariate inference that one can perform in a network of nodes. We show through 

examples that there are conditions where using solely pairwise methods for sign inference 

will mistakenly identify the sign of connections, such as labeling inhibitory connections as 

excitatory. By using our partial correlation approach, we are able overcome this limitation 

by accounting for the contributions of other nodes, which in our example leads to correctly 

identifying the aforementioned connection as inhibitory.

We close our discussion by commenting on two issues, namely edge selection and 

connectivity inference from circuit activity that exhibits patterns. The first issue of 

edge selection (i.e. choosing or determining which edges to retain or which edges are 

significant) is an issue faced in any type of graph analysis resulting from simulated or 

real data. Correlations or DI values between nodes are often non-zero even when there 

is no relationship between them. Such values may be low or infinitesimal, allowing the 

setting of an arbitrary threshold. Alternatively, one may have a priori knowledge of the 

network topology and can therefore select an appropriate number of connections to retain. 

However, we ultimately desire a data-driven approach to the edge selection problem, and we 

emphasize that this is an open area of research. Although progress has been made [42] on 

data-driven solutions for particular cases, we hope future work will shed more light on more 

general solutions.

The second issue of connectivity inference in pattern-exhibiting circuits has been 

commented on recently [43]. One key challenge is that when patterns occur in the activity 

generated by a neural circuit, activity is likely to be correlated or related (as measured 

by DI) even between neurons without direct connections simply because of the patterns. 

This is clear in the activity resulting from the CPG model (figure 9(a)) which results in 

many incorrectly identified connections by non-GDI (figure 9(c1)). Although GDI is able to 

reduce some of these indirect connections, it also reduces some true direct connections 

because of the significant overlap in neuronal activity (figure 9(c2)). Importantly, this 

highlights another key challenge faced in pattern-generating circuits, which occurs when 

one of two neurons (A and B) directly influences a third neuron (C) but neurons A and 

B happen to be overlapping in their behavior as a product of the generated pattern. Partial 

inference techniques such as GDI capture the unique influence between neurons, and if 

neurons A and B do not differ significantly in their behavior, then each of their influences 

on neuron C conditioned on each other may approach zero. Therefore, the direct connection 

from A to C could be missed by GDI. A pairwise method such as DI will identify A and B 

as influencing C because unique influence is not considered in pairwise analyses.

Overall, GDI reveals which neurons appear to be uniquely influencing other neurons by 

considering the rest of the network, while pairwise DI reveals which neurons appear to be 

influencing other neurons regardless of the activity of the rest of the network since activity 

outside of pairs of neurons is not considered by non-GDI. Therefore, in pattern-based 

circuits pairwise DI is susceptible to false positives while GDI is susceptible to false 

negatives. It should be emphasized that this is not a failure of the methods, but rather is due 

to the larger issue of being limited by the information present in activity generated by neural 

circuits and how that information relates to underlying anatomical connectivity. Circuits 

that do not generate patterns are expected to exhibit more variable activity among neurons, 
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and GDI will use this variance to correctly identify direct connections and reduce indirect 

connections. To summarize, pattern-generating circuits are challenging for connectivity 

inference because neurons may behave very similarly, resulting in false pairwise inferences 

as well as false partial inferences.
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Figure 1. 
Examples of motifs addressed by graphical methods such as GDI. (a) In the case of node 

1 directly influencing node 2 and node 2 directly influencing node 3, an indirect proxy 

connection from node 1 to node 3 will be detected by GDI and eliminated by conditioning 

on the activity of node 2. (b) In the case of an extended path from node 1 to node 4, simple 

pairwise analyses will catch two indirect connections. In contrast, GDI conditions analyses 

on all other nodes’ activity and therefore the indirect connections will be eliminated. (c) In 

the case of a sink, i.e. where multiple nodes influence one node, simple pairwise analyses 

may not detect direct connections because of thresholding methods that are often used in 

analyzing graphs. Because three connections to node 4 exist, each connection will appear 

to have a small influence on node 4 that may be sub-threshold. GDI’s conditioning on 

other edges will increase the relative contribution of a given direct edge, pushing it above 

threshold and allowing it to be detected.
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Figure 2. 
Overall process for estimating GDI between two nodes that relies on an MI estimation 

technique [14]. (a) Estimating GDI from X to Y includes conditioning on other nodes. For 

this visualization we specify two other nodes V and W. (b) First take windows of length M + 

1 of nodes’ corresponding time series with M = 1 for this example. Gray points in windows 

are ignored because IG(X → Y) does not include values at time i except for Yi, which is 

because GDI is focused on causal rather than synchronous relationships. (c) Use values from 

windows as samples that capture joint statistics, and permute values to produce samples that 

capture independence. Permuted samples consist of windows from each time series that are 

no longer simultaneous, i.e. windows are effectively drawn independently from each time 

series in random orders. (d) Because GDI can be defined as the difference between two MI 

terms and therefore two KL-divergence terms, samples are used to estimate KL-divergences 

between the original data distributions and the shuffled data distributions. The extent to 

which a classifier can differentiate between the original and the shuffled data is quantified as 

MI, and the difference between the two MI terms provides an estimate of GDI.
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Figure 3. 
Continuously-valued example demonstrating the ability of graph theoretic methods to 

correctly differentiate excitatory and inhibitory connections. (a) A simple three-node system 

was analyzed, where X inhibits Y and W excites Y, which can be summarized as Y(t) = 

W(t − 0.125) − X(t − 0.125). (b) Snapshot of the sinusoidal waveforms generated. The slight 

dip around every peak of X combined with the typical peak of W produces the delayed but 

emphasized peak of Y 0.125 s later. If X did not exhibit this dip, it would be impossible 

to identify X as inhibitory because its activity would be fully masked by the excitatory 

effect of W. (c) Using the peak of the normalized cross-correlation (CC) RXY or the time 

lagged correlation (TLC) ρXY results in incorrect identification of the connection from X to 

Y as excitatory. However, both methods do result in correct identification of the connection 

from W to Y as excitatory. (d) In order to perform partial inference, which accounts for 

the activity of other nodes in pairwise analysis, the residuals resulting from regressing X 
and Y against W (pictured) as well as from regressing W and Y against X are obtained. (e) 

Time lagged partial correlation (TLPC), i.e. the correlation coefficient between the residuals 

at different time lags, correctly identifies both the inhibitory and excitatory connections by 

accounting for other nodes’ activity.
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Figure 4. 
Discretely-valued example demonstrating the ability of graph theoretic methods to correctly 

differentiate excitatory and inhibitory connections. (a) A simple three-node system was 

analyzed, where X inhibits Y and W excites Y, both with a delay of approximately 0.125 

s. (b) Snapshot of the spikes generated. The intermittent dropout of X allows for enhanced 

excitation of Y by W. (c) Both the normalized cross-correlation (CC) RXY and time lagged 

correlation (TLC) ρXY fail to identify the connection from X to Y as inhibitory via use 

of peak values. However, both methods do correctly identify the connection from W to Y 
as excitatory. (d) In order to perform partial inference, which accounts for the activity of 

other nodes in pairwise analysis, the residuals resulting from regressing X (d1) and Y (d2) 

against W as well as from regressing W and Y against X are obtained. (e) Time lagged 

partial correlation (TLPC), i.e. the correlation coefficient between the residuals at different 

time lags, correctly identifies both the inhibitory and excitatory connections by accounting 

for other nodes’ activity.
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Figure 5. 
Scaling plots. (a) A Gaussian simulation was implemented where ρ = 0.6. (b) A binary 

symmetric channel simulation was implemented where Xi−1~Bernoulli(0.3), Pr[Yi = Xi−1] 

= 0.9, and I(X→Y) is known analytically. (a1,b1) Analysis of how GDI scales with 

number of samples N. Error bars indicate mean and variance of GDI estimates across 50 

independent simulations with 10 bootstrap iterations used per estimate. dz indicates number 

of dimensions being conditioned, which in the top row corresponds to independent unit 

Gaussian random variables and in the bottom row corresponds to discrete uniform random 

variables (0 or 1). dz is therefore proportional to the number of nodes being conditioned, 

and accordingly indicates how GDI scales with network size. (a2,b2) Analysis of how GDI 

scales with number of dimensions being conditioned for given sample sizes N. (a3,b3) 

Analysis of how GDI estimates converge as number of bootstrap iterations increases. Each 

line is the cumulative average GDI estimate over bootstrap iterations for an independent 

simulation with dz = 0 and N = 2500 samples.
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Figure 6. 
Analysis of signed GDI performance on Gaussian network. (a) The network structure 

incorporates four motifs: an extended path where there is a trail of connections from 

node 6 to 11, a sink where 3 other nodes influence node 2, a multipath connection from 

node 6 to 10, and an isolated node. Each connection indicates that the most recent past 

value of the causal node influences the current value of the node with a circle (inhibited) 

or triangle (excited). (b1) Considering the 10 highest edges, signed non-GDI, i.e. DI 

without conditioning on other nodes, detects a number of indirect connections and therefore 

misses a number of direct connections. (b2) Ten highest signed GDI values are the true 

direct connections and do not include any indirect connections, which is achieved by its 

conditioning ability. (c) Comparing all estimated DI (c1), estimated GDI (c2), and analytic 

GDI (c3) values. DI misidentifies many false connections (c1), while GDI correctly recovers 

the graph (c2). Similarity between estimated GDI (c2) and analytic GDI (c3) highlights 

estimator accuracy.
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Figure 7. 
Analysis of GDI performance on non-Gaussian and nonlinear network. (a) The network 

structure is the same as that of the prior figure, incorporating four motifs: an extended 

path where there is a trail of connections from nodes 6 to 11, a sink where 3 other nodes 

influence node 2, a multipath connection from nodes 6 to 10, and an isolated node. Each 

connection indicates that the most recent past value of the causal node influences the current 

value of the node with a circle (inhibited) or triangle (excited). (b1) Considering the ten 

greatest edges, non-GDI misidentifies two indirect connections and therefore misses two 

direct connections. (b2) Considering the ten greatest edges, GDI correctly identifies the 

true direct connectivity structure and does not identify any indirect connections, which 

is achieved by its conditioning ability. (c) Heatmap of true connectivity structure. (d) 

Comparing all values of estimated DI (d1), which mistakenly identifies indirect connections, 

and GDI (d2), which correctly identifies the direct connections and reduces the indirect 

connections to negligible values.
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Figure 8. 
Analysis of signed GDI performance on network of conductance-based spiking neurons 

with same edge structure as prior two examples, however weights have been modified. 

(a) Structure of direct connectivity between neurons. Linewidths proportional to synaptic 

strength. (b) Raster plot of simulated spike times. (c) Heatmap of direct connectivity 

between neurons. Color intensity proportional to synaptic strength. (d1) DI detects the direct 

connections but also includes many false positives. (d2) GDI analysis minimizes indirect 

connections by conditioning pairwise analyses on other simulated neurons’ activity, better 

characterizing the true connectivity structure.
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Figure 9. 
Connectivity inference on simulated CPG network. (a) Raster plot of spike times resulting 

from simulation of CPG implemented in SNNAP. (b) Connectivity matrix for CPG network 

where values indicate the nA shift in rheobase. Positive values indicate a reduction in 

rheobase (excitatory connection) whereas negative values indicate an increase in rheobase 

(inhibitory). (c1) Non-graphical DI inference of CPG network connectivity. Many true 

connections are detected, however a variety of false positives are included particularly in 

the approximately top-left quadrant. (c2) GDI inference of CPG network connectivity. Many 

of the values representing false positives in the DI analysis are correctly reduced while the 

stronger true connections generally seem to be appropriately preserved.
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