
Citation: Lo, H.-C.; Chen, Y.-H.; Wu,

W.-T. Ethanol Extracts of Rice Bran

and Whole Grain Adlay Seeds

Mitigate Colonic Inflammation and

Damage in Mice with Colitis.

Nutrients 2022, 14, 3877. https://

doi.org/10.3390/nu14183877

Academic Editors: Maria Digiacomo,

Doretta Cuffaro and Marica Bakovic

Received: 4 August 2022

Accepted: 16 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Article

Ethanol Extracts of Rice Bran and Whole Grain Adlay Seeds
Mitigate Colonic Inflammation and Damage in Mice
with Colitis
Hui-Chen Lo 1 , Yu-Hsin Chen 2 and Wen-Tzu Wu 3,*

1 Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
2 Taichung District Agricultural Research and Extension Station, Tatsuen Hsiang,

Changhua County 515008, Taiwan
3 Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan
* Correspondence: irenewu@asia.edu.tw; Tel.: +886-4-23323456 (ext. 48025)

Abstract: Ulcerative colitis (UC) is a chronic inflammatory bowel disease with frequent relapsing
inflammation in the colon. Whole grains have been promoted as healthy and sustainable foods;
however, the use of whole gains in UC is inconclusive. The aim of this study was to investigate the
effects of ethanol extracts of rice bran (RBE) and whole-grain adlay seeds (ADE) on inflammation,
oxidative stress, and colonic damage in UC. Male C57BL/6JNarl mice were intra-rectal injected twice
with 2,4-dinitrobenzene sulfonic acid to induce (day 0) and reactivate (day 21) UC. Control mice
were fed AIN-93M diet (R group) and injected with a vehicle. UC mice were fed AIN-93M diet (UC
group) supplemented with RBE (RBE group) or ADE (ADE group) for 21 days. The results showed
that the UC group had an increased disease activity index, plasma interleukin (IL)-6 and glutathione
levels, microscopic injury scores, and inflammatory cytokine and chemokine levels in the colon and
decreased colonic claudin-4 compared to the R group. RBE and ADE supplementation significantly
reduced UC-elevated plasma IL-6 and colonic glutathione and pro-inflammatory cytokines and
a chemokine. In addition, RBE and ADE supplementation significantly decreased T-helper-cell-
associated cytokines in the plasma and colon. Moreover, RBE supplementation increased colonic
IL-10 and tight junction protein claudin-4 levels, and ADE supplementation alleviated diarrhea in
UC mice. In conclusion, these results suggest that RBE and ADE may mitigate colonic inflammation,
oxidative stress, and damage in UC relapse.

Keywords: ulcerative colitis; rice bran; whole-grain adlay seeds; cytokines; tight junction; oxidative
stress

1. Introduction

Ulcerative colitis (UC), a subtype of inflammatory bowel disease (IBD), is a chronic,
relapsing inflammatory disease that occurs primarily in the rectum and colon in a continu-
ous pattern. The clinical symptoms of UC, including episodes of diarrhea, fever, fatigue,
abdominal pain, cramping, bloody stool, reduced appetite, and weight loss, result in a
significant decrease in quality of life and social functioning of patients. In addition, the
presence of discontinuous and recurring inflammatory lesions in the rectal and colonic
mucosa may increase the risk of colorectal cancer in UC patients [1]. The incidence and
prevalence of UC are high in Europe and North America and are increasing in Asian
countries [2]. In Taiwan, the prevalence rates of UC have increased more than six-fold in
the past 20 years [2], and this increase has occurred predominantly in males [3].

UC is an autoimmune disease; however, its etiology remains unknown. Genetic
influences, dysregulation of mucosal immunological barrier function, and overproduction
of pro-inflammatory cytokines and reactive oxygen species (ROS) have been found to
contribute to colonic tissue damage and ulceration [4]. Western diets that contain high
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amounts of fats, saccharides, and refined sugar with low dietary fiber content are considered
one of the environmental factors that induce the onset and relapse of UC [5]. Diets that are
rich in fruits, vegetables, and whole grains may be used to decrease the recurrence of IBD
and the risk of colon cancer [6]. However, a diet composed of highly fermentable oligo-,
di-, monosaccharides and polyols (FODMAP) may not be appropriate for UC [7]. Indeed, a
cross-sectional study indicated that a modified diet containing approximately two-thirds of
the daily recommendation in fiber, whole grains, fruits, and vegetables may reduce IBD
symptoms [8].

Recent studies have shown that nutraceuticals with antioxidant and anti-inflammatory
activities may have beneficial effects on IBD [9]. Whole grains contain the bran, germ,
and endosperm, which provide various health-promoting nutrients, such as vitamins,
minerals, fibers, and phytochemicals [8,10–12]. Rice bran, a nutrient-rich byproduct of
the rice-milling process, has been considered a sustainable source of functional ingre-
dients [13]. Its bioactive components—mainly phenolic and flavonoid compounds and
vitamin E—have been found to have antioxidant, anti-inflammatory, anti-diabetic, and
anticancer activities [14,15]. In rats, pretreatment of rice bran ethanol extracts significantly
alleviated lipopolysaccharide-induced oxidative stress [13]. In mice with dextran sodium
sulfate-induced UC, dietary supplementation of fermented rice bran alleviated mucosal
inflammation; crypt loss; inflammatory cell infiltration; myeloperoxidase activity; thio-
barbituric acid reactive substance (TBARS) levels; and T-helper-cell-associated cytokines,
such as interleukin (IL)-1β, IL-6, and IL-17 [9,16]. The attenuated intestinal inflammation
and enhanced tight junction barrier integrity suggest that rice bran may effectively protect
against inflammation-induced intestinal fibrosis [16].

The adlay seed (Coix lacryma-jobi L.)—mainly the polished seed without bran—is an
annual crop that is traditionally used as a medicinal food. Evidence has shown that the
fraction with high phenolic and flavonoid contents from the ethanol extracts of adlay bran
has an anti-inflammatory effect [12]. Polysaccharides and phenolic compounds extracted
from adlay, especially the adlay bran, by ethanol, ethyl acetate, or acidified methanol have
anti-inflammatory, immunological, and anti-hyperuricemia activities [11,17–19] and may
improve epithelial barrier dysfunction in Caco-2 cells [11]. The anti-inflammatory and
anti-apoptotic effects of ethanol extracts of the adlay hull have been demonstrated in rat
brain PC-12 cells [20]. These results reveal that whole-grain adlay seeds may have beneficial
effects for UC patients.

In clinical practice, no primary nutrition therapy is available for UC patients in the
acute phase [5]. In this study, extracts of rice bran and whole-grain adlay seeds were
created by using ethanol instead of water for extraction to exclude the water-soluble dietary
fiber and to obtain higher yields of phenolic compounds. Here, mice with dinitrobenzene
sulfonic acid (DNBS)-induced UC were used to evaluate the efficacy of these extracts on
alleviating the disease activity index (DAI) and UC-induced alterations in plasma and
colonic cytokine levels, macroscopic and microscopic injury, collagen levels, antioxidant
status, and tight junction proteins in the colon. We hypothesized that ethanol extracts
of rice bran (RBE) and whole-grain adlay seeds (ADE) may have antioxidant and anti-
inflammatory activities that can alleviate the severity of UC.

2. Materials and Methods
2.1. Animals

The protocols and animal procedures were reviewed and approved by the Institu-
tional Animal Care and Use Committee of Fu-Jen Catholic University (#A10803). Male
C57BL/6JNarl mice at 6 weeks old (20 to 22 g) were purchased from the National Labora-
tory Animal Center (Taipei, Taiwan) and were housed in a room maintained at 22 ◦C on a
12:12 h light–dark cycle with free access to water and a normal chow diet (5001 Laboratory
Rodent diet, Labdiet®, Richmond, IN, USA). After 2 weeks of acclimation, mice were
divided into normal, healthy (R group, n = 10), and UC (3 groups, n = 12/group) groups
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and adapted with semi-purified AIN-93M diets by gradually introducing the diet over a
3-day period.

2.2. Ethanol Extract Preparations and Experimental Diets

Rice bran (stabilized, Herbfood Co., Taichung, Taiwan) and whole-grain adlay seeds
(Taichung No. 5’ job’s tears, Coix lacryma-jobi L.) were extracted with 70% ethanol, as
described in the study of Chen et al. [21]. In brief, the powders of rice bran and whole-grain
adlay seeds were defatted twice with hexane. Subsequently, the defatted materials were
extracted with 10-fold volume of 70% ethanol overnight, at 4 ◦C, with shaking. After
centrifugation at 10,000×g at 4 ◦C for 15 min, the supernatant was collected, filtered,
ethanol-evaporated, and lyophilized. The dry extract was stored at −20 ◦C for further use.

The doses of ethanol extracts were calculated from the recommended daily doses
of whole-grain brown rice (100 g per day, containing 16% of weight as rice bran) and
whole-grain adlay seeds (50 g per day) for human adults. In the rice-milling process,
approximately 16 g of rice bran was obtained from 100 g of whole-grain brown rice,
and approximately 1.2 g of ethanol extract was obtained from the rice bran. In addition,
approximately 0.64 g of ethanol extract was obtained from 50 g of whole-grain adlay seeds.

To prepare the experimental diets with ethanol extracts, the mouse metabolic rate was
estimated based on the human metabolic rate, assuming a 12.3-fold difference. The average
daily food intake was approximately 4 g for a mouse weighing 25 g. Therefore, 1.5 and
0.8 g of ethanol extracts from rice bran and whole-grain adlay seeds, respectively, were
added into 1 kg of semi-purified AIN-93M diet, as shown in Table 1. All diet ingredients
were purchased from Dyets Inc. (Bethlehem, PA, USA). The three different diets provided
identical amounts of calories, protein, fat, fiber, minerals, and vitamins, with the exception
of vitamin E.

Table 1. Composition of AIN-93M-modified diets.

Ingredient (g) R/UC Groups RBE Group ADE Group

Corn starch 465.7 464.2 464.9
Rice bran extract 0 1.5 0

Whole-grain adlay seeds’ extract 0 0 0.8
Dextrin 155 155 155

Casein, vitamin-free 140 140 140
Sucrose, granular 100 100 100

Cellulose 50 50 50
Soybean oil 40 40 40

AIN-93M Mineral Mix 35 35 35
AIN-93M Vitamin Mix 10 10 10

Choline bitartrate 2.5 2.5 2.5
L-cystine 1.8 1.8 1.8

Total 1000 1000 1000
R: control; UC: ulcerative colitis; RBE: ethanol extract of rice bran; ADE: ethanol extract of whole-grain adlay seeds.

2.3. Induction of UC

UC induction methods were based on the description by Martin et al. [22]. Follow-
ing an overnight fast, mice in the UC, RBE, and ADE groups were anesthetized with
3% isoflurane (day 0) and intra-rectally injected with 200 mg/kg of 2,4-dinitrobenzene
sulfonic acid (DNBS in 50% ethanol, Sigma, St. Louis, MO, USA) via PE-50 tubes. Mice
in the R group were injected with 100 µL of 50% ethanol to control for the stress from
the intra-rectal injection. After the injection, 2% agar gel with 6% sucrose was provided
for 3 days to prevent the occurrence of hypoglycemia and dehydration. On day 21, UC
was reactivated with 100 mg/kg of DNBS. All mice were sacrificed on day 24, and blood
samples were collected by cardiac puncture for the collection of red blood cells and plasma.
The colon was dissected, weighed, and collected for further analysis.
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2.4. Experimental Design

From day 3 to day 24, the UC mice were fed semi-purified AIN-93M diets with or
without different ethanol extracts. UC mice were divided into three groups and fed either
the AIN-93M diet (UC group) or the AIN-93M diet supplemented with 70% alcohol extract
of rice bran (RBE group) or whole-grain adlay seeds (ADE group).

2.5. Measurements
2.5.1. Body Weight, Food Intake, and Disease Activity Index (DAI)

During the experimental period, body weight was recorded twice per week, and food
intake, stool consistency, and signs of hematochezia were observed daily. The DAI was cal-
culated by using scores correlating with body weight loss, diarrhea, and hematochezia [23].
Stool consistency was graded by using the following scale: 0 for normal stool, 2 for loosely
stool, and 4 for diarrhea. The hematochezia score was graded as 0 for no blood being seen,
1 for possible bleeding undetectable by the naked eye, 2 for visible bleeding, and 4 for
hematochezia around the anus. The body weight loss score was graded as 0 for no weight
loss, 1 for 1–5% of total body weight loss, 2 for 5–10%, 3 for 10–20%, and 4 for over 20%
of total body weight loss. The DAI was then calculated by using the following equation.
DAI = (body weight lost score + diarrhea score + hematochezia sore)/3.

2.5.2. Inflammatory Mediators in the Plasma and Colon

To evaluate the effects of the ethanol extracts on systemic and local inflammation,
plasma and colonic cytokines, including the T-helper-cell-associated tumor necrosis factor
(TNF)-α, IL-6, interferon (IFN)-γ, IL-10, and IL-12p70, were measured. DNBS-induced coli-
tis is particularly useful in studying T-cell-dependent immune mechanisms [24]. Levels of
inflammatory mediators and the chemokine monocyte chemoattractant protein-1 (MCP-1)
were determined by using commercially available cytometric bead assays (BD Biosciences,
Minneapolis) and analyzed on a flow cytometer (BD Accuri® C6, Becton, Dickinson and
Company, Franklin Lakes, NJ, USA).

2.5.3. Macroscopic Injury Score of the Colon

After the mice were euthanized, the total colon length was recorded, and any injury
was photographed with a digital camera (Coolplex 4500, Nikon, Tokyo, Japan). The
macroscopic injury score was based on the study of Impellizzeri et al. [25]. The scoring
system was graded as the following: 0 for no visible damage; 1 for small hyperemia without
ulcers; 2 for linear ulcers and no major inflammation; 3 for linear ulcers with one site of
inflammation; 4 for two or more sites of inflammation with ulceration covering >1 cm along
the length of the colon; and 5 for two or more major sites of inflammation and ulceration
or one major site of inflammation and ulceration extending >2 cm along the length of the
colon and an additional point for each centimeter of ulceration beyond the initial 2 cm [25].

2.5.4. Collagenous Connective Tissue of the Colon: Masson’s Trichrome Stain

After colon collection, 1 cm of colon from the region approximately 3 cm proximal
to the distal segment of the colon was collected and fixed in 10% buffered formalin for
routine paraffin embedding [24]. The 4 µm paraffin-embedded sections were stained with
hematoxylin and eosin (H&E). Histological changes of colonic sections, including the depth
of ulceration, area of ulceration, edema, and immune cell infiltration, were scored by using
a graded scale of 0 to 4, as described by Iwazawa et al. [26]. In addition, the severity of
inflammation, hyperplasia, and the loss of goblet cells in the mucosa were graded according
to the modified method described by Impellizzeri et al. [25] and Shackelford et al. [27]. The
interpretation of these scores was performed by an animal pathologist (National Taiwan
University College of Medicine Laboratory Animal Center, Taipei, Taiwan) with an official
pathology report.
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2.5.5. Histopathological (Microscopic) Assessment of the Colon

To detect collagen fiber deposition, 4 µm colonic sections were stained with a Masson’s
trichrome staining kit (TRM-1-IFU, Logan, UT, USA), according to the manufacturer’s
instruction. In brief, the deparaffinized slides were incubated in preheated Bouin’s fluid
for 60 min, then cooled, rinsed, and stained with Weigert’s iron hematoxylin. Next, the
slides were incubated with Biebrich scarlet-acid fuchsin solution and differentiated in
phosphomolybdic-phosphotungstic acid solution. Subsequently, 1% acetic acid solution
was applied to the slides, which were then dehydrated with 95% alcohol and absolute
alcohol, cleared in xylene, and mounted in synthetic resin. The immunoreaction was
observed by using a light microscope (Eclipes TE2000-U; Nikon, Tokyo, Japan). The area
of blue color, representing collagen, was semi-quantified in five fields per slide at 200×
magnification, using Image-Pro Plus software version 6.0 (Media Cybernetics; Rockville,
MD, USA). The ratio of collagen in each field was calculated as the blue area (collagen)
divided by the total red (muscle fiber), blue (collagen), and dark-red-to-black (nuclei)
areas combined.

2.5.6. Tight Junction Proteins in the Colon

To further investigate gut integrity at the molecular level, two transmembrane tight
junction proteins, claudin-4 and occludin, were measured by using immunohistochemistry
(IHC) analysis. After deparaffinization and dehydration, 4 µm colonic sections were treated
with 10 mM sodium citrate at 100 ◦C for 15 min for antigen retrieval, 3% H2O2 for 10 min for
quenching endogenous peroxidase, and 5% skim milk for 60 min for nonspecific blocking,
followed by hybridization with the primary antibodies against claudin-4 (1:500, Thermo Sci-
entific, Waltham, MA, USA) and occludin (1:50, Santa Cruz, Dallas, TX, USA). Horseradish
peroxidase and rabbit anti-mouse biotinylated IgG (1:200), diaminobenzidine substrate
stain, and hematoxylin were used as per the manufacturer’s protocol (Thermo Scientific,
Waltham, MA, USA). Immunoreactions were observed by using a light microscope (Nikon,
Tokyo, Japan) with a cooling-charge-coupled-device camera. Semi-quantitative analysis
of the images was performed in five fields per slide (Image-Pro Plus software version 6.0).
The ratio of claudin-4 and occludin to total colonic area in each field was calculated.

2.5.7. Indicators of Oxidative Stress in the Colon

The levels of lipid peroxidation products, TBARS, were determined in the colon, using
the methods presented by Ohkawa et al. [28]. Non-enzymatic antioxidants, i.e., reduced
glutathione (GSH) and oxidized glutathione (GSSG), were measured fluorometrically,
according to the methods of Hissin and Hilf [29]. The ratio of GSH to GSSG was calculated
to evaluate oxidative status.

2.6. Statistical Analysis

Values are reported as the mean ± the standard error of the mean (SEM) for continuous
measures and as the median and interquartile range (IQR) for nonparametric measures. For
continuous measures, all groups were compared by one-way analysis of variance (ANOVA),
using the SAS general linear model program (SAS Institute, Cary, NC, USA). Group means
were considered significantly different at p < 0.05. The Duncan's multiple range test was
used as a post hoc analysis to compare the differences among the groups when the ANOVA
indicated an overall significant group effect, p < 0.05. The Kruskal–Wallis test was used for
the analyses of macroscopic and microscopic injury scores, stool consistency, and signs of
hematochezia, followed by the Mann–Whitney U test to determine significant differences
(p < 0.05) between groups

3. Results
3.1. Food Intake, Body Weight, DAI, and Colon Length

The final sample size for each group was 10 mice in the R, UC, and RBE groups and
11 mice in the ADE group. After the intra-rectal injection of DNBS, five mice died within
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2 days. The autopsy confirmed that the cause of death was large bowel perforation. During
the experimental period, the body weight (Figure 1A) was not significantly different among
groups, but the body-weight change (Figure 1B) from day 0 to day 24 was significantly
lower in the UC group compared to the R group. The average daily food intake during
the experimental period was not significantly different between the R and UC groups
(Figure 1C). However, the ADE group had significantly greater food intake than the R, UC,
and RBE groups.
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Figure 1. Body weight and food intake of control mice (R group) fed AIN-93M diet and UC mice
fed either the AIN-93M diet (UC group) or the AIN-93M diet supplemented with alcohol extract of
rice bran (RBE group) or whole-grain adlay seeds (ADE group). (A) Body weight before and on the
day of UC induction (day 0) until the end of the experiment (day 24). (B) Body-weight change and
(C) average daily food intake from day 0 to day 24. Values are mean ± SEM, n = 10−11 per group.
Different superscript letters indicate significant differences (one-way ANOVA and Duncan’s multiple
range test, p < 0.05).

Diarrhea (stool consistency), bloody stool (hematochezia) and DAI scores and the
length of the colon on day 24 are shown in Table 2. The UC group had significantly higher
diarrhea, bloody stool, and DAI scores than the R group. The ADE group had a significantly
decreased diarrhea score compared to the UC group. A shortened colon length is one of
the signs of IBD; however, the colon length was not significantly different among groups.
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Table 2. Scores of diarrhea, bloody stool, disease activity index, and colon length.

Group Diarrhea Bloody Stool DAI Colon Length
(cm)

R 0 (0, 0) b 0 (0, 0) b 0 (0, 0) b 6.93 ± 0.26
UC 2 (0, 2) a 0.5 (0, 2) a 1 (0.33, 1) a 6.90 ± 0.38
RBE 0 (0, 2) ab 0 (0, 1) ab 0.67 (0.33, 1.33) a 6.53 ± 0.16
ADE 0 (0, 0) b 0 (0, 2) ab 0 (0, 1.33) ab 6.44 ± 0.19

Values are median (interquartile range, IQR) or mean ± SEM, n = 10−11 per group. DAI, disease activity index.
Different superscript letters represent significant differences (Kruskal–Wallis test and Mann–Whitney U test,
p < 0.05).

3.2. Inflammatory Mediators in the Plasma

There were no significant differences in the levels of TNF-α, IFN-γ, IL-10, IL-12p70, or
MCP-1 between the R and UC groups (Table 3). The UC group had significantly increased
IL-6 levels compared to the R group, and the RBE and ADE groups had significantly
decreased IL-6 levels compared to the UC group. In addition, the RBE and ADE groups had
significantly decreased the levels of TNF-α, IFN-γ, IL-10, IL-12p70, and MCP-1 compared
to the R and UC groups (Table 3).

Table 3. Plasma levels of cytokines and chemokine MCP-1.

Group
TNF-α IL-6 IFN-γ IL-10 IL-12p70 MCP-1

(pg/mL)

R 38.4 ± 0.9 a 53.4 ± 0.5 b 12.00 ± 0.27 a 409 ± 5 a 106.8 ± 3.3 a 10.05 ± 0.13 a

UC 37.7 ± 3.2 a 67.1 ± 8.8 a 11.38 ± 0.29 a 393 ± 4 a 97.0 ± 3.9 a 10.81 ± 1.29 a

RBE 29.2 ± 1.3 b 53.3 ± 2.5 b 9.79 ± 0.17 b 364 ± 5 b 71.8 ± 4.2 b 8.30 ± 0.21 b

ADE 30.3 ± 1.8 b 50.2 ± 0.9 b 9.82 ± 0.45 b 364 ± 4 b 81.6 ± 4.7 b 8.36 ± 0.32 b

Values (pg/mL) are mean ± SEM, n = 10−11 per group. TNF, tumor necrosis factor; IL, interleukin; IFN, interferon;
MCP, monocyte chemoattractant protein. Different superscript letters represent significant differences (one-way
ANOVA and Duncan’s multiple range test, p < 0.05).

3.3. Macroscopic and Microscopic Injury Scores of the Colon

The macroscopic injury scores, including hyperemia, ulcers, and inflammation, were
used to evaluate colon damage. There were no significant differences in the colonic macro-
scopic injury scores among groups. To evaluate microscopic injury, colonic sections were
stained with H&E. The scores of edema, immune-cell infiltration, loss of goblet cells, inflam-
mation, and total injury in the colon were significantly increased in the UC, RBE, and ADE
groups compared to the R group (Table 4); however, there were no significant differences
among the UC, RBE, and ADE groups. In addition, there were no significant differences
in the depth of ulceration, area of ulceration, and hyperplasia scores in the colon among
the groups.

Table 4. Microscopic injury scores of the colon.

Group Area of
Ulceration Edema Immune-Cell

Infiltration
Goblet-Cell

Loss Inflammation Total Injury
Score

R 0 (0, 0) 0 (0, 0) b 0 (0, 0) b 0 (0, 0) b 0 (0, 0) b 0 (0, 0) b

UC 0 (0, 1) 1 (0, 1) a 1 (0, 3) a 0.5 (0, 1) a 2 (0, 3) a 4.5 (0, 10) a

RBE 0 (0, 1) 1 (0, 1) a 1 (0, 3) a 1 (0, 1) a 2 (0, 3) a 6 (0, 9) a

ADE 0 (0, 1) 1 (1, 1) a 2 (1, 3) a 1 (1, 2) a 2 (1, 3) a 8 (4, 11) a

Values are median (IQR), n = 10−11 per group. Different superscript letters represent significant differences
(Kruskal–Wallis test and Mann–Whitney U test, p < 0.05).
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3.4. Collagen, Claudin-4, and Occludin Contents in the Colon

To evaluate the degree of colonic damage, Masson's trichrome staining was used
to detect collagen deposition, i.e., an index of fibrosis. As shown in Figure 2A, the blue
color represents collagen, the red represents muscle fibers, and the dark-red-to-black areas
represent nuclei. The protein expression of tight junction proteins, i.e., claudin-4 (Figure 2B)
and occludin (Figure 2C), was measured by IHC staining with brown color in the colonic
sections. When calculating the area of collagen in total colonic area of the microscopic field,
the UC and ADE groups had a significantly greater collagen-positive area than the R group
(Figure 2D). Moreover, the UC and ADE groups had a significantly decreased proportion of
claudin-4 compared to the R and RBE groups (Figure 2D). However, the occludin-positive
area was not significantly different among groups.
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Figure 2. Protein expression of collagen, claudin-4 and occludin in the colon of control mice (R
group) fed AIN-93M diet and UC mice fed either the AIN-93M diet (UC group) or the AIN-93M diet
supplemented with alcohol extract of rice bran (RBE group) or whole-grain adlay seeds (ADE group).
Photos (100×, bars = 50 µm) of Masson’s trichrome staining for (A) collagen, and immunohistochem-
ical staining of (B) claudin-4 and (C) occludin in the colon and (D) the ratio of indicated protein area
to total colonic area. Values are mean ± SEM, n = 10−11 per group. Different superscript letters
represent significant differences (one-way ANOVA and Duncan's multiple range test, p < 0.05).
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3.5. GSH, GSSG and TBARS Levels in the Colon

Levels of antioxidant indicators, GSH, GSSG, the ratio of GSH to GSSG, and lipid
peroxidation indicators (TBARS) in the colon are shown in Table 5. The UC group had
significantly increased GSH levels and a higher GSH:GSSG compared to the R, RBE, and
ADE groups. There were no significant differences in GSSG and TBARS levels in the colon
among groups.

Table 5. Levels of reduced and oxidized glutathione and TBARS in the colon.

Group
GSH

(µmol/g Colon)
GSSG

(µmol/g Colon) GSH/GSSG
TBARS

(nmol/g Colon)

R 33.8 ± 2.0 b 6.23 ± 0.44 5.60 ± 0.31 b 132.5 ± 13.7
UC 43.9 ± 3.4 a 5.49 ± 0.37 8.60 ± 0.50 a 143.3 ± 29.6
RBE 30.0 ± 1.3 b 5.60 ± 0.31 5.10 ± 0.39 b 138.1 ± 22.6
ADE 35.3 ± 1.8 b 6.63 ± 0.19 5.30 ± 0.30 b 158.2 ± 25.0

Values are mean ± SEM, n = 10−11 per group. GSH, reduced glutathione; GSSG, oxidized glutathione, GSH/GSSG,
ratio of the reduced to oxidized glutathione; TBARS, thiobarbituric acid reactive substance. Different superscript
letters represent significant differences (one-way ANOVA and Duncan’s multiple range test, p < 0.05).

3.6. Inflammatory Mediators in the Colon

Cytokine and chemokine levels in the colon are shown in Table 6. The UC group
had approximately 0.8- to 1.5-fold higher TNF-α, IL-6, IFN-γ, IL-12p70, and MCP-1 levels
compared to the R group. In contrast, IL-10 in the colon of the UC group was 50% lower
than that in the R group. The UC-induced increases in colonic levels of TNF-α and IL-12p70
were significantly decreased in the RBE and ADE groups. Furthermore, the UC-induced
increases in IL-6 and MCP-1 and the UC-induced decrease in IL-10 were significantly
ameliorated in the RBE group.

Table 6. Levels of cytokines and chemokine MCP-1 in the colon.

Group
TNF-α IL-6 IFN-γ IL-10 IL-12p70 MCP-1

(pg/g Colon)

R 31.2 ± 1.5 b 8.92 ± 0.85 b 2.08 ± 0.16 b 3.08 ± 0.15 a 56.8 ± 4.3 c 0.25 ± 0.08 b

UC 55.4 ± 4.1 a 18.11 ± 2.84 a 5.49 ± 0.37 a 1.52 ± 0.14 b 112.0 ± 8.9 a 0.51 ± 0.10 a

RBE 40.3 ± 3.3 b 10.85 ± 2.57 b 4.81 ± 0.28 a 3.42 ± 0.20 a 72.4 ± 9.2 b 0.32 ± 0.08 b

ADE 44.8 ± 2.6 b 13.02 ± 1.99 ab 4.92 ± 0.34 a 2.15 ± 0.23 ab 83.9 ± 6.7 b 0.40 ± 0.17 ab

Values are mean ± SEM, n = 10−11 per group. TNF, tumor necrosis factor; IL, interleukin; IFN, interferon;
MCP, monocyte chemoattractant protein. Different superscript letters represent significant differences (one-way
ANOVA and Duncan’s multiple range test, p < 0.05).

4. Discussion

The prevalence of UC is gradually increasing in Taiwan. Its symptoms and relapses
threaten the quality of life and increase the risk of colorectal cancer in UC patients [30]. In
clinical practice, UC treatment includes corticosteroids, antibiotics, and immunosuppres-
sants; however, none of these drugs are curative, and their long-term use may result in
adverse side effects and complications [31]. Foods with antioxidant, anti-inflammatory,
and immunomodulatory activities, such as whole grains, are considered to have beneficial
effects for UC patients [8,32]. In the present study using DNBS-induced UC mice, oral
administration of ethanol extracts from rice bran and whole-grain adlay seeds significantly
alleviated the DNBS-induced alterations in T-helper-cell-associated cytokines. In addition,
the ethanol extracts of rice bran significantly improved DNBS-induced decreases in the
tight junction protein claudin-4’s levels in the colon.

Increasing evidence suggests that inappropriate food choice, for instance, a Western
diet, may induce the overproduction of pro-inflammatory cytokines and dysregulate
immune function, resulting in recurrence, delayed recovery, or worsening disease severity
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in UC patients [9]. In addition, a low FODMAP diet is recommended for UC patients
during the active period to control gastrointestinal symptoms [32,33]. Whole grains, for
example, rice bran and adlay, are traditional Chinese foods that have been demonstrated
to have antioxidant and anti-inflammatory activities [9,12,16,18,34]. However, the high
dietary fiber content in whole grains may limit their use in UC patients. After defatting and
excluding polysaccharides, starch, and fiber, ethanol extracts of rice bran and whole-grain
adlay seeds contain copious amounts of phenolic and flavonoid compounds and vitamin E.
These materials may have potential biological functions in UC.

DNBS is a hapten that can trigger the host innate and adaptive immune responses
and has been used in mice to mimic the relapsing pattern observed in UC patients [22,24].
In our previous study, DNBS-induced UC mice were administered various water extracts
derived from grains and plants, including Echinacea purpurea, Salvia miltiorrhiza, and adlay
polysaccharides; however, clinical symptoms and colon damage in UC mice were not
improved [35]. We speculated that the high content of dietary fiber from these water extracts
might not be appropriate for UC mice during the relapsed state. Thus, the present study
focused on rice bran and whole-grain adlay seeds that were extracted with 70% ethanol to
reduce FODMAP and further evaluate their effects on colonic injury and inflammation.

In the present study, body weight was significantly reduced in UC mice during the
experimental period, and DAI and microscopic injury scores, including edema, immune
cell infiltration, goblet cell loss, inflammation, and total injury in the colon, were increased.
In addition, UC mice had significantly increased plasma IL-6 levels, elevated colonic pro-
inflammatory and T-helper-cell-associated cytokines and chemokine MCP-1 levels, and a
decreased anti-inflammatory cytokine IL-10 level. Tight junctions act as a semipermeable
barrier and function to divide the apical and basolateral domains of the plasma mem-
brane [36]. Collagen, an index of fibrosis, has been shown to deposit in the colon from the
mucosal to the muscular layers in UC patients [37]. In the present study, UC mice had a
significant decrease in the levels of the tight junction protein claudin-4 and a significant
increase in collagen in the colon. The changes in clinical symptoms, microscopic colonic
injury, cytokine profiles in the plasma and colon, tight junction protein, and collagen
reveal that the DNBS-induced UC mice had similar clinical and histological features to
UC patients.

GSH, a major antioxidant in the body, contains a free thiol group that can be oxidized
to GSSG. In the present study, UC mice had unaltered colonic TBARS and increased colonic
GSH levels, suggesting an adaptive response to alleviate oxidative stress, such as lipid
peroxidation, in the colon during UC reactivation. The low DAI scores and unchanged
colonic length, colonic TBARS, and plasma proinflammatory cytokines suggest that the
DNBS-induced UC mice may have mild-to-moderate disease severity and colon damage,
which were not as severe as the findings in the study of Martin et al. [22]

Whole grains are a good source of dietary fiber, minerals, vitamins, and phytochemi-
cals. Rice bran, a by-product of rice milling, has drawn attention due to its surplus value.
In human umbilical vein endothelial cells, rice-bran-derived phenolic extracts showed an-
tioxidant and anti-inflammatory effects that protected against endothelial dysfunction [10].
In a randomized double-blind controlled trial, γ-oryzanol, a triterpenic alcohol mixture
with ferulic acid esters and phytosterols extracted from rice bran, improved antioxidant
status in hyperlipidemic subjects [14,38]. The antioxidant and anti-inflammatory effects of
rice bran components, including oligosaccharides, γ-oryzanol, ferulic acid, geranylgeran-
iol, farnesol, isoprenoids, and lectins, have been reviewed [15,39]. In the present study,
an ethanol extract of rice bran significantly decreased plasma and colonic levels of IL-6;
T-helper-cell-associated cytokines, such as TNF-α and IL-12p70; and the chemokine MCP-1,
a marker secreted by monocytes, memory T cells, and dendritic cells in UC mice [9,16,40].
In addition, the ethanol extract of rice bran significantly increased claudin-4 protein ex-
pression and alleviated UC-elevated GSH content in the colon. The decreased GSH and
unaltered TBARS reveal that an ethanol extract of rice bran may reduce the need for high
levels of antioxidants, e.g., GSH, to maintain the colonic redox status in UC. The results of
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plasma and colonic cytokines and the chemokine MCP-1 and colonic claudin-4 and GSH
content suggest that the ethanol extract of rice bran may alleviate UC-induced impairment
in colonic integrity, inflammation, and oxidative stress.

Adlay seeds, also called Job’s tear seeds or Coix seeds, have been used as nourishment
foods and in traditional Chinese medicine and possess antioxidant and anti-inflammatory
activities [18,34]. In Caco-2 cells, polysaccharides of adlay bran significantly decreased the
secretion of pro-inflammatory cytokines and IL-10 and alleviated TNF-α-induced epithelial
barrier dysfunction [11]. In a rat model of rheumatoid arthritis, an ethanol extract of
adlay seed significantly decreased serum pro-inflammatory cytokines and increased the
activities of antioxidant enzymes [34]. In the present study, UC mice administered the
ethanol extract from whole-grain adlay seeds had an approximately 25% increase in food
intake without subsequent weight gain, suggesting a potential role for adlay seed extract
in weight control. In addition, diarrhea; T-helper-cell-associated cytokines in the plasma;
and DNBS-induced increases in TNF-α, IL-12p70, and GSH in the colon were decreased by
dietary supplementation with an ethanol extract of whole-grain adlay seeds in UC mice.
These results suggest that an ethanol extract of whole-grain adlay seeds may be used to
alleviate clinical symptoms and colonic inflammation, at least partially, in UC patients.

There are several limitations in the present study. First, components of the ethanol
extracts were not determined, thus limiting the ability to distinguish the main bioactive
compound(s) in rice bran and whole-grain adlay seeds. Second, the severity of the UC
induced in the study was mild to moderate, so that the UC mice would present an adaptive
redox response, such as unaltered TBARS and increased GSH levels in the colon. This
adaptive response limited the degree of improvement observed in oxidative-stress markers
in UC mice administered the ethanol extracts. Third, the mucosal and muscular layers
of the colon were not separated when determining cytokine and chemokine levels. The
mucosal layer is the major site with immunological processes in the colon. Therefore, the
cytokines, chemokine MCP-1, GSH, and TBARS results in the colon may be underestimated.
Even so, cytokine and chemokine levels were simultaneously determined in the plasma
and colon, allowing us to reveal that the systemic and local inflammatory and immune
responses were different in UC.

5. Conclusions

Our findings suggest that oral administration of ethanol extracts from rice bran and
whole-grain adlay seeds may partially alleviate the clinical symptoms, morphological
changes of the colon, and colonic damage in DNBS-induced UC mice. In addition, these
ethanol extracts may eliminate DNBS-induced alterations in T-helper-cell-associated cy-
tokines and GSH in the colon. Furthermore, the ethanol extract of rice bran has beneficial
effects in regard to preserving colon integrity via increasing the tight junction protein
claudin-4 in UC mice. The bioactive components and mechanisms of ethanol extracts from
rice bran and whole-grain adlay seeds in modulating the homeostasis of inflammatory me-
diators and colonic oxidant–antioxidant profiles in UC, as well as the safety and tolerability
of these extracts, are worth further investigation.
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