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Abstract: (1) Background: Emergence of methods interrogating gene expression at high throughput
gave birth to quantitative transcriptomics, but also posed a question of inter-comparison of expression
profiles obtained using different equipment and protocols and/or in different series of experiments.
Addressing this issue is challenging, because all of the above variables can dramatically influence
gene expression signals and, therefore, cause a plethora of peculiar features in the transcriptomic
profiles. Millions of transcriptomic profiles were obtained and deposited in public databases of
which the usefulness is however strongly limited due to the inter-comparison issues; (2) Methods:
Dozens of methods and software packages that can be generally classified as either flexible or
predefined format harmonizers have been proposed, but none has become to the date the gold
standard for unification of this type of Big Data; (3) Results: However, recent developments evidence
that platform/protocol/batch bias can be efficiently reduced not only for the comparisons of limited
transcriptomic datasets. Instead, instruments were proposed for transforming gene expression
profiles into the universal, uniformly shaped format that can support multiple inter-comparisons for
reasonable calculation costs. This forms a basement for universal indexing of all or most of all types of
RNA sequencing and microarray hybridization profiles; (4) Conclusions: In this paper, we attempted
to overview the landscape of modern approaches and methods in transcriptomic harmonization and
focused on the practical aspects of their application.

Keywords: gene expression; transcriptional profiles; RNA sequencing; microarray hybridization; data
normalization and harmonization; batch effect; machine learning; Big Data; universal data indexing

1. The Problem of Transcriptomic Data Harmonization

The digital ocean of whole-transcriptome gene expression profiles has flooded since
the early 2000s when the first generation of robust and reproducible mRNA microarray
hybridization (MH) techniques was introduced into the routine laboratory practice [1–4].
The outstandingly high importance of the open-access gene expression data that could be
accumulated and extracted from public databases was recognized immediately, thus leading
to emergence of popular online repositories such as Gene Expression Omnibus (GEO) [5,6]
or ArrayExpress [7,8]. Later on, this has also inspired many impactful large-scale integrative
biomedical cooperative projects such as The Cancer Genome Atlas (TCGA) [9,10] for cancer
genomics and transcriptomics, Gene-Tissue Expression (GTEx) [11,12], and Atlas of Normal
Tissue Expression (ANTE) [13] for normal human tissue expression profiles, the CancerRxGene
database [14] for genomes and transcriptomes of cell lines connected with their response to
hundreds of drugs, and the Broad Institute deconvoluted profiles for gene expression changes
in cells under the influence of gene constructs, drugs, and other chemicals [15,16].
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Shortly after the critical mass of gene expression profiles has accumulated, the follow-
ing two conceptual problems with the data analysis were recognized. First, poor technical
compatibility of the expression profiles is obtained using different experimental plat-
forms/equipment, protocols, and reagents [17–21]. Indeed, this can be readily explained by
the different physico-chemical principles of gene detection and interrogation [22,23] and by
specific library preparation enzymatic bias [24]. The second problem (so-called batch effect)
dealt and still deals with the unclear compatibility of gene expression profiles obtained
with the same equipment and reagents, but in different series of experiments, e.g., they are
performed in different times or in different labs [25,26]. There is no clear explanation of the
nature of the batch effect (e.g., it may be due to relatively different activities of enzymes
and chemicals for library preparation and MH or RNA sequencing from batch to batch),
but the effect itself is sound and frequently inevitable [25].

The compromised compatibility of gene expression profiles obtained using different
platforms and protocols was experimentally explored in the international projects MAQC
(for MH) and SEQC (for RNA sequencing). Both MAQC [17–19] and SEQC [27] projects
investigated compatibilities of gene expression profiles obtained using various microarray
and sequencing platforms for the same set of four sample types (named A, B, C, and D),
each performed in multiple replicates. Type A samples were the commercially available
Stratagene Universal Human Reference RNA specimens for all but brain human tissues;
type B samples were also commercially available Ambion Human Brain Reference RNA.
Types C and D samples were the mixtures of A and B with the A:B ratios of 3:1 and 1:3,
respectively. In the MAQC project [17–19], the samples of types A, B, C, and D were profiled
using the MH platforms Agilent-012391 Whole Human Genome Oligo Microarray G4112A
(GPL1708), Affymetrix Human Genome U133 Plus 2.0 Array (GPL570) and Illumina Sentrix
Human-6 Expression Beadchip (GPL2507). In the SEQC project [27], the same samples
were profiled using the NGS platform Illumina HiSeq 2000 (GPL11154), as well as three
MH platforms: Illumina HumanHT-12 V4.0 expression beadchip (GPL10558), Affymetrix
Human Gene 2.0 ST Array (GPL17930), and Affymetrix GeneChip® PrimeView™ Human
Gene Expression Array (GPL16043).

The MAQC and SEQC projects investigated the correlations between the transcriptome
profiles of the same biological type, yet obtained using the different experimental platforms.
Although these correlations were high [17–19,27], without the some special cross-platform
normalization methods (quantile normalization [28] was not enough), the overall collections
of profiles were grouped according to the experimental platforms, rather than to the
biological type of samples, in terms of both clustering dendrograms and of principal
component analysis (PCA) [29–34].

As the reaction of the scientific community, a bunch of first-generation harmoniza-
tion/normalization methods was generated in the first decade of the 21st century, aimed at
the standardization of multi-platform expression profiles using specific algorithms. These
methods were mostly trained on the different types of MH gene expression data and
could dynamically transform gene profiles into a flexible yet inter-comparable form [35].
The following alternative approaches that have different principles and different des-
tinies could be mentioned in this review: Quantile Normalization (QN) [28], Quantile
Discretization (QD) [36], Normalized Discretization (NorDi) [37], Distribution Transforma-
tion (DisTran) [38], Empirical Bayes (EB)/ComBat [39], Distance-Weighted Discrimination
(DWD) [40–42], Cross-Platform Normalization (XPN) [29,31], Gene Quantiles (GQ) [43],
and PLatform-Independent Latent Dirichlet Allocation (PLIDA) [30].

Further approaches were largely influenced by the coming era of routine next-generation
sequencing (NGS) of mRNA (RNA sequencing or RNAseq) that has started roughly in
the second decade of this century. Nowadays, RNAseq has become the gold standard
and the basic tool for transcriptomic profiling [44–50]. In addition to measuring gene
activities, RNAseq has also the potential of detecting mutations and overall tumor mu-
tational burden [51], gene splice isoforms [52], and oncogenic fusion transcripts [53–56].
During the RNAseq era, a new group of cross-platform data comparison methods was
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developed [27]. However, the RNAseq gene expression profiles have outnumbered the MH
counterparts relatively recently. It was only in 2019 [32] when the number of datasets for
the most popular RNAseq platform (Illumina HiSeq 2000, GPL11154) exceeded the number
of datasets for the most popular MH platform (Affymetrix U133, GPL570). Moreover, the
total number of individual profiles for those two platforms is still comparable in 2022
as well. Many unique transcriptomic profiles exist only as the MH data, e.g., clinically
annotated expression profiles for some pathological conditions including cancers [57].

For the RNAseq data, a method called The Differential gene Expression in Sequencing,
DESeq [58]/DESeq2 [59–61] based on the negative binomial distribution law, has rapidly
become the standard in the field for the intra-platform normalization. However, effec-
tive method for the cross-platform RNAseq, or for RNAseq vs. MH harmonization was
missing until recently, although several attempts for simultaneous normalization of MH
and RNAseq data must be mentioned, such as Training Distribution Machine (TDM) [62],
Universal exPression Code (UPC) [63], Feature-specific QN (FCQN) [64,65], MatchMixeR
(MM) [66], Integrative Bayesian Network (IBN) [67], Rank-in [68], and Elastic Shared
LASSO Regularization (ESLR) [69] methods. The divergence analysis method is another
interesting attempt to compare the MH and NGS mRNA expression profiles, as well as
microRNA and DNA methylation data [70]. The authors of the divergence analysis first ap-
plied conditional probability (Bayesian) models to mimic the unspecified (generalized-type)
distribution that describes the gene expression/methylation data. This reconstruction was
followed by the divergence analysis of one biological sample type from another. Although
Dinalankara at al. [70] have managed to distinguish different samples after their divergence
analysis, the applicability of their approach to a wide range of popular MH and NGS
platforms remains unexplored [70].

In this review, we classified available intra- and cross-platform harmonization methods
of transcriptomic profiles and compared their performance characteristics. Finally, we also
included practical recommendations that may guide the reader to select optimal method
depending on a specific task.

2. Principles of Harmonization Algorithms

Different harmonization methods are based on different algorithms aimed to suppress
the platform bias and the batch effect. These algorithms may utilize different approaches to
gene expression data processing and produce output data in different formats. Considering
the mathematical apparatus, we proposed the following classification:

(1) Methods based on statistical transformations (considering quantiles, ranks, means,
medians of gene expression levels, etc.):

(a) Those using ranking of expression levels and setting the output levels accord-
ing to the averaged values, such as QN [28], Feature-Specific QN (FCQN) [64],
Quantile Discretization (QD) [36], Gene Quantiles (GQ) [43], Normalized Dis-
cretization (NorDi) [37], Distribution Transformation (DisTran) [36,38], Median
Rank Scores (MRS) [36], YuGene [71], and Rank-in [68];

(b) Those using piecewise rescaling of log-expression levels according to the mean/
median values over distinct genes and samples, such as Column Sample (CS),
Median-Centered (MC) [29], and Analysis of Variance (ANNOVA) [72] method;

(2) Methods using regression and/or maximum likelihood models for validation of
predefined statistical hypotheses:

(a) Those using negative binomial distribution, such as the DESeq [58]/
DESeq2 [59–61];

(b) Those using log-normal distribution with either covariance analysis [73], or
with conditional/Bayesian models, as for the methods Universal exPression
Code (UPC) [63,74], Empirical Bayes (ComBat) [39], Robust Microarray Analy-
sis (RMA) [75], GeneChip Robust Multiarray Analysis (gcRMA) [76], Model-
Based Expression Indices (MBEI) [77], Probe Logarithmic Intensity ERror
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(PLIER) estimation [78], frozen Robust Microarray Analysis (fRMA) [79–82],
MatchMixeR (MM) [66], Cross-Platform Comparison (XPC) [83];

(c) Those using Dirichlet and gamma distributions as for the method PLatform-
Independent Latent Dirichlet Allocation (PLIDA) [30];

(d) Those using the empirical superposition of conditional probabilistic (Bayesian)
models that describe the generalized-type distribution as for the method applied for
the comparison of the MH, NGS, microRNA, and DNA methylation data [67,70];

(e) Those using the Least Absolute Shrinkage and Selection Operator (LASSO)
regression models [69];

(3) Methods finding similar clusters in gene expression matrices of the datasets under
normalization and then using iterative corrections to fit each cluster as close as possible
to the target model:

(a) Those using piecewise linear interpolations in the log-expression space, such
as Cross-Platform Normalization (XPN) [29];

(b) Those using piecewise cubic interpolations in the log-expression space, such
CuBlock [34].

(4) Methods utilizing machine learning (ML) to find and artificially remove dissimilarities
between datasets to be normalized:

(a) Those using the linear support vector machine (SVM) ML method, such as
Distance-Weighted Discrimination (DWD) [40–42];

(b) Those using quantile-based regression models for data transfer from source to
target datasets, such as Training Distribution Machine (TDM) [62].

Another important aspect that must be considered in this review is the format of
output gene expression data generated by the harmonization techniques. Most of currently
existing methods return the results in the flexible format. For the flexible normalization,
the shape of the output transformed gene expression profiles is a variable that depends
on all the profiles under harmonization. This has an important limitation that one cannot
combine the output datasets generated after two or more acts of such harmonization. Even
adding as few as just one transcriptional profile would require a new harmonization of the
entire dataset. This clearly increases the calculation costs for large datasets that are being
routinely updated.

Taken together, these factors complicate the analysis of not only single gene expres-
sion levels, but also of higher order gene-based biomarkers such as gene signatures [84],
molecular pathway activation levels [85], algorithmically deduced cancer drug efficiency
scores [86,87], and different ML models [88–90].

To overcome these limitations, an alternative concept was formulated comprising
conversion of a whole set of profiles under harmonization into a pre-defined output
shape, e.g., into a shape of a preferred gene interrogating experimental platform. In
such a paradigm, the harmonized output should look as if it would be obtained using a
predefined gene expression platform. The examples of predefined-shape harmonization
methods include Frozen Robust Microarray Analysis (fRMA) [79–82], robust Quantile
Normalization [91], Training Distribution Machine (TDM) [62], and Universal exPression
Code (UPC) [63].

More recently, we proposed a new family of uniformly shaped cross-platform harmo-
nizers termed Shambhala [32,33]. Harmonization here is performed not simultaneously for
all the profiles under harmonization, but for the gene expression profiles taken one by one,
when each individual profile is merged and quantile-normalized [28] with an auxiliary
calibration dataset that is pre-defined by the method developers. Then, the resulting dataset
is converted into the shape of the so-called reference definitive dataset. This creates an
additional advantage of co-harmonizing datasets of different, even non-comparable, sizes.

Furthermore, such harmonization may use different mathematical transforms as
the engine to reshape the transcriptional profiles. The first version of Shambhala used
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the piecewise linear method XPN [29,31] for profile reshaping [32], whereas the latest
version [33] utilized the piecewise cubic transformation method CuBlock [34].

3. Evaluation of the Quality of Harmonization

Harmonization of transcriptional profiles is a complex process that can distort func-
tionally relevant features such as clustering and neighborhood on a dendrogram and
fold-change of gene expression with relation to control samples. We listed in Table 1 some
of the quality assessment metrics and the abilities of different methods to retain the initial
functional characteristics in the output profiles after harmonization.

The following quantitative metrics and methods may be applied to estimate the effect
of harmonization:

(1) First, different statistical criteria may be used to estimate the following endpoints:

(a) Correlation analysis for the gene expression profiles before and after
harmonization [29–31,33,34];

(b) Comparison of between- and within-class distances before and after
harmonization [29];

(2) Alternatively, one may classify the samples according to gene expression data after
normalization, involving various machine learning (ML) methods:

(a) Logistic regression [92], used in [30];
(b) SVM [93], used in [29,31];
(c) Nearest shrunken centroids Prediction Analysis for Microarrays (PAM) [94],

used in [29].

As a typical material for such normalization quality benchmarks, in many studies, the
investigators used standardized reference samples, whose gene expression was interro-
gated with different equipment using different experimental protocols. Probably, the most
important series of such cross-comparisons was performed within the Microarray Quality
Control (MAQC) [17–19] and Sequencing Quality Control (SEQC) [27] projects mentioned
above in this article.

The MAQC and SEQC projects were focused on profiling the specific model human
mRNA sample types. One was the commercial Stratagene universal human reference RNA
mixture for all but brain tissues; another one was the commercial Ambion human brain
reference mRNA, and the two remaining types were the mixtures of the Stratagene/Ambion
samples in the ratios of 3:1 and 1:3, respectively.

The quality assessment is based on the expectation that a perfect harmonization must
support the similarity of gene expression profiles according to the biological nature of the
sample rather than depending on the equipment and reagents used to interrogate gene
expression. Thus, early approaches used visual inspection of the principal component anal-
ysis (PCA) plots and/or cluster dendrograms to assess the cross-platform harmonization
benchmarks [30–34]. However, this could only support a manual qualitative assessment
without precise quantitative interrogation of the complex class distribution profiles.

We recently proposed a new metric for the algorithmic cluster analysis of dendro-
grams [33,95] called Watermelon Multisection (WM). WM measures the strength of data
matching with the trait of interest. When moving from the root of the dendrogram to its
distal branches, one can calculate general decrease of entropy and, therefore, information
gain (IG) at each node of the dendrogram, i.e., its split into two shoulders [95]. This ac-
cumulated and normalized IG constitutes the WM metric for a given dendrogram, and a
given set of classes under analysis. Consequently, the ratio = WMS

WMP
, where WMS is WM

metric for clustering according to classes corresponding to biological nature and WMP,
according to the experimental platform used, may be used as a facile yet robust estimate of
the harmonization quality. A higher R corresponds to a better quality, and vice versa [33].
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Table 1. Selected benchmarks of harmonization methods.

Reference for
Comparison Methods Materials Experimental Platform Qualitative Criteria Quantitative

Criteria Best Methods

[29]

Cross-Platform Normalization,
XPN [29]; Column Sample (CS);
Median Center (MC); Empirical
Bayes (EB) [39];
Distance-Weighted Discrimination
(DWD) [41,42]

Three breast cancer
datasets [96–98]

Affymetrix GeneChip U95Av2 arrays [96];
25K Agilent oligonucleotide arrays [97,98] —

Average distance to nearest
sample in another platform;
correlation with column
standardization data; global
integrative correlation;
preservation of significantly
differential genes

XPN

[31]

XPN; DWD; EB (ComBat) [39];
Median Rank Scores (MRS) [36];
Quantile Discretization (QD) [36];
Normalized Discretization
(NorDi) [37]; Distribution
Transformation (DisTran) [36,38];
Gene Quantiles (GQ) [43];
Quantile Normalization (QN) [28]

MAQC
dataset [17–19]

Human Genome Survey Microarray v2.0;
Agilent-012391 Whole Human Genome Oligo
Microarray G4112A;
Affymetrix Human Genome U133 Plus 2.0 Array;
Illumina Sentrix Human-6 Expression Beadchip

—

Mean-mean regression;
cross-dataset data transfer for
linear SVM [94] and nearest
shrunken centroids [95]
classification

XPN (for datasets of
comparable size);
DWD (for datasets of
non-comparable size)

[30]
XPN; DWD;
platform-independent latent
Dirichlet allocation (PLIDA) [30]

Prostate cancer
datasets [99,100];
Breast cancer
datasets [97,101];
MAQC

Affymetrix Human Genome U133 Array;
Agilent Human 1A (V2);
Human Genome Survey Microarray v2.0;
Agilent-012391 Whole Human Genome Oligo
Microarray G4112A;
Affymetrix Human Genome U133 Plus 2.0 Array;
Illumina Sentrix Human-6 Expression Beadchip

Visual inspection of
PCA plots.

Correlation analysis between the
profiles before and after
normalization;
cross-dataset data transfer for
logistic regression
classification [92]

PLIDA

[67]
MatchMixeR (MM) [66];
DWD; XPM;
ComBat

NCI60 cell lines
(dataset 1:58 lines;
dataset 2:59 lines)

Affymetrix Human Genome U133A array;
Human Genome U133 Plus 2.0 Array;
Agilent Human Genome Whole Microarray;
Illumina HiSeq 2000

—

R2 score (R2 is the proportion of
the variation in the dependent
variable that is predictable
from the independent
variable [102] analysis;
F1 score (F1 score is the harmonic
mean of precision and recall
[103,104]) analysis

MM

[32]
Shambhala-1; QN; Differential
Gene Expression in Sequencing 2
(DESeq2) [59–61]

MAQC; SEQC
datasets [27]

Agilent-012391 Whole Human Genome Oligo
Microarray G4112A;
Affymetrix Human Genome U133 Plus 2.0 Array;
Illumina Sentrix Human-6 Expression Beadchip;
Illumina HiSeq 2000;
Illumina HumanHT-12 V4.0 expression beadchip;
Affymetrix Human Gene 2.0 ST Array;
Affymetrix GeneChip® PrimeView™ Human
Gene Expression Array

Visual inspection of
cluster dendrograms — Shambhala-1

(linear Shambhala)
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Table 1. Cont.

Reference for
Comparison Methods Materials Experimental Platform Qualitative Criteria Quantitative

Criteria Best Methods

[34]

CuBlock [34];
ComBat [39] YuGene [71];
DBNorm [105]; Shambhala-1 [32];
Universal exPression
Code (UPC) [63]

MAQC

Agilent-012391 Whole Human Genome Oligo
Microarray G4112A;
Affymetrix Human Genome U133 Plus 2.0 Array;
Illumina Sentrix Human-6 Expression Beadchip

Visual inspection of
cluster dendrograms
and PCA plots

Cross-dataset data transfer for
support vector machine (SVM)
classification [93]

CuBlock

[33]

Shambhala-2; Shambhala-1; QN;
DESeq2; CuBlock; robust QN
(QNR) [91]; Training Distribution
Machine (TDM) [62]; UPC

GTEx [11], The
Cancer Genome
Atlas (TCGA) [10];
Oncobox Atlas of
Normal Tissue
Expression
(ANTE) [13];
MAQC; SEQC

Illumina HiSeq 2000;
Illumina HiSeq 3000;
Agilent-012391 Whole Human Genome Oligo
Microarray G4112A;
Affymetrix Human Genome U133 Plus 2.0 Array;
Illumina Sentrix Human-6 Expression Beadchip;
Illumina HumanHT-12 V4.0 expression beadchip;
Affymetrix Human Gene 2.0 ST Array;
Affymetrix GeneChip® PrimeView™ Human
Gene Expression Array

Visual inspection of
PCA plots

Watermelon Multisection metric
for quantitative assessment of
clustering on dendrograms [95]

Shambhala-2
(cubic Shambhala)
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4. Application Notes

During the last two decades, quantile normalization (QN) [28] and differential gene
expression in sequencing 2, DESeq2 [59–61], have become methods of choice for intra-
platform normalization of the MH and RNAseq gene expression data, respectively.

However, for the cross-platform harmonization, dozens of methods were developed
for both MH and NGS types of gene expression data, but none of them was so far recognized
as the gold standard. In fact, many, if not most, aspects of intra- and cross-platform
normalization, such as incomparability of profiles obtained using different platforms,
numerous methods for cross-platform normalization, and performance benchmarks for
them, were studied in the first decade of the XXI century, in the co-called MH era. The
advent of NGS, however, did not make this problem unimportant, at least because there is
still a problem regarding how to harmonize old MH and new NGS data.

Most of cross-platform normalization methods return the output data in the flexible
format, which requires recalculation of all previously processed profiles when adding new
data to the analysis. This may dramatically increase calculation time and costs which can
grow exponentially with the increase of the sample size. Furthermore, some methods which
show the best performance in cross-platform normalization tests [31], such as XPN [29],
have serious limitations. For instance, XPN allows normalization of only two datasets at
once, with no subsequent application to other datasets [29]. In addition, an unbalanced
size of groups of samples under harmonization may create obstacle to the analysis of the
whole groups. The latter may force researchers to arbitrarily decrease samplings and not to
include all available data into the analysis.

Thus, the need for the predefined, uniformly-shaped output for data harmonization
was formulated about a decade ago [62,63,79–82]. Recently, we proposed a concept of
uniformly shaped cross-platform harmonization of gene expression profiles [32,33]. The key
feature of such harmonization is that each profile is converted into the shape of the reference
definitive dataset independently from other profiles under harmonization. In such a way,
the unlimited number of datasets of any size each can be harmonized. Furthermore, adding
new data to the analysis does not require recalculation for the previously harmonized
profiles, which spares time and reduces costs.

With such a concept in mind, we obtained the best results with the cubic data trans-
formation algorithm adopted from the CuBlock method [34] and built Shambhala-2 pack-
age [33]. Shambhala-2 showed a strong capacity to restore the correct order of clusters on
dendrograms, when the samples were grouped according to their biological nature, not
the technical platform used to profile gene expression. This was effective for both MH and
RNAseq types of data, including mixed MH-RNAseq datasets under harmonization. We
hope, therefore, that this generation or next generations of Shambhala harmonizer will find
their niche in the analysis of big transcriptomic data in the future.

5. Conclusions

We summarized our experience of using various harmonization methods for gene
expression profiles in Table 2.

For the intra-platform harmonization of the MH data, QN [28] may seem the method
of choice; however, the “robust QN” (QNR) [91] showed generally worse performance
than the ordinary QN [33]. In turn, for the intra-platform harmonization of the NGS data,
DESeq2 method could be recommended [59–61].

In case of cross-platform harmonization of two datasets with a comparable number
of gene expression profiles, the best choice could be the XPN method [29,31]. When the
data are MH profiles and there are more than two datasets under analysis, the method
CuBlock [34] is preferred.

Finally, in the case of merging the MH and NGS expression datasets, or when merging
of data from various platforms is needed, and the uniformly shaped (suitable for further
intercomparisons) output format is required, then Shambhala-1 [32] or Shahmhala-2 [33]
technique can be the best option.
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To our knowledge, Shambhala methods were the first gene expression harmonizers with
a uniformly shaped output, which were applied to merge the RNAseq and MH profiles [32,33].
Thus, these methods may become useful for the broad spectrum of applications.

However, one should keep in mind that Shambhala-1/2 approaches are algorithmically
complex and, therefore, computational resource-demanding. Thus, parallel execution of
the program code may be advantageous [33,89].

Table 2. Recommendations for the use of selected intra- and cross-platform harmonization methods.

Reference Method Mathematical
Principle

Algorithmic
Complexity Advantages Shortcomings

[28] Quantile
normalization (QN)

Ranking the expression
levels of different genes
within each profile and
setting the expression
level of each gene to
the mean value (over
all profiles) for the
respective rank

Relatively
simple

Gold standard method for
intra-platform normalization of
the MH data

Avoiding being used for
cross-platform harmonization
of the MH data;
requiring recalculation of all
gene expression-based values
after addition of new samples

[59–61]

Differential Gene
Expression in
Sequencing 2
(DESeq2)

Transform based on the
negative binomial
distribution

Moderately
complex

Gold standard for
intra-platform normalization of
RNAseq data

Requiring recalculation of all
gene expression-based values
after addition of new samples

[29] Cross-Platform
Normalization (XPN)

Piecewise linear
iterative transform

Relatively
complex

The method of choice for
harmonization of two datasets
of comparable size

Allowing normalization of
more than two datasets; not
recommending subsequent
application to other datasets;
requiring recalculation of all
gene expression-based values
after addition of new samples

[34] CuBlock Piecewise cubic
iterative transform

Relatively
complex

The method of choice for
cross-platform normalization of
more than two MH datasets

Requiring recalculation of all
gene expression-based values
after addition of new samples

[32] Shambhala-1 (linear
Shambhala)

Uniformly shaped
harmonization based
on the XPN method.

Complex

Working for harmonization of
unlimited number of datasets of
any size, for both MH and
RNAseq data or their
combinations; not requiring
recalculation of gene
expression-based values after
addition of new samples

Resource-demanding

[33] Shambhala-2 (cubic
Shambhala)

Uniformly shaped
harmonization based
on the CuBlock
method.

Complex

Working for harmonization of
the unlimited number of
datasets of any size, for both
MH and RNAseq data or their
combinations; not requiring
recalculation of gene
expression-based values after
addition of new samples

Resource-demanding
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