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Abstract: Cinnamomum verum, also called true cinnamon tree, is employed to make the seasoning
cinnamon. Furthermore, the plant has been used as a traditional Chinese herbal medication.
We explored the anticancer effect of cuminaldehyde, an ingredient of the cortex of the plant, as
well as the molecular biomarkers associated with carcinogenesis in human colorectal adenocarcinoma
COLO 205 cells. The results show that cuminaldehyde suppressed growth and induced apoptosis,
as proved by depletion of the mitochondrial membrane potential, activation of both caspase-3
and -9, and morphological features of apoptosis. Moreover, cuminaldehyde also led to lysosomal
vacuolation with an upregulated volume of acidic compartment and cytotoxicity, together with
inhibitions of both topoisomerase I and II activities. Additional study shows that the anticancer
activity of cuminaldehyde was observed in the model of nude mice. Our results suggest that the
anticancer activity of cuminaldehyde in vitro involved the suppression of cell proliferative markers,
topoisomerase I as well as II, together with increase of pro-apoptotic molecules, associated with
upregulated lysosomal vacuolation. On the other hand, in vivo, cuminaldehyde diminished the
tumor burden that would have a significant clinical impact. Furthermore, similar effects were
observed in other tested cell lines. In short, our data suggest that cuminaldehyde could be a drug for
chemopreventive or anticancer therapy.

Keywords: cuminaldehyde; antiproliferative; topoisomerase I; topoisomerase II; lysosomal
vacuolation; xenograft

1. Introduction

Colorectal cancer is one of the most common malignancies [1]. Nevertheless, it is not sensitive to
conventional chemotherapeutic drugs and there is a need for better management of the disease.

Over the past three decades, various approaches have been used for prevention and treatment of
cancer, such as traditional Chinese medicine (TMC). The therapeutic usage described in classic books
of Chinese materia medica are still informative even the present-day; for example, Artemisia annua.
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Artemisinin, an ingredient of the plant, was discovered by Tu Youyou, a Chinese scientist, who
was awarded half of the 2015 Nobel Prize in Medicine for her discovery of its effect against
Plasmodium falciparum malaria.

Moreover, contemporary epidemiological and experimental studies have unremittingly suggested
a correlation between regularly eating vegetables and fruits and avoidance of lifestyle disorders,
including tumors and heart disorders [2,3]. Phytochemicals, e.g., flavonoids and polyphenols of
which plants are rich sources, appear to possess desirable characters required for avoiding malignancy
and may have great possibility as antiproliferative drugs [4–9]. Indeed, the common seasoning
cinnamon is manufactured from the true cinnamon tree. In addition, the plant has been applied
for the treatment of dyspepsia, circulatory disorders, and inflammation, such as gastroenteritis [2,3].
Cuminaldehyde, an ingredient of true cinnamon tree’s bark, may be the compound that has this effect.
Cuminaldehyde exists in the true cinnamon tree in a high concentration, and it is also found in the shoot
of Artemisia salsoloides, leaf of Aegle marmelos, and essential oil from cumin [10]. The chemical is stable,
soluble in ethanol, and available commercially. Until now, very little research on cuminaldehyde
has been published. Therefore, the current study intended to explore the anticancer activity of
cuminaldehyde and clarify its mechanisms in human colorectal adenocarcinoma COLO 205 cells.

Malignancy is a hyperproliferative disease. Various genetic and epigenetic aberrations are needed
to convert normal cells into transformed ones. These abnormalities regulate different pathways which
collaborate to enable malignant cells endowed with an extensive capabilities needed for proliferating,
metastating, and killing their host [11]. Although antiproliferative drugs are possibly able to act
through various mechanisms, apoptosis has been shown to be the most common and preferred
mechanism through which many anticancer agents kill and eradicate cancer cells [12].

Apoptosis-inducing antiproliferative agents may act by targeting mitochondria. The drugs may
alter mitochondria through various mechanisms. They may cause the development of pores on
membranes, leading to swelling of mitochondria, or increase membrane permeability, resulting in the
discharge of pro-apoptotic cytochrome from the organelle into the cytosolic compartment. Cytochrome
c interacts with protease activating factor-1 together with deoxyadenosine triphosphate, which then
interacts with pro-caspase-9 resulting in the formation of apoptosome. Then the inactive pro-caspase-9
is activated by the formed apoptosome into active caspase-9. Next, the active form caspase-9 acuates
caspase-3, resulting in a proteolytic cascade [13–15].

Topoisomerases, enzymes controlling the DNA’s topological status, are involved in conserving
the integrity of the genome [16]. They relax intertwined DNA by transitory protein-linked breaks
of only one (topoisomerase I) or two (topoisomerase II) strands of the double-stranded DNA [17].
Topoisomerase I plays a role in DNA processing by engaging systems of tracking and being involved
in conserving the integrity of the genome [16]. Upregulated enzyme’s catalytic activity, protein, and
mRNA have been demonstrated across human cancers [18]. Indeed, topoisomerase I is involved in the
chromosomal instability of colorectal cancer (CRC) and the expression levels of the enzyme has been
suggested as prognostic markers [19–21] in CRC. Topoisomerase II is upregulated during cell growth
and peaks at G2/M. Topoisomerase II gene copy number is also elevated in CRC and considered as a
potential predictive biomarker for anticancer treatment [20]. In addition to cell cycle regulation, the
enzyme has been demonstrated to be another main target of antiproliferative agents [22–25]. What
is more, apoptotic cell death was shown to be the ultimate effective pathway of death in cancer
subsequent to suppression of topoisomerase [26].

This diversification of machineries of carcinogenesis implies that there could be various processes
that are crucially objective for avoidance of cancer. In an effort to investigate the activities and latent
machineries of cuminaldehyde in human colorectal adenocarcinoma COLO 205 cell, we performed a
series of tests to study the effects of cuminaldehyde on growth as well as activities of topoisomerase
I and II in human colorectal COLO 205 cells. Our results prove that cuminaldehyde suppressed the
activities of both topoisomerase I and II and increased lysosomal vacuolation with upregulated volume
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of acidic compartment together with cytotoxicity. Lastly, cuminaldehyde induced apoptosis, resulting
in the suppression of cell proliferation, in vitro as well as in vivo.

2. Materials and Methods

2.1. Materials

We purchased RPMI-1640 and fetal bovine serum (FBS) from GIBCO BRL (Gaithersburg, MD,
USA), together with dimethyl sulfoxide and cuminaldehyde from Sigma-Aldrich, Inc. (St. Louis,
MO, USA).

2.2. Cell Culture

Human colorectal adenocarcinoma COLO 205 cells (American Type Culture Collection CCL-222,
American Type Culture Collection, Manassas, VA, USA) were purchased via BCRC (Bioresource
Collection and Research Center, Hsinchu, Taiwan) on 27 July 2010 and stored in liquid nitrogen until
usage. The cells were incubated in the medium of RPMI-1640, complemented with penicillin 10
U/mL, amphotericin B 0.25 µg/mL, streptomycin 10 µg/mL, and FBS 10% (v/v) at 37 ˝C with 5%
carbon dioxide.

2.3. Cell Viability XTT Test

We incubated the cells in the culture plate with 96 wells at the concentration of ten thousand cells
per well. After being incubated for 24 h, we treated the cells with cuminaldehyde at the concentration
of 10, 20, 40, 80, or 160 µM for 12, 24, or 48 h. We determined cell viability using the Cell Proliferation
Kit II (XTT) (Roche Applied Science, Mannheim, Germany) according to the supplier’s instructions.
The value of absorbance was evaluated by a spectrophotometer (Tecan infinite M200, Tecan, Männedorf,
Switzerland) using 492 nm wavelength with a reference of 650 nm wavelength.

2.4. Lactate Dehydrogenase Cytotoxicity Test

We incubated the cells in the culture plate with 96 wells at the concentration of ten thousand
cells per well. After being incubated for 24 h, cells were incubated with various cuminaldehyde’s
concentrations for 48 h. Lactate dehydrogenase’s activity was evaluated by LDH-Cytotoxicity Kit
(BioVision, Milpitas, CA, USA) according to the supplier’s instructions. The samples’ absorbance at
490 nm wavelength was evaluated by a spectrophotometer (Tecan infinite M200, Tecan, Männedorf,
Switzerland). Data are presented as the percent of activity’s variation relative to untreated control.

2.5. Test for Nuclear Fragmentation

Nuclear fragmentation test using acridine orange was performed to investigate the possible
mechanism of suppressive effect of cuminaldehyde on growth in human colorectal COLO 205 cells.
We cultured the cells with various cuminaldehyde concentrations for 48 h and stained the cells with
acridine orange (5 µg per mL) at 25 ˝C. The cells were then examined by the Nikon ECLIPSE Ti
fluorescence microscope [27].

2.6. Comet Test

Comet test is an electrophoretic assay and has been employed to study the injury of DNA in
eukaryotic cells individually. The assay is comparatively easy to achieve, versatile, and sensitive.
The sensitivity’ limit is approximately 50 strand breakages per diploid cell. This test was achieved
following Olive’s alkaline protocol (with 41,6-diamidino-2-phenylindole staining) [28]. The cells were
then observed using the Nikon ECLIPSE Ti fluorescence microscope with C-FL Epi-Fl Filter Cube
and analyzed with automated analytical software (Comet Assay 2.0, Perceptive Instruments, Bury St.
Edmunds, UK) following the manufacturer’s instructions.
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2.7. Test for Volume of Acidic Compartments

Increase of the volume of acidic compartment is a general phenomenon of the cells subjected to
necrotic or apoptotic death of the cell. Moreover, upregulated volume of the acidic compartment may
be an implication of cells that are about to die [29]. To investigate the activities of cuminaldehyde in
the cell, the volume of acidic compartment test for lysosomes was achieved as reported formerly [27]
with modification. Briefly, human colorectal COLO 205 cells were seeded in 6 cm dishes at the
density of 6000/cm2 (instead of 6250/cm2) 24 h before cuminaldehyde was added. After incubation
with cuminaldehyde for another 48 h (instead of 24 h), the cells were washed twice with PBS
(phosphate-buffered saline) and incubated for 4 min with 4 mL staining solution. The rest of the
experiment was performed similarly. The optical density (OD) at 540 nm of samples was determined by
a spectrophotometer (Tecan infinite M200, Tecan, Männedorf, Switzerland). All tests were performed
in triplicate.

2.8. Mitochondrial Membrane Potential Test

Mitochondrial dysfunction plays a crucial role in the initiation of apoptotic cell death.
Actually, the opening of the transition pore creates depolarization of the mitochondrial membrane
potential and releasing of apoptogenic factors [30]. To investigate the mitochondria’s role of
in cuminaldehyde-caused apoptotic cell death, we observed the variations in mitochondrial
membrane potential.

The potential of mitochondrial membrane was determined by the reagent JC-1, a
mitochondrial-specific fluorescent compound (Invitrogen, Carlsbad, CA, USA.) according to the
protocol described previously [31]. The JC-1 reagent is monomer and the mitochondrial membrane
potential is less than 120 millivolt. Under such a condition, the dye emits green fluorescence
(wavelength of 540 nm) after excitement by blue light (wavelength of 490 nm). In addition, the
dye becomes dimmer (J-aggregate) at a mitochondrial membrane potential of more than 180 millivolt
and emits red fluorescence (590 nm) after excitation by green light (540 nm). Human colorectal
COLO 205 cells were treated with various cuminaldehyde concentrations for 48 h, harvested, and
then stained with JC-1 at the concentration of 25 µM at 37 ˝C for 30 min. Finally, the samples were
examined using a spectrophotometer and a fluorescence microscope. Changes in the percentage of
red (wavelength of 590-nm)/green (wavelength of 540-nm) fluorescence represent the variations of
membrane potential [32].

2.9. Caspase Activity Test

Proteins of mitochondrial called SMACs (second mitochondria-derived activator of caspases) are
discharged into the cytosolic compartment after the increased membranes’ permeability. Then, SMAC
interacts with the inhibitor of apoptosis proteins (IAPs), thereby making IAPs inactive, which then
abolishes IAPs from inhibiting caspases [33,34] that demolish the cell subsequently.

To farther explore the details in cuminaldehyde-caused apoptotic cell death, the variations in
activities of the crucial caspases implicated in apoptotic cell death were determined. The assay is
established on the evaluation of the AFC chromophore following division from DEVD- and LEHD-AFC
through caspase-3 and -9, respectively. The released AFC emits a yellow-green fluorescence. Human
colorectal COLO 205 cells were treated with various concentrations of cuminaldehyde for 48 h and
activities of the caspases were measured by Fluorometric Assay Kit (BioVision, Milpitas, CA, USA)
according to the supplier’s instructions. The light emission was determined by a spectrophotometer
(Tecan infinite M200, Tecan, Männedorf, Switzerland). Data are presented as the percent of activity’s
variation relative to control.
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2.10. Test for Topoisomerase I and II Activities

Topoisomerase I and II extracts from the cells were prepared according to the methods of TopoGEN
(Port Orange, FL, USA). Briefly, cells from two 100 mm dishes were pelleted at 800ˆ g for 3 min at 4 ˝C,
resuspended in 3 ml of ice cold TEMP buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA, 4 mM MgCl2,
0.5 mM PMSF). The sample was then pelleted as described above, resuspended in 3 mL of TEMP
and kept on ice for 10 min. The sample was then homogenized using tight fitting homogenizer with
eight strokes. Nuclei were pelleted by centrifugation at 1500ˆ g for 10 min at 4 ˝C, resuspended in
1 mL of cold TEMP, transferred to a microfuge tube, and pelleted in Microfuge at 1500ˆ g at 4 ˝C for
2 min, sequentially. The nuclear pellet was resuspended in a small volume (no more than 4 pellet
volumes) of TEP (same as TEMP but lacking MgCl2). An equal volume of 1 M NaCl was added. The
sample was then vortexed, kept on ice for 60 min, and centrifuged at 100,000ˆ g for 1 h at 4 ˝C. Tests
for topoisomerase I as well as II activities were performed according to the methods described by
Har-Vardi et al. [35].

2.11. In Vivo Tumor Xenograft Study

The study has been approved by the Institutional Animal Care and Use Committee (IACUC) of
China Medical University that conforms to the provisions of the Declaration of Helsinki (the animal
ethical approval number: 97-108-N). Nude mice (male, 6 weeks old, BALB/c Nude) were from the
National Science Council Animal Center (Taipei City, Taiwan, Republic of China). The animals were
raised under pathogen-free conditions under China Medical University’s regulations and ethical
guidelines for the use and care of laboratory animals. Human colorectal COLO 205 cells (5 ˆ 106 cells
in 200 µL of culture medium) were subcutaneously injected into the mice’s flanks. Treatment was
started when the tumors reached about 75 mm3. Thirty-two mice were divided randomly into four
groups (eight mice/group). Cuminaldehyde-treated mice received intratumoral injection of 5, 10, or
20 mg/kg/day of cuminaldehyde in a 200 µL volume (the solutions were prepared from stock solution
of cuminaldehyde in dimethyl sulfoxide and diluted into appropriate concentrations in PBS) daily.
The mice in the control group were treated with an equal volume of vehicle. After transplantation,
body weight as well as tumor size were monitored at weekly intervals. Tumor size was measured
using calipers, and tumor volume was calculated using the hemiellipsoid model formula (1):

tumor volume “ 1/2p4π/3qˆ pl/2qˆ pw/2qˆ h (1)

where l = length, w = width, and h = height.
Specimens (tumor masses) at the end of the experiment (42 days after the treatment) were

investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling test using the
Quick Apoptotic DNA Ladder Detection Kit (Chemicon, Temecuba, CA, USA) according to the
supplier’s instructions.

2.12. Statistical Analysis

Results are presented by means plus/minus standard error. The statistical significance was
determined by ANOVA (one-way analysis of variance), followed by the Bonferroni t-test for multiple
comparisons. A p value lower than 0.05 was regarded as statistically significant.

3. Results

3.1. Cuminaldehyde’s Effects on Cell Morphological Changes

When human colorectal COLO 205 cells were incubated with 20 µM of cuminaldehyde for 48 h,
blebbing of the plasma membrane was found. In addition, cell shrinkage and cell detachment also
occurred (Figure 1C).
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Figure 1. Cuminaldehyde’s chemical structure and effects on cellular morphology, proliferation, as
well as lactate dehydrogenase releasing in human colorectal COLO 205 cells. (A) Chemical structure;
(B) and (C) Cuminaldehyde’s effect on cellular morphology; Cells were treated without (B) and
with 20 µM (C) cuminaldehyde for 48 h. Cell detachment, shrinkage, and blebbing of plasma
membrane (arrows) were found when the cells were incubated with 20 µM of cuminaldehyde;
(D) Cuminaldehyde’s effect on growth. Human colorectal COLO 205 cells were treated with
cuminaldehyde at the specified circumstances. Proliferation suppressive effect was determined using
the XTT test; (E) Cuminaldehyde’s effect on the lactate dehydrogenase releasing in the cells. The
supernatant was gathered after 48 h of incubation with the indicated cuminaldehyde concentrations.
Absorptions of light were determined by a spectrophotometer (Tecan infinite M200, Tecan, Männedorf,
Switzerland). Results are shown by means plus/minus standard error of the mean, n equal to 3.
*, Statistically significant (p less than 0.05) from the control group. CuA, cuminaldehyde.

3.2. Cuminaldehyde Inhibited Human Colorectal COLO 205 Cell Proliferation

Different methods have been used for quantifying cell growth; for instance, DNA synthesis as well
as metabolic activity. Although radioactive labelling of synthesized DNA is the most accurate assay for
DNA quantification, the disadvantages of this assay are the hazards and hassle of using radioactivity.
An alternative method quantifying growth is the metabolic activity. The assay is established on the
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cleavage of a salt (the tetrazolium, e.g., XTT and MTT) into formazan by cell’s dehydrogenases which
then modifies culture medium’s color. This assay is easier, faster, and does not require the use of
radioactive materials.

We investigated cuminaldehyde’s potential cell proliferation inhibitory activity in human
colorectal COLO 205 cells by the XTT test. As demonstrated in Figure 1D, cuminaldehyde inhibited cell
proliferation in a dose- as well as time-dependent manner. The IC50 value following 48 h of treatment
was 16.31 µM.

3.3. Cuminaldehyde Caused Cytotoxicity in Human Colorectal COLO 205 Cells

The first morphological evidence of apoptotic phenomenon is retraction of the cell, loss of
adherence, followed by convolution of cytoplasm and membrane of the plasma, together with blebbing.
Finally, the cell disintegrated into small particles called apoptotic bodies, leading to the release of the
cell’s content into the bathing medium [36]. One way of studying loss of integrity of the membrane is
determining the releasing of enzyme lactate dehydrogenase into the supernatant medium [37]. The
assay was initially employed to test cellular death developed through necrosis [38]. Then, the assay
was shown to accurately quantify apoptosis [39–41].

Cuminaldehyde was cytotoxic, as proved by the elevation of lactate dehydrogenase activity in the
bathing medium (Figure 1E).

3.4. Cuminaldehyde Caused Nuclear Fragmentation in Human Colorectal COLO 205 Cells

Apoptosis is the most frequent and preferred mechanism through which various anticancer drugs
kill cancer cells [12]. Moreover, apoptosis also has been shown to be the major machinery of the
death of cancer caused by several polyphenols [42–45]. In the nucleus, apoptosis is characterized by
endonuclease activation, resulting in cleavage of nucleic acid into fragments.

Acridine orange is a dye with nucleic acid-selective metachromatic characteristic and valuable for
quantifying apoptosis, determinations of cell cycle, proton-pump activity, and pH gradients [46]. When
acridine orange inserts into double-stranded DNA, it fluoresces green. In addition, when interacting
with RNA or single-stranded DNA, acridine orange fluoresces orange. Apoptotic cells which contain
a high fraction of the nucleic acid in the denaturated status exhibit an orange fluorescence along
with a diminished green one relative to interphase non-apoptotic cells. In addition, when acridine
orange are in an acidic environment (e.g., cellular lysosomes), the dye becomes protonated as well as
sequestered. Under such an acidic environment, when excited by the blue light, the dye fluoresces
orange [47]. The test of nuclear fragmentation is established on acridine orange’s characters and
examined microscopically.

When human colorectal COLO 205 cells were treated with cuminaldehyde at the concentration
of 20 µM for 48 h, the result of staining using acridine orange demonstrated that COLO cells
demised partially through apoptosis, along with fragmentation and nuclear condensation. In addition,
orange-stained lysosomal vacuoles were observed. On the other hand, no significant chromosomal
fragmentation was found in the control group (Figure 2A).

DNA strand breakage was also explored using the comet test after treatment with various
cuminaldehyde concentrations. As demonstrated in Figure 2C,D, treatment with cuminaldehyde led
to increased tail intensity as well as moment.

Given that nuclear condensation, fragmentation, blebbing of the plasma membrane and the
formation of apoptotic body are apoptosis’s morphologic characteristics [48], the morphological
changes observed in the study prove that treatment with cuminaldehyde did lead to apoptosis in
human colorectal COLO 205 cells (Figures 1C and 2B).
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Figure 2. Cuminaldehyde caused nuclear fragmentation in human colorectal COLO 205 cells.
(A and B) Acridine orange staining; COLO 205 cells were incubated without (A) with 20 µM
(B) cuminaldehyde, respectively, for 48 h, then stained using acridine orange. The orange vacuoles
in COLO cells demonstrate that they existed acidic; (A) Typical picture of control cells accompanying
intact nucleus with green fluorescence that implicates a good cell viability; (B) Typical picture of test
cells incubated with cuminaldehyde with lysosomal vacuolation (arrows) and nuclear fragmentation
(arrow heads) were found; (C and D) Comet test. Cuminaldehyde’s effect on intensities of tail (C) as
well as moment (D). Human colorectal COLO 205 cells were incubated with cuminaldehyde at the
indicated concentrations for 48 h. Data are shown as means plus/minus standard error of the mean,
n = 125. *, Significant difference (p < 0.05) from the control. CuA, cuminaldehyde.

3.5. Cuminaldehyde Increased Volume of Acidic Compartment in Human Colorectal COLO 205 Cells

Neutral Red has been used to stain lysosomes and quantify the volume of acidic compartment
in cells [27,49,50]. As demonstrated in Figure 3A,B, positive neutral red staining suggests that
incubation with cuminaldehyde resulted in acidic vacuoles in human colorectal COLO 205 cells.
Moreover, Figure 3C shows that the treatment increased the volume of the acidic compartment in a
quantity-dependent manner in the cells.
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Figure 3. Cuminaldehyde increased the volume of the acidic compartment in human colorectal COLO
205 cells. After treatment without and with 20 µM cuminaldehyde, respectively, for 48 h, human
colorectal COLO 205 cells were stained using neutral red. (A) Human colorectal COLO 205 cells
without treatment: There were no observable vacuoles in the cell; (B) Human colorectal COLO 205
cells treated with cuminaldehyde at the concentration of 20 µM for 48 h. The blebbing (black arrows)
and acidic red-stained vacuoles (red arrows) in cells happened; (C) Cuminaldehyde increased volume
of acidic compartment in a quantity-dependent manner. After treating the cells using the specified
concentrations of cuminaldehyde for 48 h, results were evaluated by a spectrophotometer. Results are
shown by means plus/minus standard error of the mean, n equal to 3. *, Statistically significant (p less
than 0.05) from the control group. CuA, cuminaldehyde.
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3.6. Cuminaldehyde Caused Apoptosis via the Mitochondrial Pathway in Human Colorectal COLO 205 Cells

We then investigated the mitochondria’s role of in the cuminaldehyde-caused apoptosis in
human colorectal COLO 205 cells. Initial apoptotic cell death frequently involves mitochondrial
depolarization, followed by releasing of mitochondrial apoptogenic molecules into cytosol. Therefore,
we explored mitochondrial dysfunction by determining mitochondrial membrane potential in
cuminaldehyde-treated human colorectal COLO 205 cells using the mitochondria-specific dye JC-1
with a spectrophotometer. Figure 4A shows that cuminaldehyde caused the loss of mitochondrial
membrane potential, as suggested by downregulation of mitochondrial membrane potential in a
quantity-dependent manner.
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Figure 4. Cuminaldehyde caused apoptosis via the mitochondrial pathway in human colorectal
COLO 205 cells. (A) Cells were treated with the specified cuminaldehyde concentrations for 48 h and
mitochondrial membrane potential was evaluated using JC-1 spectrophotometrically; (B) Activations of
caspase-3 as well as -9. After treating the cells using the specified concentrations of cuminaldehyde for
48 h, activities of caspases-3 and -9 were determined using a spectrophotometer. Results are expressed
by means plus/minus standard error of the mean, n equal to 3. *, Statistically significant (p less than
0.05) from the control group. CuA, cuminaldehyde.

Caspases are cysteine proteases that play critical roles in apoptosis. Figure 4B shows that the
activities of caspase-3 and -9 elevated in a quantity-dependent manner in cuminaldehyde-treated
human colorectal COLO 205 cells.

3.7. Cuminaldehyde Suppressed Topoisomerase I Activity in Human Colorectal COLO 205 Cells

The effect of cuminaldehyde on activity of topoisomerase I in human colorectal COLO 205 cells
was performed with increasing cuminaldehyde concentration (Figure 5A, lane 3–5) or camptothecin
(a known specific suppressor of type I topoisomerase and used as a positive control, lane 6) [51].
Figure 5A shows the transformation of the intertwined plasmid pUC 19 into the unrestrained form
declined in a quantity-dependent manner under the existence of cuminaldehyde or camptothecin
(please correlate lane 3–6 to lane 2). These data suggest that cuminaldehyde suppressed the DNA
loosening activity topoisomerase I the human colorectal COLO 205 cell nuclear proteins.
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Figure 5. Cuminaldehyde inhibited topoisomerase I as well as II activities in human colorectal COLO
205 cells. (A) Cuminaldehyde inhibited topoisomerase I activity. Nuclear proteins of COLO 205 cells
interacted with the indicated cuminaldehyde concentrations in a topoisomerase I’s specific reaction
mixture (lanes 3–5), or 60 µM of camptothecin (CPT, a specific topoisomerase I inhibitor and used
as positive control, lane 6), or the vehicle (1% dimethyl sulfoxide, lane 2). Lane 1, pUC19 DNA
only; (B) Cuminaldehyde inhibited topoisomerase II activity. DNA relaxation test (upper panel)
and decatenation test (lower panel). Nuclear proteins of COLO 205 cells were added to a specific
topoisomerase II reaction mixture with the specified cuminaldehyde concentrations (lanes 3–5) or
60 µM of camptothecin (a specific suppressor of topoisomerase II and used as positive control, lane 6),
or the vehicle (one percent dimethyl sulfoxide, lane 2). Lane 1, Interwined pUC19 DNA (upper panel)
or kinetoplast DNA (lower panel) only. kinetoplast DNA is an extensive chain of plasmids. When
kinetoplast DNA is examined using electrophoretic analysis, it gets the gel only a lightly (figure not
demonstrated). Consequent to topoisomerase II’s decatenation, small monomeric circles of nucleic acid
were produced (lower panel, lane 2–6). This is the representative of six experiments. CPT, camptothecin;
CuA, cuminaldehyde; kDNA, kinetoplast; S & R, Interwined and the unrestrained forms of the pUC
19 plasmid, respectively; VP-16, etoposide.

3.8. Cuminaldehyde Suppressed Activity of Topoisomerase II in Human Colorectal COLO 205 Cells

The effect of cuminaldehyde on topoisomerase II activity in human colorectal COLO 205 cells
was investigated using increasing concentration of cuminaldehyde (Figure 5B, lane 3–5) or etoposide
(a known inhibitor of topoisomerase II and used as a positive control, lane 6) [52]. Figure 5B, upper
panel, shows transformation of the interwined plasmid pUC 19 into the unrestrained form declined in
a quantity-dependent manner under the existence of cuminaldehyde or etoposide (please correlate
lane 3–6 to lane 2). The data suggest that cuminaldehyde suppressed DNA relaxation activity of
topoisomerase II in the human colorectal COLO 205 cell nuclear proteins. In addition, this effect was
further evaluated using the decatenation test. The decatenation effect involves the releasing of mini
circular DNA (monomers) from the kinetoplast, an extensive chain of plasmids. Nuclear proteins
in human colorectal COLO 205 cells enclosed type II topoisomerase that transformed kinetoplast to
monomeric DNA (Figure 5B, lower panel, please correlate lane 2 to lane 1). The transformation of
kinetoplast into monomeric DNA declined in a quantity-dependent manner under the existence of
cuminaldehyde (please correlate lane 3–5 to lane 2) or etoposide (please correlate lane 6 to lane 2). The
data suggest cuminaldehyde suppressed the topoisomerase II’s decatenation activity in the human
colorectal COLO 205 cell nuclear proteins.

3.9. Cuminaldehyde Suppressed Growth of Human Colorectal COLO 205 Xenograft in a Nude Mice Model

To investigate if cuminaldehyde suppresses proliferation of the human colorectal COLO 205
xenograft, 5 ˆ 106 human colorectal COLO 205 cells in 200 µL of culture medium were used for
subcutaneous injection. Figure 6A, left panel, shows that, in comparison with tumors of control mice
(orange arrows), obvious tumor burden reduction was found in the tumors of the mice injected with
20 mg/kg/day of cuminaldehyde (blue arrows). Tumor growth inhibition was found in all groups
with cuminaldehyde injection (5, 10, and 20 mg/kg/day of cuminaldehyde, respectively). On the other
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hand, significant growth inhibition was observed only in mice injected with 10 and 20 mg/kg/day of
cuminaldehyde, where about 48.9% and 69.4%, respectively, decreases in tumor volume were found
(Figure 6B,C). None of the cuminaldehyde injections resulted in any significant decrease in body
weight and/or diet consumption relative to the control group. The mechanism of cuminaldehyde’s
antiproliferative effect in vivo was explored. We gathered the human colorectal COLO 205 xenograft
from vehicle and cuminaldehyde-treated mice, then investigated the cause of the death by the terminal
deoxynucleotidyl transferase dUTP nick end labeling assay. Figure 6A, right panel, demonstrates
that, in comparison with tumors of control mice (white arrows), elevated terminal deoxynucleotidyl
transferase dUTP nick end labeling-positive cells that suggest apoptotic death were found in the
cancers of the cuminaldehyde-injected mice (yellow arrows).
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Figure 6. Cuminaldehyde suppressed growth and caused apoptosis in human colorectal COLO 205
xenograft. The mice with pre-established cancers (n = 8 per group) were treated using intratumoral
injection with the specified cuminaldehyde concentrations. Tumor volumes were recorded by calipers
and apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling
test. (A) Left panel, Representative of tumor-bearing mice from the control (orange arrows) and
20 mg/kg/day of cuminaldehyde-injected (blue arrows) groups; (A) Right panel, cuminaldehyde
caused apoptosis in human colorectal COLO 205 xenograft using terminal deoxynucleotidyl transferase
dUTP nick end labeling test. Representative of terminal deoxynucleotidyl transferase dUTP nick end
labeling test of tumors from the control (white arrows) and 20 mg/kg/day of cuminaldehyde-injected
(yellow arrows) groups; (B) Mean of tumor volume observed at the specified number of days after
the start of treatment; (C) Cuminaldehyde’s effects on tumor weight observed at the endpoint of the
experiment. Tumor weight per mouse was collected and analyzed. Results are shown by means
plus/minus standard error of the mean, n = 8. *, Statistically significant (p less than 0.05) from the
control group. CuA, cuminaldehyde.
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4. Discussion

In addition to providing taste and flavor to foods, certain spices have been used as remedies
in traditional medicine [53]. True cinnamon tree is used to manufacture the seasoning cinnamon
and has been used for more than 5000 years by both of the two most ancient forms of medicine
in the words: Ayurveda and traditional Chinese herbal medicines for various applications such as
adenopathy, rheumatism, dermatosis, dyspepsia, stroke, tumors, elephantiasis, trichomonas, yeast,
and virus infections [54]. Cuminaldehyde, an ingredient of the cortex of the plant, possesses various
activities, including: (i) suppressions of melanin formation (through inhibiting the oxidation of
L-3,4-dihydroxyphenylalanine catalyzed by tyrosinase) [55], lipoxygenase [56], aldose reductase,
α-glucosidase [57], alpha-synuclein fibrillation (possibly by the interaction with amine groups through
cuminaldehyde’s aldehyde group as a Schiff base reaction) [58]; and (ii) insulinotropic and β-cell
protective action (through the closure of the ATP-sensitive K channel and the increase in intracellular
Ca2+ concentration) [59].

Although cuminaldehyde exists in true cinnamon tree in a high concentration (100 PPM), it is also
found in the shoot of Artemisia salsoloides (1000 PPM), leaf of Aegle marmelos (300 PPM), and essential
oil from cumin [10]. Essential oil from cumin with the major constituents of cuminaldehyde, cymene,
and terpenoids has been reported to possess: (i) antibacterial, antifungal, and insecticidal [60] activities;
(ii) antioxidant capacity; (iii) anticancer activity [61,62] with glutathione-S-transferase activating,
β-glucuronidase and mucinase inhibiting properties [60].

In this research, we initially explored the effects of cuminaldehyde on the proliferation of human
colorectal COLO 205 cells. We observed that cuminaldehyde suppressed the growth of human
colorectal COLO 205 cells in a concentration- as well as time-dependent manner (Figure 1D). Although
cells may die through necrotic or other mechanisms, apoptosis is the preferred and most common
mechanism through which different anticancer drugs kill as well as remove cancer cells [12]. Moreover,
apoptosis was demonstrated to be the main machinery of tumor cell demise caused by several
polyphenols [42–45].

Our data demonstrate that cuminaldehyde caused apoptotic cell death, as suggested by loss of
mitochondrial membrane potential, increase of caspase-3 and -9 (Figure 4), along with morphological
features of apoptosis, including apoptotic body formation, fragmentation, and nuclear condensation
as demonstrated in different stainings as well as comet assay (Figures 1–3).

Our data also suggest that cuminaldehyde generated vacuolation associated increased volume of
the acidic compartment. Increase of volume of the acidic compartment has been demonstrated to be
an ordinary event observed in cells that are subjected to apoptotic or necrotic cell demise and could be
an indication of failing cells [29]. Because apoptotic cell death is an ordered process, an upregulated
volume of acidic compartment could cause the self-digestion in the course of cell death [29].

In addition to cell cycle control, topoisomerase has been demonstrated to be another main target
of anticancer drugs [22–25]. The chemotherapeutic agent etoposide kills tumor cells by stabilizing
the transient intermediate division complex. The resulting accumulation of division complexes may
lead to the development of permanent DNA strand divisions that fragment the chromosome leading
to the stimulation of death pathways [63]. Furthermore, apoptosis has been demonstrated to be the
most efficient death-pathway in cancer cells subsequent to the suppression of topoisomerase II [26].
Clinically, topoisomerase has been suggested as a potential predictive biomarker in CRC [20,64].
Topoisomerase I seems to be involved in the chromosomal instability pathway of sporadic CRC [21]
and high frequency of gene gain of the topoisomerase I and II genes in CRC [20,65]. CRC patients with
low topoisomerase I expression were statistically favorably associated with overall survival [19].

Our findings prove that cuminaldehyde inhibited activities of topoisomerase I and II in a
quantity-dependent manner (Figure 5), which, in part, could be a machinery causing the cells to
move toward apoptosis. Although most of inhibitors of topoisomerase are specifically targeting either
type I or II topoisomerase [66], our results clearly show that cuminaldehyde inhibited activities of
topoisomerase I along with II in human colorectal COLO 205 cells.
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Our results clearly demonstrated that cuminaldehyde possesses antiproliferative activity in
human colorectal COLO 205 cells. Furthermore, cuminaldehyde thiosemicarbazone has been shown to
possess antiproliferative with anti-topoisomerase II activity in U937 cells [67]. However, some other
tumor cell lines did not show the same negative effect of the plant extracts containing cuminaldehyde
on cell proliferation [58]. Possible explanation for these contradictory phenomena could be the extracts
also possess antioxidant [61] and/or other activities. Therefore, further research is needed to clarify
the specific latent mechanisms of the suppression, possible mutagenic effects, as well as other side
effects for clinical usage of cuminaldehyde as an anticancer and/or chemopreventive drug against
human colorectal adenocarcinoma and/or other malignancies.

Treatment-associated cytotoxicity and other side effects of antiproliferative drugs are the main
concerns of anticancer therapy. Consequently, the perfect anticancer agent would discriminatorily
destroy malignant cells but not the healthy ones. Our results show that none of the therapy with
cuminaldehyde caused any observable decline in body weight or consumption of diet relative to
the control mice. Our data present persuasive evidence of the protecting activity of cuminaldehyde
against human colorectal COLO 205 xenograft growth in the current study using nude mice model
without any detectable side effect; this implies that cuminaldehyde has an antiproliferative effect
in human colorectal COLO 205 cells and this agent may potentially serve as an anticancer and/or
chemopreventive drug.

5. Conclusions

Collectively, our data clearly suggest that the antiproliferative effect of cuminaldehyde in human
colorectal COLO 205 cells in vitro involved inhibition of cell growth markers, topoisomerase I and II,
together with upregulation of proapoptotic molecules, associated with increased lysosomal vacuolation.
In vivo, cuminaldehyde diminished the tumor burden and may have significant clinical impact.

The present study provides fundamental knowledge on the cancer inhibitory activity of
cuminaldehyde in human colorectal COLO 205 cells that implicates a model for the exploration
of possible antiproliferative drugs against human colorectal adenocarcinoma. Indeed, similar effects
were observed in other tested cell lines, including human hepatocellular carcinoma SK-Hep-1 and Hep
3B, lung squamous cell carcinoma NCI-H520 and adenocarcinoma A549, and T-lymphoblastic MOLT-3.
Our results present a rationalization for further developing cuminaldehyde as an effective and safe
anticancer and/or chemopreventive drug. A future direction would be to synthesize the derivatives of
cuminaldehyde and examine the protective effects of cuminaldehyde and their derivatives in vitro. We
would then extend the study to examine the effects of these agents in a mouse model and use these
systems for new drug design and discovery based on parental compound cuminaldehyde as a lead for
safer and potent chemopreventive and/or anticancer usage.
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