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Abstract

Tissue specific patterns of methylated cytosine residues vary with age, can be altered by environmental factors, and are
often abnormal in human disease yet the cellular consequences of DNA methylation are incompletely understood.
Although the bodies of highly expressed genes are often extensively methylated in plants, the relationship between
intragenic methylation and expression is less clear in mammalian cells. We performed genome-wide analyses of DNA
methylation and gene expression to determine how the pattern of intragenic methylation correlates with transcription and
to assess the relationship between methylation of exonic and intronic portions of the gene body. We found that dense
exonic methylation is far more common than previously recognized or expected statistically, yet first exons are relatively
spared compared to more downstream exons and introns. Dense methylation surrounding the transcription start site (TSS)
is uncoupled from methylation within more downstream regions suggesting that there are at least two classes of intragenic
methylation. Whereas methylation surrounding the TSS is tightly linked to transcriptional silencing, methylation of more
downstream regions is unassociated with the magnitude of gene expression. Notably, we found that DNA methylation
downstream of the TSS, in the region of the first exon, is much more tightly linked to transcriptional silencing than is
methylation in the upstream promoter region. These data provide direct evidence that DNA methylation is interpreted
dissimilarly in different regions of the gene body and suggest that first exon methylation blocks transcript initiation, or vice
versa. Our data also show that once initiated, downstream methylation is not a significant impediment to polymerase
extension. Thus, the consequences of most intragenic DNA methylation must extend beyond the modulation of
transcription magnitude. Sequencing data and gene expression microarray data have been submitted to the GEO online
database (accession number SRA012081.1). Supporting information including expanded methods and ten additional figures
in support of the manuscript is provided.
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Introduction

The human genome is adorned with methylated cytosine

residues that function in the epigenetic guidance of cellular

differentiation and development. Regional DNA methylation

patterns are initially established during early embryogenesis and

subsequently remodelled in differentiating cells [1,2,3,4]. DNA

methylation is essential for normal development, genomic

imprinting and X chromosome inactivation, and functions in the

silencing of transposable elements and, perhaps, in the mainte-

nance of genomic integrity [5,6,7]. Despite the breadth of these

activities, our understanding of the epigenetic machinery govern-

ing DNA methylation and its effects is incomplete.

Vertebrate DNA methyltransferases (DNMTs) act upon cyto-

sines in the context of the cytosine-phospho-guanosine dinucleo-

tide (CpG). Particular histone modifications, such as those placed

by polycomb repressive complexes (PRCs), are associated with the

site-specific recruitment of DNMTs [8,9,10]. In turn, methyl-CpG

serves as the physiologic ligand for a family of proteins containing

a highly conserved, methyl-CpG binding domain (MBD) [11].

The MBD sequence motif folds as a structural domain that

exclusively binds methylated CpGs via narrow interactions

between the methyl-CpG dinucleotide and a hydrophobic patch

within the MBD domain [12,13]. MBD-containing proteins

(MBPs) recruit various chromatin-modifying complexes to meth-

yl-CpG sites to bring about further changes in chromatin

structure: prototypically those associated with nucleosomal

compaction and transcriptional silencing.

The linkage between gene promoter methylation and heritable

transcriptional suppression is well recognized, but the function of

intragenic DNA methylation is more obscure [1,14,15,16,17].

Methyl-CpGs dominate mammalian genomes and extensive

methylation within the body of coding genes is common in both

plants and animals [4,18,19,20]. The vast majority of this

methylation occurs in regions of low CpG density (,1 CpG per

100 bp) [4,21] yet interspersed in this sea of low-density methylation
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are select regions such as CpG islands (CGIs) with higher CpG

content and more variable methylation [1]. In contrast to promoter

methylation, the relationship between gene body methylation and

transcription is less well established and may differ in mammals and

plants, at least when this intragenic methylation is considered as a

composite of all methylation occurring between the start of the first

exon and the end of the last exon [4,18,19,20,22]. These prior

composite analyses do not accommodate differential functions for

regional intragenic methylation yet the distinct roles of introns and

exons suggest that the biological significance of methylation within

these elements may differ. Furthermore, the outcome of genic

methylation may be linked to the density of CpG methylation as this

has proven to be closely associated with transcriptional silencing in

the context of promoter methylation [23,24,25,26].

To advance these prior composite studies, we investigated the

cross-correlation between DNA methylation within different regions

of the gene cassette (promoter, first exons, introns, internal exons

and last exons) and we assessed how these different classes of

regional methylation are associated with transcription. We utilized a

technology that is sensitive to the density of CpG methylation and

found that densely methylated elements (DMEs) of the genome are

disproportionately enriched for exons. We found that methylation

within introns and downstream exons is highly correlated but

uncoupled from methylation surrounding the transcription start site

(TSS) and most divergent from methylation within the first exon.

Methylation at the 59 end of a gene was associated with

transcriptional silencing whereas methylation in the more down-

stream portions of the gene body was not. Most strikingly, we found

that even modest transcription was strictly associated with low first

exon methylation. In contrast, the linkage between gene expression

and upstream promoter methylation was more variable and less

stringent. These data point to divergent functions for methylation

within different regions of the gene body and suggest that

methylation of the first exon is critical for transcriptional silencing.

Results

Genome-wide identification of densely methylated
elements

To study genome-wide methylation patterns, we developed a

method that leverages the selectivity of the MBD with the breadth

and flexibility of massively parallel sequencing using the SOLiD

sequencer (Fig. 1A). We optimized this Sequence Tag Analysis of

Methylation Patterns (STAMP) assay for robust, whole-genome

identification of methylated DNA segments. We expressed a His-

tagged fragment of MBD1 (aa 1–69) in bacteria to generate an

affinity matrix. This fragment (His-MBD) contains the critical

MBD domain contacts required for stable and selective binding to

methyl-CpG but no structural elements known to contribute to

sequence-specific DNA binding (Supporting Information S1)

[13]. The His-MBD fragment was collected on IMAC super-

paramagnetic polystyrene beads (Dynabeads Talon, Invitrogen)

and used for microscale purification of randomly sheared

(,200 bp) methylated DNA in the STAMP assay. We performed

STAMP analysis of a human leukemia-derived cell line, M091

[27] and evaluated STAMP results at loci that we knew to be

transcriptionally silenced, (CDKN2B, p15INK4b), or robustly

expressed (GAPDH). We found highly clustered sequence tags

(tags) mapping to the sense strand (red vertical bars) and antisense

strand (green vertical bars) at the silenced CDKN2B locus

(Fig. 1B) [27]. In contrast, far fewer tags with no apparent

clustering were found at the GAPDH gene locus (Fig. 1C). We

used the tag maps to infer a methylation signal (black solid line)

from the superposition of the top-strand signal (red dashed line)

and the bottom strand signal (green dashed line) (Supporting
Information S1). From these data, we identified Densely

Methylated Elements (DME) with algorithms we developed to

ensure a low false discovery rate across the genome (see

Methods). As validation, we performed qPCR on bisulfite-

treated DNA (Methylight) using the LINE1 promoter consensus

sequence as a positive control (Fig. 1D) [28,29,30,31]. We also

performed deep bisulfite sequencing of amplicons spanning the

CDKN2B locus (Supporting Information S1). These results

confirmed the methylation state of CDKN2B and GAPDH and

demonstrated the specificity of the STAMP assay.

STAMP assay is highly reproducible and sensitive to
methylated CpG density

We performed several analyses to assess the performance of the

STAMP assay. First, we compared the STAMP methylation signal

in biological replicates and found that the signal was highly

correlated despite there being very few (,2.7%) sequence tags

common to both data sets (Fig. 1E). No such correlation was

identified between sequence tags of His-MBD enriched and

unenriched DNA isolated from the same cells (Fig. 1E, right
panel). To assess the ability of the STAMP assay to discriminate

similar specimens, we performed replicate analyses using DNA

isolated from M091 cells that were either untreated or treated with

the hypomethylating agent, 5-aza-29-deoxycytidine (decitabine).

This is a stringent test because the two samples share virtually all

methylated loci, differing predominantly in the scale of the

methylation signal. We calculated a STAMP signal at 15,000

random genomic locations and for each pair of samples we plotted

the log ratio of the samples (M) versus the average log signal (A) at

each locus (Supporting Information S1). These MA plots

demonstrate the high reproducibility of biological replicates and

reveal a systematic difference in scale when the STAMP signal from

untreated cells is compared to that of cells treated with decitabine.

Next, we compared the STAMP signal at 27,578 CpGs

interrogated by direct bisulfite analysis using the Illumina

HumanMethylation27 microarray (Supporting Information
S1). We found a log-linear relationship between the STAMP

signal and fractional methylation reported by the Illumina array.

To assess the relationship between STAMP signal and CpG

density, we separated probes into 11 bins based upon the CpG

density surrounding the CpG interrogated by each probe. The log-

linear correlation between the STAMP signal and fractional

methylation was maintained at all but the lowest CpG densities

(,0.02) with the relationship being relatively constant when the

CpG density was $0.05 (slope = 3.9, r = 0.82). The STAMP signal

had a broad dynamic range owing to its reporting regional

methylation rather than fractional methylation at a single CpG.

Thus, the STAMP assay provides highly reproducible, specific

data that are dependent upon DNA methylation density and that

can be used to differentiate very similar specimens.

Distinct classes of intragenic methylation
Recent genome-wide analyses of DNA methylation have not

explored how methylation within different elements of a coding unit

relate to one another [4,18,32,33]. To investigate these relationships,

we quantified DNA methylation within each intron and exon of all

transcripts annotated in the Refseq database and in annotations we

created for all Refseq promoters (from 21000 bp to TSS), TSS (+/2

250 bp surrounding the TSS) and TTS (+/2 250 bp surrounding the

end of the last exon). We counted sequence tags within each of these

regions and then divided these counts by the genomic span of each

element to generate a pseudo-density that is independent of region

length. We ranked these pseudo-densities and classified each element

Gene Body Methylation Patterns

PLoS ONE | www.plosone.org 2 January 2011 | Volume 6 | Issue 1 | e14524



as unmethylated (lowest 10% quantile) or methylated (top 90%

quantiles) to generate contingency tables for each component of every

gene cassette. We analyzed these tables using Fisher’s exact test for

count data and calculated a conditional maximum likelihood estimate

(odds ratio) to quantify the strength of the correlations between

methylation of each component of every transcriptional unit (Fig. 2).

This analysis revealed that DNA methylation surrounding the TSS

generally diverges from methylation within more downstream

intragenic elements. The tight correlation we observed between

methylation of the promoter, TSS and first exon can be partly

explained by limited overlap of these elements. Similarly, genomic

proximity can explain the association between methylation of the

TTS and the last exon. However, the 59 and 39 gene ends have

surprisingly distinct relationships to methylation within the rest of the

gene. Gene body methylation as a whole was much more loosely

coupled to methylation at the 59 end than it was with any other

constituent part (Fig. 2A). Methylation in introns or internal exons

(i.e., those that are neither first or last exons) was closely linked to

methylation within the 39 genic elements but not with methylation

surrounding the TSS (Figs. 2E, 2F). These results suggest that 59

Figure 1. Overview of the STAMP assay and representative data. (A)The steps involved in the preparation of a methylated DNA library for
massively parallel sequencing is illustrated schematically. 1) Genomic DNA is purified from cells. 2) The DNA is then randomly sheared by sonication.
3) Fragmented DNA containing methyl-CpGs, indicated as red spheres, is purified using His-MBD beads. 4) Bound DNA is purified and ligated to
SOLiD sequencing adapters. The resulting DNA library is subsequently sequenced and mapped to the genome of interest. These sequence tags
inform subsequent analysis of DNA methylation patterns. (B) Sequence tag maps and methylation profile is shown at the CDKN2B locus for the AML
cell line M091. Upper, red vertical bars and lower, green vertical bars represent individual sequence tags mapping to the sense and antisense strands,
respectively. The dashed red and green lines represent the methylation signal for the top strand and bottom strand, respectively. The black line
represents the composite STAMP signal. A light blue box surrounds each densely methylated element (DME). CpG Islands are shown as green boxes
below the plot and the gene body is indicated schematically. The location of the PCR amplicon used for bisulfite qPCR is indicated by a blue box.
(C) STAMP analysis at the GAPDH locus, as described for panel (B), shows no methylation at this locus. STAMP analysis at the CDKN2B and GAPDH loci
was confirmed by (D) Bisulfite qPCR (Methylight) (see Supporting Information S1, Table 1). In this panel, the fraction of total DNA present (assessed
using methylation-insensitive primers) that is detected as methylated is shown. (E) STAMP analyses of biological replicate cultures of the AML cell line
is shown in the left panel scattergram. A STAMP signal (log scale) for the replicates was calculated at 15,000 randomly selected loci. The red and grey
dashed lines represent unchanged and two-fold changed signal The right panel compares one of the replicates to sequence tags obtained from
unenriched DNA from the same cell line and demonstrates that the high replicate correlation depends upon His-MBD enrichment.
doi:10.1371/journal.pone.0014524.g001
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methylation and methylation within more downstream regions either

have distinct functions or are under independent regulatory control.

Genomic distribution of densely-methylated elements is
highly non-random

To assess the genomic distribution of densely methylated

elements (DME), we measured DME overlap with each of four

UCSC genome annotation tracks: cpgIslandExt (CGI: CpG Islands);

phastConsElements17way (Conserved: 17-way most conserved ele-

ments); refGene (Promoter, Gene, TSS, Exon-59, Exon-39, Exon-In,

Intron: for refSeq genes); and rmskRM327 (Repeat Classes: Repeat

Masker). As a control, we also constructed an artificial annotation

(Random) comprised of 31,000 randomly selected, 10 Kb genomic

windows encompassing ,10% of the genome. We evaluated the

methylation patterns of normal peripheral blood T cells and

granulocytes and also used an AML-derived cell line (M091) to

evaluate how the DNA hypomethylating agent, 5-aza-29-deoxy-

cytidine (decitabine), affects these patterns.

Figure 2. Patterns of gene cassette methylation in T cells. Each gene cassette element was classified as unmethylated (lowest 10%
methylation quantile) or methylated (top 90% methylation quantile). The odds ratio (log2 transformed) indicates the likelihood of an element being
methylated if the gene body (A), promoter (B), TSS (C), first exon (D), any intron (E), any internal exon (F), last exon (G) or TTS (H) is methylated. Odds
ratios, calculated using Fisher’s exact test for count data, represent a conditional maximum likelihood estimate quantifying the strength of the
correlation between methylation of each gene cassette element. The odds ratio for the autocorrelation of each element is infinite and represented by
grey boxes. Representative data is shown for human blood T cells but the pattern is the same in granulocytes and AML cells.
doi:10.1371/journal.pone.0014524.g002
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In all cell types we evaluated, the distribution of DMEs was

highly biased for particular annotations and this bias could not be

explained by the size of the genomic annotation (Fig. 3). Dense

methylation of exonic regions was much more common than

expected from the relatively small contribution of exons (,2%) to

genome span (Fig. 3B, Genomic). CGIs and highly conserved

elements were also disproportionately methylated (Fig. 3B). The

extent to which individual annotations were covered by DMEs

(fraction annotation length) varied considerably (Fig. 3C) but the

overlap of CGIs and exonic regions was most widespread with the

exception of first exons, which were relatively spared in normal

cell types (Fig. 3C). In contrast, we found much more extensive

methylation of CGIs and 59 genic elements in an AML cell line

that has a methylator phenotype [34]. The strong bias for CGIs,

exons and the most highly conserved regions of the genome could

not be explained by chance. We calculated the log-likelihood of a

DME hitting an annotation track by comparing the observed

DME distribution to that expected from the relative sizes of the

annotations (Fig. 3B, Genomic). Again we found that CGIs,

exons and conserved elements were hit far more frequently than

expected stochastically (Fig. 3D). Microsatellites and RNA repeats

(particularly rRNA, included in the ‘‘other’’ repeat class) had the

most disproportionate tag enrichment of the repetitive elements.

In contrast, several annotations that occupy relatively large

portions (introns, LINEs, SINEs) of the genome were underrep-

resented likely owing to the non-uniformity of methylation in these

regions (e.g., LINEs are predominantly methylated within vestigial

promoters). Although many repetitive element regions are

distinctive enough to permit unique mapping of 35 or 50 bp

sequence reads, underrepresentation of repetitive elements in the

‘‘mappable’’ genome may also contribute to the lower than

expected overlap between DMEs and several repeat classes. We

found that decitabine treatment did not lead to changes in the

genomic distribution of DMEs, although the overlap of each

annotation by DMEs was reduced (Fig. 3C). Taken together these

results demonstrate that most DMEs are intragenic and are

preferentially concentrated within exons, CGIs and conserved

regions of the genome.

DMEs are not classic CpG islands
Individual CpG dinucleotides reside within a local sequence

context with distinct CpG density and GC fraction (Fig. 4A).

CGIs are defined as clusters of CpG dinucleotides above particular

thresholds of length, CpG frequency (corrected for GC content)

and GC content (Fig. 4B) [16]. We found that the vast majority of

the DMEs are not classical CGIs (Fig. 4C). Rather, DMEs are

GC-rich regions (median 57% GC) with a greater than expected

incidence CpG dinucleotides (median CpG observed/expected:

0.49) and a median length of ,600 bp (Fig. 4D). The longest

DMEs, which are predominantly microsatellite clusters, extend up

to 24,000 bp but 75% of them are less than 960 bp. These results

suggest that the definition of CGI excludes the majority of the

densely methylated human genome.

Patterned DNA methylation at the 59 and 39 ends of
genes

STAMP analysis revealed patterned DNA methylation at all

scales across the genome: from individual genes (Figs. 5, 6) to

whole chromosomes (Supporting Information S1). Much of

what we understand about DNA methylation relates to transcrip-

tional silencing associated with dense methylation of gene

promoters but little is know about the role of methylation within

intragenic regions such as exons. Because we found that 59 and 39

methylation represented two distinct classes (Fig. 2), we looked at

the STAMP signal surrounding the transcription start site (TSS)

and transcription termination site (TTS) of all 24,376 genes

annotated in the UCSC refGene track. We identified a distinct

central tendency in the STAMP methylation signal surrounding

the TSS similar to that reported by Rauch et al and reminiscent of

the overall pattern of CpG occurrence near TSSs [15,33]. Genes

with dense 59 methylation dominate this profile and a more diffuse

pattern emerges when these genes are excluded (Supporting
Information S1). STAMP analysis exposed a previously

unrecognized offset in the methylation peak which is ,180 bp

downstream from the TSS (Fig. 5A); quite close to the median

length of first exons (209 bp). We initially suspected that this

resulted from systematic inaccuracy in the refGene 59 annotation

due to the reverse transcriptase dissociating during cDNA

production. However, the offset did not correct when we analyzed

STAMP methylation surrounding 26,268 high-confidence TSSs

annotated by SwitchGear Genomics (www.switchdb.com) (Sup-
porting Information S1). Thus, dense methylation surrounding

the TSS is maximal in the region of the first exon.

To assess the methylation patterns of individual genes, we

ranked each transcript by the similarity of its STAMP methylation

profile to the composite TSS profile and identified a bivariate

distribution in these correlations (Supporting Information S1).

Genes with the highest correlation were predominantly those with

the highest TSS methylation (Fig. 5F). To generate heatmaps, we

selected genes with a correlation above (Fig. 5C) or below

(Fig. 5E) a correlation breakpoint of 0.6. These heatmaps

revealed distinct classes of methylation surrounding the TSS with

local methylation being either concentrated just downstream of the

TSS or unassociated with it.

We performed a similar analysis of the STAMP signal

surrounding the refGene TTS (approximated as the 39 end of

the last exon) and found a pattern distinct from that at the TSS

(Fig. 5B). In general, the STAMP signal gradually increases to a

peak ,940 bp upstream of the TTS and then drops to a minimum

,220 bp downstream of the TTS (Supporting Information
S1). To generate heatmaps, we ranked refGenes by their similarity

to this composite profile near the TTS (Fig. 5D and Supporting
Information S1). Unlike the distribution of TSS correlations, the

distribution at the TTS was unimodal (Supporting Informa-
tion S1). We again identified no correlation in the methylation at

the 59 and 39 end of genes further suggesting that methylation

within these regions is governed by distinct mechanisms (Fig. 2
and Supporting Information S1). The composite DNA

methylation patterns persisted when we treated the leukemia-

derived cell line, M091, with decitabine (Figs. 5A and 5B)

suggesting that decitabine reduced DNA methylation without

preference for particular genomic positions and consistent with a

dilutional model of hypomethylation.

First exons have a distinct relationship to gene
expression

Because the peak of DNA methylation was offset into the region

containing the first exon, we next compared the pattern of

methylation surrounding the TSS with the level of gene

expression. We found that genes with the lowest expression

quantile contain those with the highest level of 59methylation.

Genes with just 15% higher expression have vastly reduced 59

methylation that is no longer offset from the TSS. This effect

became even more pronounced for genes with higher transcripts

levels (Fig. 6A). This analysis also demonstrates that, as a whole,

genes with the lowest transcription have methylation that is shifted

into the first exon region. Because 59 methylation is skewed

downstream from the TSS, we compared the level of first exon

Gene Body Methylation Patterns
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methylation to that within the promoter region for genes within

each expression quantile. To do this, we compared the STAMP

signal in equally sized regions either 250 bp upstream or

downstream of the TSS for each refSeq transcript. We found that

at least 45% more downstream (first exon) methylation compared

to upstream (promoter) methylation in the lowest expressed genes

(Fig. 6B, red bar). Genes with even modest expression showed no

downstream methylation bias, again suggesting that methylation

downstream of the TSS is tightly linked to transcriptional silencing

(Fig. 6B). This result did not depend upon the size of the windows

used surrounding the TSS (+/2 500 bp or +/21000 bp), upon

the cell type used (M091 cells or normal T cells) for analysis or

whether we counted sequence tags in these windows instead of

analyzing the STAMP signal. These results always demonstrated

that methylation downstream of the TSS was always more closely

linked to transcriptional silencing than methylation upstream of

the TSS.

We then compared DNA methylation within individual

elements of each gene cassette (i.e., promoter, first exon, introns,

internal exons, and last exon) for genes within each of 10

expression quantiles (Fig. 6C). These results pointed to a stringent

requirement for hypomethylation of the first exon if the transcript

is expressed. This requirement is more relaxed for the remainder

of the gene cassette, including the promoter. We classified genes as

either expressed (top 90% expression quantiles) or silenced (lowest

10% quantile) and as either methylated (top 90% methylation

quantiles) or unmethylated (lowest 10% methylation quantile) to

generate contingency tables for each component of the gene

cassette. To quantify the strength of the correlations between

expression and gene component methylation, we analyzed these

tables using Fisher’s exact test, as described previously (Fig. 6E).
Methylation of the first exon was the most strongly correlated with

transcriptional silencing (log odds ratio, LOD, 22.8). Although

there was also a clear negative correlation between expression and

promoter methylation (LOD 21.5), this was not as pronounced as

that seen for the first exon and within each expression quantile, we

identified a number of genes with significant promoter methylation

(Fig. 6C). DNA methylation in the other regions of the gene

body, including downstream exons, was only weakly linked to

transcription level. So although first exon methylation is

uncoupled from other gene body methylation, it is tightly linked

to transcriptional silencing.

Figure 3. Genomic distribution of Densely-Methylated Elements (DMEs). (A) The fraction of the genomic DME span overlapping the
indicated UCSC genome browser annotation tracks is shown for normal human T cells (blue bars), granulocytes (green bars) and an AML-derived cell
line (M091) that was treated with decitabine (orange bars) or left untreated (pink bars). Gene, Promoter, TSS, TTS, Exon, Intron, Exon-59, Exon-39, and
Exon-In represent the entire gene body, the region 21000 bp upstream of the TSS, the 500 bp surrounding the TSS or TTS, all exons, all introns, and
the first, last or middle exons, respectively. Also annotated are CGIs, the most conserved genomic elements (Consd), various repeat classes and a
group of random genomic loci comprising 10% of the genome (Random). The sum of the DME fractions is greater than one because DMEs may hit
more than one annotation due to overlap of some genomic annotations. (B) The proportion of the genome allocated to each annotation (left panel)
is compared to the proportional size of DMEs within each annotation for T cells (right panel) and for the AML-derived cell line (lower panel). For
clarity, gene bodies are excluded. (C) The fraction of the annotation span overlapping DME is shown for normal human T cells (blue bars),
granulocytes (green bars) and an AML-derived cell line that was treated with decitabine (orange bars) or left untreated (pink bars), as described for
(A). (D) The log-odds ratio for the extent of DME overlap compared to that expected from the relative genomic span of the annotation is shown as
described for (A).
doi:10.1371/journal.pone.0014524.g003
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Prominent first exon hypomethylation in transcripts
upregulated by decitabine

Decitabine has proven useful in the treatment of several myeloid

malignancies including AML. When we treated the AML cell line

(M091) with decitabine, we identified ,700 transcripts with

modulated expression (Supporting Information S1). The vast

majority of these were upregulated transcripts of genes involved in

cell death, stress responses and differentiation. The smaller number

of downregulated transcripts were predominantly genes involved in

RNA processing and nucleic acid synthesis. Because transcriptional

repression is closely linked to first exon methylation, we investigated

how decitabine altered methylation at the 59 end of genes that are

induced or repressed by decitabine (Fig. 7). Looking at DNA

methylation prior to and after treatment, we found that hypo-

methylation is strongly biased towards the first exonic region in

genes that are induced following decitabine treatment (Fig. 7A).

This bias is far more pronounced than that seen at the 59 end of

genes with negligible changes in expression level. In contrast, genes

downregulated by decitabine had little 59 methylation and the

methylation present was skewed away from the first exon (Fig. 7B).

These downregulated genes likely represent secondary targets that

are repressed as a consequence of decitabine treatment rather than

from a change in their DNA methylation.

Discussion

Although transcriptional repression is associated with promoter

methylation, we found that it is more assured with methylation of

the first exon. Our studies represent the first detailed analyses of

regional gene body methylation and its relationship to transcript

expression. We found that most dense genomic methylation occurs

outside of classical CGIs. These DMEs are preferentially located

within gene bodies with a bias for exonic regions. Although gene

body methylation is common, we found that the relationship

between DNA methylation and expression is complex and closely

linked to the intragenic location of the methylated elements.

Strikingly, we found DNA methylation downstream of the TSS is

the most critical for transcriptional silencing.

Exciting new technologies have both expanded our understand-

ing of genomic methylation and opened new controversies

[1,3,18,22,35,36,37,38,39,40,41,42]. It is now evident that most of

the methylated human genome lies outside the context of CGIs.

Much of this methylation is constitutive and occurs in regions of low

Figure 4. Sequence characteristics of Densely-Methylated
Elements (DMEs). (A) Density plot of GC fraction (fG+fC) vs CpGoe,
the observed/expected CG fraction, fCG/(fC*fG) for a 200 bp window
surrounding each CpG dinucleotide in the genome. (B) The GC fraction
vs. CpGoe is plotted for each annotated CGI in the genome. CGIs are
partially defined by GC.0.5 and CpGoe.0.6. (C) The sequence
characteristics of DMEs are plotted. DMEs are enriched for regions
with moderate CpGoe. (D) The distribution of DME lengths is shown
along with dashed red lines representing the 5th (260 bp) and 95th

(2140 bp) percentiles. The median length is 590 bp.
doi:10.1371/journal.pone.0014524.g004

Figure 5. STAMP signal at the TSS and TTS for refSeq genes
(refGene). Composite density plots reveal the pattern of STAMP
methylation surrounding all TSS (A) or TTS (B) in M091 cells. STAMP
signal was calculated for each TSS or TTS flanked by ,15 kb. Data are
shown for both untreated cells (green line) and decitabine-treated cells
(red line). (C) A heatmap representing the STAMP signal surrounding
the TSS is shown for genes with a profile highly correlated to the
composite density (A). Rows ordered by the location of mode and blue
level is proportional to STAMP methylation signal. Each row represents
an individual gene and columns represent distance from TSS as
indicated. (D) A STAMP signal heatmap was generated for TTS as
described in panel (C). Genes with a profile most similar to the
composite density (B) are shown with rows ordered by STAMP signal.
(E) Heatmap genes with poor correlation to the composite TSS density,
as described for panel (B). (F) The correlation of each refGene to the
composite TSS profile is plotted against the STAMP signal density
(signal per bp) in the 1 kb surrounding the TSS. This plot demonstrates
that refGenes with high signal near the TSS have a methylation pattern
that is highly correlated to the composite profile shown in (A).
doi:10.1371/journal.pone.0014524.g005
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CpG density [32,37,43]. In contrast, tissue specific methylation

generally occurs in regions with higher CpG content, although not

necessarily in CGIs. We found that the vast majority of DMEs do

not overlap classical CGIs (Fig. 2A) but those that do, generally do

so completely with the DME extending beyond the flanks of the

CGI into regions conceived as CGI ‘‘shores’’ [44]. The definition of

CGI is based upon sequence characteristics and relatively arbitrary

cutoffs. Efforts to objectify the definition of CGI have been reported

but have not been widely adopted [14,45]. We identified DMEs

using a functional assay and found that the sequence characteristics

of DMEs are distinct from CGIs and from the bulk of genomic CpG

dinucleotides. Interestingly, although tissue specific patterns of

DMEs are clearly evident, their sequence characteristics do not vary

much suggesting that DMEs are drawn from a larger cohort of

potentially methylated elements (Scandura, unpublished). This is

important because it is a subset of these potentially methylated

regions that undergo tissue specific methylation. Our results will be

useful for the functional validation of new CGI definitions.

Transcribed genes have extensive DNA methylation throughout

their bodies yet the relationship between this methylation and

transcription is controversial [4,18,33]. Two factors appear to be

responsible for the discrepancies: the use of diverse technologies

with different sensitivities to DNA methylation density; and

analytical approaches that couple composite methylation measures

to gene expression. Owing to the sensitivity of STAMP to

methylation density (Supporting Information S1), our analysis

adds to these prior reports by isolating the contribution of dense

regional methylation from the low-density constitutive methylation

Figure 6. Correlation of transcript expression with the pattern
of intragenic methylation in M091 cells. (A) The composite density
plot of methylation surrounding the TSS is shown for all transcripts
(solid black line) and for transcripts that are in various expression
quantiles (dashed colored lines). Methylation for transcripts in the
lowest 10% expression quantile (red) is significantly higher than for
genes that are within the next 15% expression (orange). Transcripts
with higher expression have even less methylation. (B) The ratio of first
exon to promoter methylation is shown for transcripts in the lowest
10% (red), 10–25% (orange), 25–50% (green), 50–75% (cyan), 75–90%
(blue) and 90–100% (magenta) expression quantiles. (C) Intragenic
STAMP methylation is shown for transcripts in each of 10 expression
quantiles (lowest 10% to 100%). Box plots of methylation within the
promoter (white), first exon (green), any intron (grey), internal exons
(cyan) and the last exon (blue) are shown as indicated. (D) Schematic of
the promoter and intragenic elements is shown with the color code
utilized in (C) and (E). (E) The odds ratio (log2 transformed), calculated

Figure 7. Decitabine induced hypomethylation of the first
exonic region is associated with transcriptional activation. (A)
Profiles of the composite methylation density surrounding the TSS of
transcripts upregulated by decitabine are shown before (red) and after
(green) decitabine treatment of M091 cells. For comparison, the
composite methylation profile of all genes is shown as in Fig. 5A
(grey). Also show is the change in methylation seen for transcripts that
are upregulated (blue dashed line) or unchanged (orange dashed line)
following decitabine treatment. (B) Profiles of the composite methyl-
ation density surrounding the TSS of transcripts downregulated by
decitabine are shown before (red) and after (green) decitabine
treatment. For comparison, the composite methylation profile of
all genes is shown as in Fig. 5A (grey). Also show is the change
in methylation seen for transcripts that are downregulated (blue
dashed line) or unchanged (orange dashed line) following decitabine
treatment.
doi:10.1371/journal.pone.0014524.g007

using Fisher’s exact test for count data, shows the likelihood of a
transcript being expressed (greater than the lowest 10% expression
quantile) if it is methylated (top 90% methylation quantiles) within the
indicated component of the gene cassette.
doi:10.1371/journal.pone.0014524.g006
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that predominates in gene bodies. We found that composite gene

body methylation (i.e., all methylation between the TSS and TTS)

affected transcription only modestly (Fig. 6) whereas methylation

of low-density regions is reported to track with expression [18].

These results suggest that the cellular interpretation of regional

methylation depends upon whether it is dense or sparse

[23,24,25,26]. Yet, composite measures of gene body methylation

do not account for the biological non-equivalence of intronic and

exonic DNA. So while constitutive, low-density methylation may

guard against the initiation of spurious transcripts that can cause

polymerase collisions, the function of dense intragenic methylation

may depend upon where the methylation occurs.

We found that ,20% of all internal exons have dense

methylation across their entire span. This contrasts with

methylation within intronic regions that generally encompasses a

small portion of the intron length (Figs. 2E–F & 3). Although

downstream exonic methylation has been reported previously, our

results demonstrate that it is a widespread phenomenon, albeit one

with no assigned function. Jones originally noted the ‘‘paradox’’

that methylation of downstream CGIs does not block transcription

initiated upstream and proposed that transcription through a CGI

facilitates de novo methylation [46]. Our results argue that this

relationship must be more complex. We found that dense

downstream methylation had a weak negative association with

the amplitude of transcription arguing against a transcriptional

trigger for this methylation (Fig. 6E). Furthermore, we found that

the methylation of internal exons was highly selective with

methylated exons generally surrounded by exons with no

methylation. The exon chosen for methylation was not predicted

by its CpG dinucleotide content suggesting that the preference for

a particular exon is biological. Our results invite the discovery of a

function for downstream exonic methylation and strongly suggest

that those looking to solve this enigma seek a mechanism that is

uncoupled from regulation of transcriptional magnitude.

The association of promoter methylation with transcriptional

silencing is well recognized and certainly our data demonstrate the

same. Yet, we found that methylation downstream of the TSS, in

the region of the first exon, is much more tightly correlated with

transcriptional silencing than is methylation upstream of the TSS,

in the promoter region. Prior elegant studies by Okitsu and Hsieh

also showed that methylation in the region of transcript initiation/

elongation is most important for transcriptional suppression, at

least in the context of ‘‘patch’’ methylated stable episomes [47].

Our results demonstrate that this observation can be generalized.

By blocking transcription initiation or causing proximal polymer-

ase pausing [48], DNA methylation of the leading exon can block

effective transcription whereas methylation of downstream exons

can still permit the passage of transcripts initiated upstream. Such

a model allows first exon methylation to govern the selection of

alternative starts.

Strikingly, we found that methylation was even excluded from

the first exon of genes with very low-level expression. Because most

genomic CpG dinucleotides are methylated, these results tacitly

require a biological means with which to prevent first exonic

methylation. One possibility is that epigenetic configurations that

support transcription inhibit those promoting DNA methylation.

Indeed, tri-methylation of histone H3 lysine 4 (H3K4me3), a mark

localized to the proximal regions of genes poised for transcription

[49,50], is inversely correlated with DNA methylation [32].

Similarly, RNA polymerase II localized near the TSS in normal

mammary or prostate epithelial cells predicts genes that are

unlikely to be methylated in prostate or breast cancers [51]. Our

data suggest that transcript initiation may play a pivotal role in

protecting the first exon from encroaching methylation.

Aberrant DNA methylation is a common means by which

tumor suppressor genes (TSGs) are inactivated during carcino-

genesis [52,53,54]. Unlike genetic mechanisms of gene inactiva-

tion, such as gene deletion and mutation, the epigenetic silencing

of TSGs by DNA methylation is potentially reversible. This has led

to the broad interest of cancer biologists in the study of DNA

methylation. We analyzed expression and methylation patterns in

AML cells before and after treatment with decitabine. Despite its

broad hypomethylating activity, decitabine regulated a modest

number of genes suggesting that hypomethylation of specific loci in

particular cellular contexts is required to affect transcription. The

majority of the genes were upregulated and, as a whole, these

showed disproportionate hypomethylation of the 59 end with a

preference for hypomethylation of the first exon. This was not seen

for downregulated transcripts and was greatly attenuated for genes

with insignificant changes in expression. These results further

support the notion that first exonic methylation is linked to

transcriptional silencing and argues against a general linkage

between composite gene body methylation and transcription.

The 4N nature of the bisulfite genome makes large-scale

bisulfite sequencing projects both resource and computation

intensive [4,21,55]. Recent reports demonstrate that even after

several billion fragments are sequenced, almost a quarter of the

human bisulfite genome is represented by just a few sequence

traces, and more than a third of all CpG dinucleotides are

unanalyzed [4]. STAMP analyzes a reduced complexity genome

to robustly identify methylated DNA segments with just a few

million mapped reads per specimen. However, this efficiency

comes with a restricted ability to discern methylation in regions

with sparse CpGs (Supporting Information S1), as reported

for similar technologies [38,39,56]. STAMP does not require high

molecular weight DNA, and does not suffer from sequence bias

introduced by direct linkage to particular restriction sites or from

fragment length-dependent amplification effects. The non-restric-

tive DNA requirements and cost effectiveness of the STAMP

method make it an approachable alternative to genome-wide

bisulfite sequencing. This technique permits even small labs to

routinely perform genome-wide analyses of DNA methylation to

identify biologically and medically relevant patterns.

A recent explosion of data has exposed both the breadth of

genomic DNA methylation and our limited understanding of its

significance. We found that dense exonic methylation occurs far

more frequently than previously recognized. But the manner with

which exonic methylation relates to transcription is linked to the

relative position of the methylated exon. Only first exonic

methylation is tightly associated with transcriptional silencing.

Our data make it clear that the transcriptional apparatus perceives

methylation of more downstream exons distinctly. It is tantalizing

to suggest that such methylation may help guide the alternative

splicing that is seen in almost half of all protein coding genes [57].

Although the functional assignation of all genomic methylation

awaits further exploration, our data suggest that we must now

begin thinking about functions of DNA methylation that extend

beyond simple associations with overall transcript level.

Note in added proof: Following our submission two additional

surveys of genome-wide DNA methylation have been published

demonstrating widespread intragenic methylation and a prefer-

ence for coding regions such as exons [58,59].

Methods

His-MBD production
A fragment of MBD1 coding for amino acids 1 to 69 was

amplified by PCR from human cDNA synthesized from M091
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total RNA. The PCR fragment was cloned into pENTR/D-

TOPO plasmid and propagated in TOP10 bacteria (Invitrogen).

The insert was fully sequenced and then recombined into the

pDEST-17 bacterial expression vector using the Gateway system

(Invitrogen). Recombinant His-MBD protein was purified from

inclusion bodies of 500 ml BL21-AI cells 24 hours after induction

with 0.2% L-arabinose. Inclusion bodies were sonicated briefly

and washed in 1 M Urea, 20 mM Tris-Cl pH 8, 10 mM b-

mercaptoethanol, 2% Triton X-100 prior to solubilization in

Denaturation Buffer (8 M Urea, 20 mM Tris pH 8, 5 mM b-

mercaptoethanol). Partially purified, denatured recombinant His-

MBD was purified to homogeneity (by SDS-PAGE) on Ni-NTA-

agarose beads (Qiagen). Protein was refolded by rapid dilution into

MBD Refolding Buffer (20 mM HEPES pH 7.4, 150 mM NaCl,

0.1% Tween-20, 10 mM b-mercaptoethanol) to achieve a final

dilution of 24-fold and a final protein concentration of #50 mg/

ml. Refolded protein consistently demonstrated high selectivity for

methyl-CpGs with no detectable binding to unmethylated CpGs

(Supporting Information S1).

DNA purification and fragmentation
The human acute myelogenous leukemia-derived cell line,

M091, was propagated in RPMI 1640 as described [27]. Prior to

harvest, cells were plated in replicate cultures at a density of

105/mL and grown either in the absence (untreated) or presence

of 5-aza-29-deoxycytidine (decitabine) for three days. Decitabine

(Sigma) was added to a final concentration of 1 mM every

24 hours. Viability of MO91 cells was not altered by a three day

treatment with decitabine although longer exposure (5, 7 and 10

days) caused progressive cell death. Primary human T cells and

granulocytes were purified from the blood of healthy donors

following written informed consent. All donor consent forms and

specimen utilization procedures were approved by the Weill-

Cornell Medical College Institutional Review Board. We prepared

genomic DNA from the cells by overnight Proteinase K treatment,

RNAse-digestion, phenol-chloroform extraction and ethanol

precipitation. Purified genomic DNA was fragmented by sonica-

tion (Misonix 3000) to a modal size of ,200 bp. In subsequent

work, we have fragmented DNA using acoustically focused sonic

disruption to achieve a modal fragment length of ,110 bp and a

tight distribution of fragment lengths. The use of shorter DNA

fragments is advantageous for specimen processing but does not

affect the distribution of MBD-enriched sequence tags.

STAMP assay library preparation
Refolded His-MBD protein (10 mG) was collected on 150 ml

prewashed Dynal Talon beads (Invitrogen) in MBD Refolding

Buffer by rotation at 4uC for 30 min. Beads were washed 3 times

with 500 ml MBD Refolding Buffer and then another three times

with 500 ml MBD-Talon Buffer (10 mM Tris pH 7, 140 mM

NaCl, 0.05% Triton X-100, 0.5% BSA) before being resuspended

in 100 ml of MBD-Talon Buffer. For enrichment of methylated

DNA, 1 mg randomly fragmented DNA in TE (10 mM Tris pH 8,

1 mM EDTA) was adjusted to a volume of 200 ml TE before

addition of 100 ml 3X MBD-Talon Buffer. To this, 20 ml washed

MBD-Talon beads (2 mG His-MBD) were added and the mixture

was rotated overnight at 4uC. Beads were subsequently washed 3

times with MBD-Talon Buffer and then resuspended in 100 ml

Elution Buffer (1% SDS, 10 mM EDTA. 50 mM Tris pH 8)

containing 50 mg Proteinase K (Sigma). After incubation at 55uC
for 1 h, DNA was purified by phenol-chloroform extraction and

ethanol precipitation. MBD enriched fragment libraries were

prepared using a modification to the SOLiD genomic DNA

sample preparation protocol. Briefly, DNA ends were polished

using the End-It kit (Epicentre) and then purified using MinElute

reaction cleanup column (Qiagen). The DNA was then ligated to

the SOLiD A/B linkers and purified per the standard protocol.

The DNA was then pre-amplified for 8 cycles.

SOLID sequencing and computational methods
Emulsion PCR and sequencing was performed using the

standard SOLiD 2 system for 35 bp reads. Raw color-space data

was mapped to the human genome (hg18) using corona-light

(ABI). The sequence tag start and strand was imported into a

custom R-language data structure for analysis. To correct for

minor differences in the sequencing depth between specimens, the

total number of tags was normalized to 106 for each specimen by

dividing each tag weight by the total number of tags and

multiplying this by 106. To calculate the STAMP signal, each tag

was extended to a distribution of lengths modelling the DNA

fragmentation pattern (Supporting Information S1). It is

necessary to track Watson and Crick DNA mapped strands to

determine the direction in which the mapped end should be

extended during STAMP analysis. These tag densities were then

summed to generate a methylation signal (Fig. 2). We used this

approach to calculate a STAMP signal surrounding all TSS, TTS,

at CpGs interrogated by the Illumina HumanMethylation27

microarray and for 15,000 randomly selected genomic loci. The

composite methylation profiles at the TSS and TTS are

determined by the superposition of all enriched fragments

mapping near the TSS. Individual fragments contribute little to

this compound signal and the profiles are insensitive to the

fragmentation profile of the DNA.

To assess noise, we calculated a composite STAMP signal from

the sequence tags within random 15 kb windows for all samples.

We defined the mean STAMP signal density within these windows

as the noise floor (NF). Using this approach, we found that NF was

uniformly 0.114. The NF estimate was independent of the sample

and is approximately equal to one sequence tag per kb when the

total number of sequence tags per data set is scaled to 106.

To identify DMEs, we first chose all regions with STAMP signal

greater than a threshold value. Then the flanks of those regions

were extended until the signal declined to 46 NF. To minimize

false discovery of DMEs, the detection threshold value was chosen

to ensure that the number of DMEs identified in unenriched DNA

was less than 5% of that identified in an His-MBD enriched

sample from the same source (Supporting Information S1).

Comparison of DNA methylation across genomic regions with

varying CG density was performed by classifying each region as

either methylated or unmethylated (lowest 10% of sequence tags

for regions with similar sequence content) prior to the generation

of contingency tables. Fisher’s exact test for count data was used to

assess the likelihood of any genic element being methylated if any

other element is methylated. This approach largely uncouples the

analysis from CG density because the element class assignment is

insensitive to the magnitude of the STAMP signal. We also

calculated the CpG density (CGf), GC fraction (GCf) and CGoe

ratio (CGoe = CGf/(Gf * Cf) in sliding windows of 200 bp tiled

every 10 bp across the entire human genome. We then identified

the fraction of each genic element that could be classified as HCP,

ICP or LCP as defined by Weber et al [37], and the fraction of the

element detectable (CGf.0.1) by STAMP. Analyses performed

using subsets of the genome restricted by these various sequence

classes had minimal effect on the results and did not alter the

interpretation. Data presented in Figs. 2 and 5 was analysed for

the STAMP detectable portion of each genic element.

To generate density plots of CGoe vs GC fraction (Fig. 4), we

first analyzed the sequence characteristics of a 200 bp window
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surrounding each of the ,28 million CGs in the human genome.

We then performed similar analyses for each CG within an

annotated CGI and within each of the DMEs we identified. This

analysis was performed using custom written tools written in R,

utilizing Bioconductor packages BSgenome and IRanges [60].

Bisulfite DNA analysis
A portion of the genomic DNA extracted from the same cells as

analyzed by STAMP was bisulfite converted (Zymo Research

Corp.) prior to fragmentation. Bisulfite-treated DNA was analysed

at selected genomic loci by quantitative PCR, Methylight [28], by

deep sequencing using 454 Titanium Sequencer and by using the

Illumina HumanMethylation27 microarray. Illumina arrays were

processed as per manufacturer’s instructions and data was

extracted using BeadStudio software. Deep bisulfite amplicon

sequencing was performed using standard 454 emulsion PCR

processing. Sequenced amplicons (Supporting Information
S1) were mapped to both the Watson and Crick bisulfite genome.

Fractional CpG methylation was calculated at each CG

dinucleotide mapped to the amplicon locus as fmCpG = NCi/

(NTi+NCi), where NTi and NCi are the number of reads with a C or

T in position i.

Gene Expression Analysis
Total RNA was extracted from cells with Trizol using standard

procedures and RNA quality was assessed using a BioAnalyzer

(Agilent). RNA was labelled and hybridized to Illumina Human

Ref8 microarrays as per manufacturer’s instructions and data was

extracted using BeadStudio software. All subsequent analysis was

performed in the R programming environment utilizing Biocon-

ductor packages and custom procedures. Preprocessing of raw

data was performed using the lumi package. Differentially

expressed transcripts were identified after empirical Bayesian

modelling and analysis using the limma package. Gene ontologies

overrepresented within the differentially expressed transcripts were

identified after calculating hypergeometric p-values conditionally

using the structure of the gene ontology database within the

GOstats package.

Supporting Information

Supporting Information S1 Supporting tables, figures and

methods.

Found at: doi:10.1371/journal.pone.0014524.s001 (19.46 MB

PDF)
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