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ABSTRACT

Current animal-free methods to assess teratogenicity of drugs under development still deliver high numbers of false
negatives. To improve the sensitivity of human teratogenicity prediction, we characterized the TeraTox test, a newly
developed multilineage differentiation assay using 3D human-induced pluripotent stem cells. TeraTox produces primary
output concentration-dependent cytotoxicity and altered gene expression induced by each test compound. These data are
fed into an interpretable machine-learning model to perform prediction, which relates to the concentration-dependent
human teratogenicity potential of drug candidates. We applied TeraTox to profile 33 approved pharmaceuticals and 12
proprietary drug candidates with known in vivo data. Comparing TeraTox predictions with known human or animal toxicity,
we report an accuracy of 69% (specificity: 53%, sensitivity: 79%). TeraTox performed better than 2 quantitative structure-
activity relationship models and had a higher sensitivity than the murine embryonic stem cell test (accuracy: 58%,
specificity: 76%, and sensitivity: 46%) run in the same laboratory. The overall prediction accuracy could be further improved
by combining TeraTox and mouse embryonic stem cell test results. Furthermore, patterns of altered gene expression
revealed by TeraTox may help grouping toxicologically similar compounds and possibly deducing common modes of action.
The TeraTox assay and the dataset described here therefore represent a new tool and a valuable resource for drug
teratogenicity assessment.
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To assess the teratogenic potential of drug candidates, phar-
maceutical companies are currently obliged to perform
embryo-fetal-development (EFD) studies in at least 1 rodent
and 1 nonrodent species (Beck et al., 1995; ICH, 2020). There is
an urgent need to develop alternative, animal-free assays for

early assessment of teratogenicity. The use of humanized
in vitro assays could potentially better mimic human physiol-
ogy, reduce animal use, and lower the cost of drug develop-
ment by filtering out potential teratogens early (Barrow, 2016;
ICH, 2020).
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Animal-free approaches based on in silico prediction or
in vitro assays have been widely adopted. For instance, the
CAESAR model (Cassano et al., 2010) and the P&G model (Wu
et al., 2013) are 2 quantitative structure-activity relationship
(QSAR) models for reproductive and developmental toxicity pre-
diction. Well-established in vitro models for the detection of ter-
atogenicity include the DevToxqp assay from Stemina and the
mouse embryonic stem cell test (mEST). DevToxqp uses human-
induced pluripotent stem cells (hiPSCs) to predict teratogenicity
based on the ratio of ornithine and cysteine in medium super-
natants (Adler et al., 2008; Augustyniak et al., 2019; Burridge et
al., 2011; Dreser et al., 2020; Palmer et al., 2013, 2017; Shinde et al.,
2015; Worley et al., 2018). The mEST assay uses the beating of
stem cell-derived cardiomyocytes as a functional readout for
teratogenicity prediction (Genschow et al., 2000, 2004; Scholz
et al., 1999a,b; Whitlow et al., 2007).

Despite their wide adoption and relatively good perfor-
mance, all these methods share major limitations. In silico mod-
els fail to consider the complexity and adaptiveness of
biological systems. Also, their performance a priori for new
chemical spaces that were not used for training the model is
uncertain. On the other hand, existing in vitro models, which
rely on a single readout for prediction, have limited capability to
probe the complex biological processes underlying drug-
induced teratogenicity.

To overcome these limitations, we developed a new, human-
ized in vitro teratogenicity assay for the preselection of pharma-
ceutical candidates. The new assay, which we call TeraTox, uses
ethically nonrestricted hiPSC-derived embryoid bodies (EBs)
that differentiate spontaneously into all 3 germ layers, with ex-
pression of representative early developmental markers of each
layer. The new assay gave promising results in a preliminary
evaluation (Jaklin et al., 2020). This article describes the subse-
quent characterization and critical assessment of TeraTox, in-
cluding a detailed predictive algorithm. We tested a panel of 45
pharmaceuticals with evidence of human teratogenicity profiles
based on FDA classification using a 6-point concentration-
response, generating the largest dataset so far in a single study
about in vitro modeling of pharmaceutical teratogenicity with
reference to clinical or animal data. We adapted an amplicon-
based RNA sequencing technique (a technology known as
Molecular Phenotyping) to quantify the expression of germ-layer
genes as well as pathway reporter genes. We benchmarked a
variety of architectures of machine-learning models and identi-
fied the best-performing predictive model using factor analysis
and random-forest regression. TeraTox performed favorably
compared with other models, ie, the prediction accuracy was
comparable with that of both Stemina DevToxqp and mEST
assays (higher sensitivity, lower specificity) and higher than
that of 2 QSAR models (higher sensitivity and specificity). More
importantly, TeraTox offers insights into a multitude of changes
caused by the compounds on gene, pathway, and germ-layer
levels, some of which corroborated their teratogenicity
potential.

MATERIALS AND METHODS

hiPSCs-derived TeraTox assay. The TeraTox assay is built upon a
commercially available hiPSC line (Gibco, A18945), which has in-
distinguishable gene expression profiles compared with embry-
onic stem cells (Burridge et al., 2011; Quintanilla et al., 2014). The
cells form 3D EBs and undergo multilineage differentiation into
all 3 germ layers (Jaklin et al., 2020). Prior to the assay, the
hiPSCs were tested with the TaqMan ScoreCard assay (Thermo

Fisher) to confirm sufficient levels of pluripotency (Tsankov
et al., 2015a). The EBs were spontaneously differentiated and
treated with each reference substance over a time course of 7
days in Elplasia 96w micro-well plates (Corning, 4442) using the
ViaFlo 96 automated microplate pipetting device (Integra) for
liquid handling. Compounds were applied to the EBs on days 0,
3, and 5 at 6 concentrations, together with EB medium and
0.25% DMSO solvent controls as the negative reference. To test
for batch-to-batch variation, we included several positive refer-
ence compounds in multiple runs (eg, hydroxyurea, valproic
acid, SB431542, etc.). Cell viability was determined prior to gene
expression studies on day 7 by measuring ATP release in super-
natants with the CellTiter-Glo 3D assay (Promega, G9681)
according to the manufacturer’s protocol to prespecify appro-
priate testing ranges. Concentrations that showed <80% cell vi-
ability were excluded from the subsequent gene expression
studies. CellTiter-Glo reagent (100 ll) was added and incubated
for 5 min on a shaker to lyse the EBs. The plates were kept for an
additional 25 min in the dark at room temperature for binding
of the released ATP to the luminescent dye. ATP release in
supernatants was measured with the spectrophotometer
(Biotek, Vermont). All cell culture media and reagents were
obtained from Gibco (Thermo Fisher) unless otherwise speci-
fied. The overall cell culture and cytotoxicity protocols have
been described previously in detail by Jaklin et al. (2020).
Targeted gene expression profiling was performed in biological
duplicates at 6 subcytotoxic concentrations using the molecular
phenotyping platform described previously (Drawnel et al., 2017;
Zhang et al., 2014, 2015). The resulting 1055 samples of differen-
tiated EBs were lysed after 7 days in 350 ll MagNA Pure LC RNA
Buffer (Roche Diagnostics) and purified using an automated
MagNA Pure 96 system (Roche Diagnostics). The total RNA was
quantified using the Qubit RNA Assay Kit (Thermo Fisher) on
the Fluorometer Glomax (Promega). Total RNA, with a maxi-
mum of 10 ng from each biological replicate, was reverse tran-
scribed to cDNA using Superscript IV Vilo (Thermo Fisher).
Libraries were generated with the AmpliSeq Library Plus Kit
(Illumina) according to the reference guide. Pipetting steps for
target amplification, primer digestion, and adapter ligation
were done with a miniature mosquito automatic pipettor (SPT
Labtech). For the purifications before and after final library am-
plification, solid-phase reversible immobilization magnetic
bead purification (Clean NGS, LABGENE Scientific SA) was per-
formed on a multidrop automated pipetting station (Thermo
Fisher). We measured both amplicon sizes and cDNA concentra-
tions using an Agilent High Sensitivity DNA Kit (Agilent
Technologies) according to the manufacturer’s recommenda-
tion. Prior to sequencing, cDNA contents of the samples were
normalized and pooled to 2 nM final concentration on a Biomek
FXP workstation. The libraries were sequenced on the NovaSeq
6000 Instrument (Illumina) using sequencing-by-synthesis tech-
nology. All 75 cycles ended up with a minimum of 2 Mio se-
quencing reads per sample for analysis. We used molecular
phenotyping with 1215 detectable pathway reporter genes, in-
cluding a subset of 87 early developmental markers (germ-layer
genes, Supplementary Table 4), and genes representative of tox-
icological pathways to identify differentially expressed genes
induced at prespecified concentration levels (Tsankov et al.,
2015a,b).

Assessing characteristics of differentiated hiPSCs with BioQC. We ap-
plied the BioQC software developed previously to characterize
the identity of the differentiated samples across all treated
compound concentrations (including vehicle controls) on day 7
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(Zhang et al., 2017). We used raw data of gene expression de-
rived from molecular phenotyping and compared these profiles
with tissue-preferential gene signatures derived from organ, tis-
sue, and cell-type-specific gene expression data compiled from
public compendia (Ljosa et al., 2013; Young et al., 2008). The
BioQC performs Wilcoxon-Mann-Whitney tests comparing ex-
pression of genes in a set, eg, genes preferentially expressed in
1 tissue, versus genes that are not in the set. The enrichment
scores (log-10 transformed p values) reported by BioQC are used
to assess the similarity between the expression profile of inter-
est and cell-type- and tissue-specific expression profiles.

Analysis and modeling of the TeraTox data. We performed differ-
ential gene expression (DGE) analysis comparing compound-
treated samples with DMSO controls using the generalized
linear model implemented in the edgeR package in R/Bioconductor
(Robinson et al., 2010). To generate features for machine-learning
models, we transformed the p values associated with the coeffi-
cients of compound treatment to z-scores by the inverse of the
quantile function of Gaussian distribution, multiplied by the sign
of log2 fold-change (logFC). The vectors of z-scores of all genes
(n¼ 1215) were used as raw features for machine-learning models,
based on which further feature selection and engineering work
were performed. We also tested the possibility of using the effect
size, logFC, as a feature.

Besides the raw feature set of z-scores of all genes, we used 3
knowledge- and data-driven approaches to engineer the fea-
tures in order to improve the performance of the machine-
learning algorithms. First, we confined ourselves to the subset
of germ-layer genes, because our and other’s work confirmed
that their expression is specific to germ layers of embryogene-
sis, and their expression is modulated by teratogenic com-
pounds (Supplementary Table 4; Bock et al., 2011; Jaklin et al.,
2020; Tsankov et al., 2015a,b). Second, we used the germ-layer
associations reported by Tsankov et al. to derive a reduced fea-
ture set defined by 5 germ-layer classes, including both germ
layers (ectoderm, endoderm, mesoderm, and mesendoderm)
and pluripotency, by taking the median z-scores of germ-layer
genes associated with each germ-layer class (Tsankov et al.,
2015a). Finally, we used factor analysis, a dimension-reduction
approach that derives latent variables from the correlation
structure of observed variables, to identify latent biological,
germ-layer factors (germ-layer factors for short), which reflect
linear combinations of transcription factors, epigenetics, and
other gene regulatory mechanisms that control embryogenesis.

We predicted teratogenicity potential in 2 ways. One way
was to treat teratogenicity as a binary variable and to perform
binary classification. The other way was to convert
concentration-response teratogenicity into numeric metrics
and to construct regression models. For the latter case, we de-
fined a compound-specific Teratogenicity Score (TS hereafter).
For nonteratogens, the TS was defined as 0 independent of the
tested concentration. For teratogens, the TS was defined as the
0-1-bounded cosine similarity between the differential expres-
sion profile induced by a given concentration of a compound
and the differential expression profile induced by the highest
noncytotoxic concentration of the same compound. The noncy-
totoxic concentration was determined as the highest tested
concentration associated with an average viability equal or
larger than 80%.

The models were trained and validated using the Leave-One-
Out (LOO) scheme. The full panel of compounds was assessed
successively, leaving out 1 compound at a time and then used
to build machine-learning models. We then compared TS

predicted by the models with the observation of each left-out
compound using the Spearman correlation coefficient. As an
alternative to LOO, we also assessed repeated 80%/20% splitting
of data into training sets and test sets.

In short, we considered 2 types of features (z-scores and logFC),
4 sets of factors (all genes/germ-layer genes/median z-scores or
logFC of germ-layer classes defined by Tsankov et al./median
z-scores or logFC of germ-layer factors defined by factor analysis),
2 methods (linear regression with elastic net regularization and
random forest, implemented in the caret package, version 6.0-88),
2 types of target variables (binary classification and regression),
and 2 training/testing schemes (LOO and 80%/20% splitting). We
tested all combinations exhaustively to build machine-learning
models for TS and identified the best-performing models.

Besides predicting TS, we also comprehensively probed all
options to build regression models for cytotoxicity (100%-viabil-
ity), which was measured as part of the TeraTox assay. The
same set of model architectures was tested; however, the com-
binations giving best performing models differed from that for
TS (further discussed in Results section). All data analysis was
performed with R (version 4.0.1) or Python (version 3.8.1) unless
otherwise specified.

Test chemicals for validation. In total, we tested 28 positive and
17 negative reference substances in 6-point concentrations
in the mEST (see Supplementary Material and Methods,
Supplementary Figs. 1a, 1b, and Supplementary Table 1) and the
human TeraTox assay (Table 1). This compound panel consisted
of both commercial and developmental pharmaceuticals with
known teratogenicity potential (ie, positive or negative) avail-
able from either human data, as reported in FDA drug labels, or
from in vivo EFD studies in rats and/or rabbits (ICH, 2020). Some
compounds without existing human or in vivo animal data were
classified as teratogens based on a known teratogenic hazard
associated with their mode of action (Belair et al., 2020; Chen
et al., 2002; Cusack et al., 2017; Evans, 2007; Kameoka et al., 2014;
Lipinski et al., 2008; Sakata and Chen, 2011; Wang et al., 2013;
Worley et al., 2018). Compounds that did not result in increased
incidences of birth defects in an adequate prospective cohort
study accepted by health authorities were considered as nonter-
atogenic in humans, at least at the therapeutically relevant ex-
posure levels (Adams et al., 1969; Daniel et al., 2019; Dashe and
Gilstrap, 1997; Etwel et al., 2014; Muanda et al., 2017; Rumbold
et al., 2015; Supplementary Table 2).

The commercial compounds were obtained from Merck,
Germany. The 12 investigational small molecule drug candidates
RO-1 to RO-12 were provided by F. Hoffmann—La Roche,
Switzerland (compound structures are not disclosed due to con-
fidentiality and intellectual property issues). No human preg-
nancy data were available for the investigational drug
candidates, but in vivo data were available from EFD studies in
rats, and/or in rabbits (Supplementary Table 3). RO-1, RO-3, RO-8,
RO-9, and RO-10 were teratogenic in EFD studies; RO-2, RO-4, RO-
5, RO-6, RO-7, RO-11, and RO-12 did not induce teratogenicity.

All compounds were serially diluted in DMSO (0.25%) from a
stock solution to 6 test concentrations and tested at appropriate
noncytotoxic concentration ranges in the TeraTox and mEST
assays. We used the following metrics to compare the perfor-
mance of the TeraTox and mEST assays. Sensitivity was calcu-
lated as the proportion of correctly predicted teratogens. Assay
specificity was calculated as the proportion of correctly pre-
dicted nonteratogens. Overall accuracy was taken as the propor-
tion of all correct predictions. F1 scores were calculated as the
harmonic mean of precision and recall. True positive, true
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negative, false positive, and false negative are denoted with TP,
TN, FP, and FN, respectively, and the performance metrics are
defined in Supplementary equations 1–5. To identify the thresh-
old of TS that maximizes the performance (F1 score) of the
TeraTox Score, we used a grid search between 0 and 1 with a step
size of 0.01. The best threshold (TS¼ 0.38) was chosen manually
by inspecting the performance metrics.

To benchmark the performance of TeraTox, we applied 2 reg-
ulatory-accepted structure-based models to predict teratogenic-
ity of commercially available compounds: the CAESAR model
(version 2.1.8, Cassano et al., 2010) and the P&G model (version

1.1.2, Wu et al., 2013) implemented in the VEGA platform (ver-
sion 1.3.10, Marzo et al., 2016). For the benchmark, we used 20
compounds (15 teratogens and 5 nonteratogens) that were not
part of the training set of the CAESAR model.

Model explainability and interpretation. We used the type I impor-
tance measure of features (mean decrease in accuracy) of
random-forest models to compare the importance of germ-layer
genes in the teratogenicity model and in the cytotoxicity model.

Pharmacology data of publicly available compounds were
downloaded from ChEMBL (version 26). We only used human

Table 1. Reference Compounds in the Human TeraTox Assay

Reference
Compound

Teratogenicity
Classification

Test Concentrations
(Human Model) [mM]

CAS Number

Acitretin Positive 0.08–2.5 (1:2) 55079-83-9
Amoxicillin Negative 6.25–200 (1:2) 26787-78-0
Artesunate Positive 0.13–8 (1:2) 88495-63-0
Ascorbic Acid Negative 28–900 (1:2) 62624-30-0
Bosentan Positive 4.7–150 (1:2) 147536-97-8
Busulfan Positive 0.06–4 (1:2) 55-98-1
Carbamazepine Positive 4.7–300 (1:2) 298-46-4
Cetirizine Negative 9.3–600 (1:2) 83881-51-0
Cyclopamine Positive 0.3–20 (1:2) 4449-51-8
Cyproheptadine Negative 0.47–30 (1:2) 129-03-3
Dabrafenib Positive 0.03–2 (1:2) 1195765-45-7
DAPT Positive 0.05–3 (1:2) 208255-80-5
Dasatinib Positive 0.3–20 (1:2) 302962-49-8
Dexamethasone Positive 4.7–300 (1:2) 50-02-2
Dorsomorphin Positive 0.2–14 (1:2) 866405-64-3
Doxycycline Negative 0.3–20 (1:2) 564-25-0
5-Fluorouracil Positive 0.004–0.25 (1:2) 51-21-8
Hydroxyurea Positive 3.12–200 (1:2) 127-07-1
Ibuprofen Negative 1.9–1400 (1:3) 15687-27-1
Isotretinoin Positive 4.7–300 (1:2) 4759-48-2
Imatinib Positive 1.6–100 (1:2) 152459-95-5
IWP-2 Positive 0.0015–0.1 (1:2) 686770-61-6
Lazabemide Negative 1.6–100 (1:2) 103878-84-8
Metformin Negative 7.8–500 (1:2) 657-24-9
Methotrexate Positive 0.0025–40 (1:5) 59-05-2
Misoprostol Positive 0.02–1.3 (1:2) 59122-46-2
Penicillin G Negative 9.3–600 (1:2) 61-33-6
Progesterone Negative 0.63–40 (1:2) 57-83-0
Retinoic Acid Positive 0.0005–0.035 (1:2) 302-79-4
RO-1* Positive 1.6–100 (1:2) n/a
RO-2* Negative 7.8–500 (1:2) n/a
RO-3* Positive 4.7–300 (1:2) n/a
RO-4* Negative 3.1–200 (1:2) n/a
RO-5* Negative 0.8–50 (1:2) n/a
RO-6* Negative 6.25–400 (1:2) n/a
RO-7* Negative 9.3–600 (1:2) n/a
RO-8* Positive 1:25–80 (1:2) n/a
RO-9* Positive 0.08–5 (1:2) n/a
RO-10* Positive 0.23–15 (1:2) n/a
RO-11* Negative 0.6–40 (1:2) n/a
RO-12* Negative 1.6–100 (1:2) n/a
SB431542 Positive 0.31–20 (1:2) 301836-41-9
(6) Thalidomide Positive 0.0007–0.5 (1:3) 50-35-1
Valproic Acid Positive 15.6–1000 (1:2) 99-66-1
Warfarin Positive 0.9–60 (1:2) 81-81-2

Compounds for assay validation, with human teratogenicity classification and test concentration according to noncytotoxic concentrations. Dilution ratios in brackets

covering 6 concentrations. Teratogenicity classification was based on FDA classification (Supplementary Table 2) or in vivo EFD data (indicated with asterisks*,

Supplementary Table 3).

Abbreviation: EFD, embryo-fetal-development.
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targets and affinities derived from high-quality dose-response
data. Binary distances were used to cluster the compounds by
their pharmacological profiles.

To construct a Bayesian network model of regulations be-
tween factors, we first discretized DGE data of the first 6 germ-
layer factors into 3 levels using the Hartemink’s pairwise
mutual information method implemented in the bnlearn pack-
age (Scutari, 2010). We generated 1000 bootstrap replicates
using Hill Climbing, a score-based learning algorithm, and the
Bayesian Dirichlet equivalent (uniform) score (bde, with the
imaginary sample size set to 10). Edges that persisted in more
than 85% bootstrap samples were deemed as significant and
reported.

The beta regression model used for sensitivity analysis was
built with the glmmTMB package (Brooks et al., 2017). Scores out-
side the boundaries [0.01, 0.99] are set to the boundary values to
allow beta regression. All 10 factors and significant interaction
terms identified in the Bayesian network were used as the model
input and compounds were modeled as random effects to cap-
ture between-concentration correlations. For better interpretabil-
ity, input variables were scaled to zero mean and SD. Simulation
was performed using the ggeffects package (Lüdecke, 2018).

RESULTS

Gene Expression Quantification by Molecular Phenotyping
We previously described that differential expression of a set of
87 genes preferentially expressed in different germ layers is in
principle able to distinguish between teratogenic and nontera-
togenic compounds (Jaklin et al., 2020). These germ-layer genes
both determine and reflect embryonic development (Tsankov
et al., 2015a). To validate our findings, we compiled a large set of
well-documented teratogens and nonteratogens that are chal-
lenging to predict and/or known to cause FP in animal studies
(Supplementary Tables 2 and 3). The compounds cover a broad
spectrum of chemical classes and a wide range of effective
concentrations.

We evaluated the performance of our human stem-cell
model by testing the panel of compounds, adapting the experi-
mental workflow developed previously (Figs. 1A and 1B). We
identified the assay throughput as a major challenge due to the
high number of samples for gene expression profiling (>1000). It
would be particularly cost- and labor-intensive to use the digital
PCR technique established in our previous work to quantify
gene expression (Jaklin et al., 2020). To address this challenge,
we used molecular phenotyping as an alternative readout.
Molecular phenotyping is based on amplicon-based targeted se-
quencing and is able to deliver quantitative expression data of
1215 predefined genes, including both pathway reporter genes,
ie, genes that are specifically modulated by pathway perturba-
tions, as well as germ-layer genes that we reported in our previ-
ous study. In this way, we were able to characterize both
general pathway activity modulations and germ layer-specific
changes as potential features associated with teratogenicity
(Drawnel et al., 2017; Zhang et al., 2014, 2015).

We performed extensive quality control of the data. Here we
address the questions whether results of molecular phenotyp-
ing are comparable with those of qRT-PCR, and whether the
hiPSCs used show expected cell identity based on their gene ex-
pression profile. We compared the differential expression pro-
files of germ-layer genes obtained by qRT-PCR in previous
studies with newly generated data of molecular phenotyping

and observed highly consistent results (Pearson correlation co-
efficient R¼ 0.9, p< 2.2E16; Figure 1C).

Molecular phenotyping requires far fewer cells and delivers
much higher throughput than qRT-PCR, allowing a marked im-
provement in the productivity of the TeraTox assay. A unique
advantage of quantifying pathway reporter genes along with
germ-layer genes is the identification of cell-type-specific gene
expression patterns. To this end, we applied BioQC analysis, a
method that we developed to identify sample heterogeneity
and tissue comparability using gene sets preferentially
expressed in cells and tissues (Zhang et al., 2017). We observed
that the expression profiles of the cells used in the TeraTox as-
say at day 7 resemble a mix of those gene signatures specific for
astrocytes, epithelial cells, and iPSC-derived neurons
(Figure 1D). This suggests that the hiPSCs used for the assay has
a preferred differentiation propensity into the neuroectodermal
lineage, which is in agreement with previous time-series gene
expression studies that demonstrated pronounced expression
of ectodermal markers at day 7, followed by meso- and endo-
dermal expression (Jaklin et al., 2020; Tsankov et al., 2015a).

Unsupervised Learning From Gene Expression Data With Factor
Analysis
Before applying supervised learning techniques to differentiate
teratogens from nonteratogens, we applied several unsuper-
vised learning algorithms to explore the gene expression data,
including principal component analysis (PCA) and factor analy-
sis. PCA revealed experimental plate effects that we could suc-
cessfully correct with linear regression models for DGE (data not
shown). Unexpectedly, factor analysis revealed both biological
insights and suggested a technique for feature engineering to
produce the best-performing model (see below, also a brief in-
troduction to factor analysis is given in Supplementary
Materials and Methods).

We applied factor analysis to raw gene expression data and
identified intriguing patterns. Since factor analysis is based on
intergene correlations, we visualized the correlation matrix of
germ-layer genes in Figure 2A (the full matrix is visualized in
Supplementary Figure 2a). Genes that strongly correlate with
each other form clusters, which correspond to latent factors.
Despite that factor analysis is a correlation-based statistical
method in which we injected no prior knowledge, biologically
meaningful patterns emerged. Using the maximum likelihood
method, we decomposed the covariance matrix of gene expres-
sion into factors. The heatmap in Figure 2B shows loadings, ie,
how strong factors influence the expression of germ-layer
genes, of the first 10 factors that collectively explain more than
70% of the covariance (Supplementary Figs. 2b–d). Left to the
heatmap we use colors to indicate germ-layer classes that were
distilled from biological knowledge. We found that the first 6
factors (ranked by explained covariance of the data) are signifi-
cantly enriched with signatures of individual germ layers or sig-
natures of stem-cell self-renewal (Figure 2C, p< .01, Fisher’s
exact test).

This significant enrichment is intriguing, because while it is
established that germ-layer genes are highly expressed at dif-
ferent stages of embryogenesis, factor analysis reveals for the
first time that their expressions are strongly correlated in 3D
EBs formed by hiPSCs, with or without compound treatment.
Given that the cells used in TeraTox are cultured up to day 7, it is
unlikely that the correlations are caused by temporal changes
of embryogenesis. Instead, factor analysis suggests that besides
being correlated across time in development, expression of
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germ-layer genes is also correlated across treatment conditions
in 7-day spontaneously differentiated EBs.

Detailed analysis of the results from the factor analysis
revealed more insights. The strongest correlation of the germ-
layer genes was observed among genes in Factor 1, many of
which are markers of the ectodermal layer, eg, WNT1, POU4F1,
OLFM3, CDH9, LMX1A, DMBX1, PAX3, MAP2, and TRPM8
(Figure 2A). Although BioQC analysis revealed that ectodermal
genes are highly expressed at the endpoint on day 7, factor
analysis further indicated that their expression is strongly cor-
related across conditions, too, which is neither sufficient nor
necessary for their high expression. Factors 2–6 mainly consist
of genes representing the mesodermal layer (factor 2), stem-cell

self-renewal (factor 3), and the endoderm layer (factors 4–6), re-
spectively. The remaining factors (factors 7–10) are of smaller
sizes and more heterogeneous (Figure 2B). Genes associated
with each factor are associated mainly, but not exclusively,
with other genes of the same germ-layer class. In summary, fac-
tor analysis revealed that germ-layer genes form coregulated
gene modules in TeraTox that are significantly enriched by
germ-layer- or stem-cell-specific markers.

Training and Testing of a Predictive Model for the TeraTox Assay
To build a quantitative predictive model of concentration-
dependent teratogenicity potential with gene expression, we
explored all combinations of the following options (Figure 3A):

Figure 1. The human TeraTox assay: workflow and quality control. A, hiPSCs differentiate over 7 days and form EBs. Compounds are added on days 0, 3, and 5. Single

wells of differentiated EBs are lysed for 1 sample. B, TeraTox score is calculated based on cell viability, gene expression data, and machine-learning model. C, DGE from

molecular phenotyping correlated with data from RT-PCR assay represented in log2 fold change (log2FC). Dots represent germ-layer genes. R ¼ Spearman correlation

coefficient between 2 sets of measurements in all compounds. D, BioQC of raw gene expression data (DMSO controls) revealed the biological identity of hiPSCs and

showed significantly enriched cell-type signatures (median p < .10). Each dot ¼ 1 sample. Violins show distributions of BioQC scores (absolute log10 transformed p val-

ues of the Wilcoxon-Mann-Whitney test) from each gene set, vertical lines indicate median values. The larger the BioQC score, the more enriched is the expression of

the genes. Abbreviations: hiPSCs, human-induced pluripotent stem cells; EBs, embryoid bodies; DGE, differential gene expression.
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1. Feature type: We tested both logFC, the point-estimate of the
effect size, and z-scores transformed from the sign of logFC
and p value reported by the edgeR model, which considers
both effect size and variance of DGE.

2. Feature engineering: We used all detectable pathway reporter
genes (n ¼ 1215), detectable germ-layer genes (n ¼ 87), germ-
layer classes defined by Tsankov et al. (n ¼ 7), and germ-layer
factors derived from factor analysis (n ¼ 10). For both germ-
layer classes and factors, we used the median value of the
genes belonging to each group as the engineered feature.

3. Model construction: We used and benchmarked 2 methods of
different nature, Elastic Net (linear regression with regulari-
zation) and Random Forest (ensemble decision trees), to con-
struct machine-learning models. These methods were
chosen based on the size of the dataset and the relatively
good explainability of both methods (Badillo et al., 2020).

4. Target variable: We used both binary classification (teratogen
or nonteratogen) and regression (the TS, defined below and
further detailed in the Materials and Methods section) for ter-
atogenicity and regression alone for cytotoxicity.

5. Data splitting: we tried both repeated splitting of 80% training
and 20% test set, and the LOO scheme. For data splitting, we
used 80% of compounds (stratified sampling from nonterato-
gens and teratogens) as the training set to train a model,
which was used to predict the TS using the remaining 20%
compounds as the test set. For LOO, the model was trained by
assessing the panel of compounds minus one, which pre-
dicted the TS for the left-out compound. The procedure was
repeated until all compounds had been left out. The perfor-
mance of both models was assessed by F1 scores in case of bi-
nary classification models, and Spearman correlation
coefficients of TS for teratogens in case of regression models.

Figure 2. Identification of latent factors that are associated with germ layers. A, Germ-layer genes show correlated expression and form clusters of coexpression. The

heatmap represents pairwise Pearson correlation coefficients of germ-layer gene expression in all samples. Genes are split by latent germ-layer factors for representa-

tive genes (full matrix is shown in Supplementary Figure 2a). B, Loadings of factor analysis (germ-layer genes in rows and linear combinations of latent germ-layer fac-

tors in columns). Loadings equal to or near þ1 or �1 indicate that the factor positively or negatively influences the gene, while loadings near 0 means that the factor

has little effect on the gene (full matrix in Supplementary Figure 2c). C, Germ-layer factors are not equivalent to, but significantly associated with, germ-layer classes.

The heatmap visualizes the number of genes shared by each pair of germ-layer classes (in rows) and germ-layer factors (in columns).
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Figure 3. Construction of machine-learning models predicting concentration-dependent teratogenicity potentials based on differential gene expression as input. A,

Overview of investigated model architectures. B, Definition of TS from lowest (left) to highest (right) concentrations. TS of teratogens ¼ 1 for the highest noncytotoxic

concentration, TS for other concentrations ¼ cosine similarity of differential gene expression profiles between each concentration and the highest noncytotoxic con-

centration. TS of nonteratogens ¼ 0, independent of the concentration level (from Lazabemide to Amoxicillin). Negative TS ¼ 0. C, Spearman correlation coefficients be-

tween observed teratogenicity scores, calculated on a per-compound basis, and predicted teratogenicity scores, which are derived from models trained by LOO testing.

D, Mean (dots) and SDs (error bars) of teratogenicity scores of nonteratogens. Median teratogenicity score of each compound is derived from 6 concentrations. The aver-

age scores of nonteratogens are lower than those of teratogens, but not strictly zero, because they are predicted values by LOO testing with our machine learning model

instead of assigned values as in (B). Abbreviations: TS, Teratogenicity Score; LOO, leave-one-out.
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The best model parameters were searched by 10-fold cross-
validations of the training set.

The TSs of teratogens are defined between 0 and 1, and
those of nonteratogens are fixed as 0 at all concentrations
(Figure 3B). By defining TS, we effectively transformed the bi-
nary classification problem into a regression problem. We refer
readers interested in the motivation of developing the TS and in
the mathematical details to the section on Teratogenicity Score
in Supplementary Materials and Methods.

We observed the following patterns as we tried all options of
model building:

1. The feature type has minimal impact on the performance,
though models trained with z-scores perform better on the
test set than models trained with logFC (data not shown).

2. The combination of feature engineering and machine-learning
model is important and the best combination depends on the
prediction task (Figs. 3C and 3D). For teratogenicity predic-
tion, the combination of germ-layer factors and random-
forest regression worked best.

3. With regard to the target variable, the performance of the
regression-based teratogenicity-score prediction model is
slightly better than binary classification (data not shown).

4. Performance is comparable between 2 modes of data splitting
(data not shown). However, the LOO training-testing scheme
is preferable because it allows us to set up a single threshold
of TS, which can be applied to all compounds, and is not con-
ditioned by whether or not a compound is included in the
training set or in the test set as in the case of 80%/20% data
splitting.

Based on these observations, we decided to use germ-layer
factors as features, random-forest regression as the machine-
learning model, and TS as the target variable to build the predic-
tive model for teratogenicity with gene expression data.

Performance of the TeraTox Assay and Benchmarking With Other
Models
Based on the best-performing machine-learning model, we de-
fined the following predictive model for teratogenicity. First, we
considered the maximal noncytotoxic threshold concentration
(NCCmax) for cell viability of at least 80%, measured by the
CellTiter Glo assay. Next, we defined the minimal teratogenic
concentration (TCmin) as the concentration at which the thresh-
old of the TS was met (TS¼ 0.38, defined by grid search;
Figure 4A). If no NCCmax or TCmin could be determined because
values did not exceed these thresholds, the maximal tested
concentrations were used for NCCmax and TCmin. The predictive
score, which we named TeraTox Score, is defined by the logarith-
mic ratio between threshold concentrations at 20% viability im-
pairment (NCCmax) and teratogenic concentrations (TCmin).
Negative TeraTox scores classify the compounds as negative
whereas positive scores classify compounds as positive
(Figure 4B).

We plotted the concentration-response curves of measured
cytotoxicity and predicted TS induced by each compound
(Figure 4C; see Supplementary Figure 4 for all compounds). In
general, teratogenicity levels increased while cell viability de-
creased with rising concentrations. Correctly predicted negative
compounds were unlikely to induce teratogenicity within non-
cytotoxic concentrations, which means the calculated TeraTox
score was negative or zero (eg, Doxycycline, RO-4, RO-6).
Positive compounds (eg, Bosentan, Carbamazepine, Retinoic
Acid, RO-1) or FP predicted compounds (eg, Cetirizine) were

more likely to induce teratogenicity under noncytotoxic concen-
trations, as indicated by positive TeraTox scores (Figure 4C).

We compared the TeraTox prediction scores with classifica-
tions from FDA or in vivo EFD studies for 45 reference com-
pounds (Supplementary Table 5). Classification with TeraTox
Scores achieved an overall accuracy of 69% and outperformed
mEST (58%). The 2 assays show different sensitivity and specif-
icity profiles: Although mEST is more specific (specificity 76%),
TeraTox is more sensitive (sensitivity/recall 79%). Among 17 neg-
ative reference compounds, 8 were classified as FP by TeraTox,
and only 4 by the mEST. Whereas from 28 positive reference
compounds, 22 were predicted as TP by TeraTox and only 13 by
the mEST (Table 2 and Figure 4D). It is noteworthy that among
the 26 compounds misclassified in total, the following 7 com-
pounds are wrongly predicted by both assays: cyproheptadine,
RO-11, 5-FU, methotrexate, misoprostol, RO-8, and warfarin.
Given the distinct sensitivity and specificity profiles of the 2
assays, we asked whether we can achieve even better prediction
results by using the 2 tests in sequence. Therefore, if we first
run the mEST on the full panel, the substances with negative
mEST results would then be retested by TeraTox to benefit from
the high specificity of mEST and the high sensitivity of TeraTox.

Indeed, we found that overall accuracy of the combined pre-
diction increased to 78%, better than either TeraTox or mEST
alone. This suggests that it may be possible to achieve better
prediction results by combining the existing mEST assay with
the novel TeraTox assay.

Furthermore, we compared 18 pharmaceutical compounds
that were both tested in TeraTox and DevToxqp by Stemina, and
observed the identical accuracy (78%), whereas balanced accu-
racy was 73% for TeraTox and 87% for DevToxqp assay. The
DevToxqp assay delivered a higher specificity (100%) compared
with TeraTox (67%), whereas TeraTox was more sensitive (80%)
than DevToxqp (73%; Supplementary Tables 6 and 7).

We also compared TeraTox with in silico predictions of devel-
opmental and reproductive toxicity using 2 widely used QSAR
models: CAESAR and P&G, both implemented in the VEGA soft-
ware. Among the compounds that we tested, 20 compounds are
new to the CAESAR model, the P&G model, and the LOO ver-
sions of the TeraTox model, namely these compounds were not
used to train these models and therefore, the prediction results
for them present a fair comparison of the performance
(Supplementary Table 8). Among these 20 compounds, TeraTox
performed better (85% accuracy) than both the CAESAR model
(75% accuracy) and the P&G model (35% accuracy;
Supplementary Table 9).

In short, TeraTox delivers comparable or more favorable per-
formance with alternative assays, and combining TeraTox with
other assays can further increase the prediction accuracy for
drug-induced teratogenicity.

Leveraging TeraTox Data and Model to Gain Biological Insights
A model’s interpretability and explainability is crucial to allow
for inspection and further improvement (Barredo Arrieta et al.,
2020). We performed additional in-depth analysis of the cyto-
toxicity and gene expression data and collected additional data
orthogonal to TeraTox, thereby implementing 4 independent
approaches to interpret and explain how the machine-learning
model works and to explore what differs teratogens from
nonteratogens.

First, we followed up on previous work and asked the ques-
tion whether compound-induced cytotoxicity quantified by the
phenotypic assay can be predicted by gene expression data as
well, and whether TS are confounded by general cytotoxicity
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Figure 4. Prediction of teratogenicity with the human TeraTox assay. A, Results of a grid search to select the optimal threshold of the TS using the best identified model

architecture. The best threshold (TS ¼ 0.38) was chosen based on performance metrics defined in Supplementary equations 1–5. B, Visual definition of the TeraTox

score based on minimal teratogenic concentration (TCmin) and maximal noncytotoxic concentration (NCCmax). Compounds with TeraTox scores �0 are classified as

negative and compounds with scores >0 are classified as positive. C, Examples of concentration-response curves reported by the TeraTox assay of 4 selected nontera-

togens (top panels) and 4 selected teratogens (bottom panels). The “þ” indicates predicted TS (n ¼ 2) and measured cytotoxicity (n ¼ 3). D, ROS curve of LOO tests based

on 45 reference compounds. Abbreviations: TS, Teratogenicity Score; ROC, receiver operating characteristics; LOO, leaving-one-out.

Table 2. Overview of Assay Performance for mEST and Human TeraTox Assay

Model TP TN FP FN Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 (%)

TeraTox 22 9 8 6 69 73 79 53 76
mEST 13 13 4 15 58 76 46 76 57
mEST þ TeraTox 22 13 4 6 78 85 79 76 82

Values were calculated based on 45 compounds (according to Supplementary equations 1–5).

Abbreviations: mEST, mouse embryonic stem cell test; TP, true positive; TN, true negative; FP, false positive; FN, false negative.
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(Waldmann et al., 2014, 2017). For this purpose, we followed the
same scheme as described in Figure 3A using cytotoxicity in-
stead of TS as the target variable. Interestingly, a comprehen-
sive search showed that using all pathway reporter genes and
the elastic net model, instead of using germ-layer factors and
random forest as in the case of teratogenicity prediction, give
the best result (Figure 5A, contrasted with Figs. 3C and 3D).

Given that the combination of germ-layer genes and random
forest gives reasonable performance in both cases, and that ran-
dom forest allows inquiry of feature importance by accuracy,
we compared the feature importance of germ-layer genes in
predicting both target variables (Figure 5B). The prediction of cy-
totoxicity and teratogenicity by molecular phenotyping relies
on expression changes of distinct genes. The distinction shows
that (1) teratogenicity of a compound is not a determinant for
cytotoxicity, (2) a compound that shows cytotoxicity at a spe-
cific concentration can still be teratogenic at lower concentra-
tions, and (3) genes and pathways associated with cytotoxicity
and teratogenicity can be regulated independently from each
other. This concurs with several previous findings (Krug et al.,
2013; Rempel et al., 2015; Shinde et al., 2017).

The second approach addressed the question whether a
compound’s pharmacology, in this context its target profile
(protein targets and binding affinities), suffices to predict its ter-
atogenicity potential. If so, one may hope to predict teratogenic-
ity potential based on target profiles and/or even based on the
chemical structure alone. Although some teratogens indeed
have similar target profiles, we observe close clustering of tera-
togens and nonteratogens that have similar target profiles as
well (Figure 5C and Supplementary Figure 5a). The potential of
teratogenicity, therefore, may be associated with off-target
effects or effects through targets that are not captured in
ChEMBL, especially at the relatively high concentrations
approaching cytotoxicity levels that we tested. Corroborating
this, we found almost no correspondence between clustering of
average DGE across concentration per compound and that of
pharmacological profile (Supplementary Figure 5b). Therefore,
we conclude that while knowing the target- and off-target pro-
file of a compound is essential for de-risking its safety liabilities
including teratogenicity, pharmacology data alone cannot cur-
rently predict a compound’s teratogenicity potential. This con-
clusion concurs with the superior performance of TeraTox over 2
QSAR models, which consider the chemical structure alone. The
hiPSCs-based in-vitro assays, such as TeraTox and other ad-
vanced cellular models, are therefore indispensable for assess-
ing the potential for human teratogenicity.

The third approach was to use a simpler generalized linear
regression model for sensitivity analysis, which would allow us
to analyze how the model responds to changes of the input.
Given that random forest is an ensemble method and the con-
tribution of each germ-layer factor can be therefore difficult to
interpret, we built an alternative model using generalized linear
regression. To identify interaction terms in the linear regres-
sion, we made the assumption that germ-layer factors regulate
each other by forming a directed acyclic graph. Under this as-
sumption, we built a Bayesian network using the differential ex-
pression data of germ-layer factors (Figure 5D). The network
reveals potential influences on both mesoderm and endoderm
by the ectoderm, influences on endoderm by mesoderm, and
influences on stem-cell renewal by endoderm.

The Bayesian network topology prompted us to build a beta
regression model including all germ-layer factors and interac-
tions identified in the Bayesian network (Figure 5E and
Supplementary Figure 6). The model provides both interpretable

coefficients of the model and a tool for sensitivity analysis, be-
cause we can quantify prediction uncertainty more easily with
a generalized linear model than with a random forest model, by
paying the price of assuming linear regulation relationship. For
the sensitivity analysis, we kept all other parameters fixed and
tuned one input parameter at a time to simulate its impact on
predicted TSs. We observed that the model is likely sensitive to
impairment of either ectoderm layer or stem-cell self-renewal,
while being relatively robust to changes to either mesoderm or
endoderm (Figure 5E). The results of sensitivity analysis further
underlined the prominent ectodermal nature of the model at
the endpoint on day 7.

Last but not least, we applied gene-set enrichment analysis
to each compound with BioQC and compared median gene-set
enrichment results over concentrations of each compound be-
tween teratogens and nonteratogens. We identified multiple
gene-sets that are potentially differentially regulated by terato-
gens and nonteratogens (p< .10; Supplementary Figure 7).
Interestingly, target genes of several transcription factors that
are involved in organ development and cell differentiation, eg,
POU4F1, GATA1, and NODAL, were impacted by teratogens dif-
ferently from nonteratogens. Besides, teratogens also regulate
genes involved in biological processes that are not restricted to
embryogenesis, such as cleavage of cell adhesion proteins as
well as lipid metabolism genes induced by SRBEF/SREBP.
Although teratogens do not form a homogeneous group and
have distinct pharmacological profiles (Figure 5C and
Supplementary Figure 5a), these results suggest that transcrip-
tional regulation by teratogens can manifest in changes of sev-
eral biological processes, potentially mediated by key
transcriptional factors. Gene-set enrichment analysis based on
TeraTox data also revealed molecular insights of teratogenic
effects at yet another level of gene expression regulation
(Supplementary Figure 7).

In summary, we explain how the TeraTox model operates by
complementing the machine-learning model with feature im-
portance analysis, pharmacological profiling clustering, sensi-
tivity analysis, and gene-set enrichment analysis.

DISCUSSIONS

This study characterizes the optimization of TeraTox and its ap-
plication in the context of preclinical teratogenicity assessment
of drugs. TeraTox extends and standardizes the previously pub-
lished embryoid-body models and fully leverages the predictive
potential of these models by adding a toxicological prediction
model (Krug et al., 2013; Shinde et al., 2016). It exploits an ex-
plainable machine-learning approach to predict teratogenicity
potential induced by drug-like molecules.

Only a few pharmaceutical compounds have been recog-
nized as human teratogens based on high-quality data.
Therefore, we decided to limit the training data of the TeraTox
model to a compound set with well-described evidence without
losing rigor in the teratogenicity classification (n¼ 45; Table 1).
Although alternative compound collections are available, for in-
stance the ToxCast data set applied to the DevToxqp assay from
Stemina (Zurlinden et al., 2020), our compilation was specifically
related to pharmaceuticals with teratogenicity profiles sup-
ported by either labeling information or strong evidences.

Despite the limited number of reference compounds avail-
able, we report that TeraTox outperforms 2 QSAR models and
performs comparably with state-of-the-art in-vitro models.
TeraTox and DevToxqp showed the same accuracy to predict 18
pharmaceutical compounds: the DevToxqp assay showed a
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Figure 5. Biological interpretation of the model. A, Prediction of cytotoxicity based on DGE (same workflow as Figure 3A) using all pathway reporter genes as features

and an elastic net machine-learning model. Dots: Spearman correlations between observed and predicted cytotoxicity using LOO testing. B, Difference in feature im-

portance of germ-layer genes for prediction of cytotoxicity (upper left) or teratogenicity (lower right) or both (middle). C, Clustering analysis: pharmaceutical target pro-

files of compounds alone are not sufficient to determine teratogenicity (based on annotated compound target profile, i.e., quantitative affinity to protein targets from

ChEMBL database). D, Structure of the DAG to model relationships between teratogenicity score and germ-layer factors with a generalized linear model. Input varia-

bles: germ-layer factors and significant interactions between germ-layers identified by Bayesian networks (Factor 1-4 and 6). Model fitting: Supplementary Figure 6. E,

Generalized linear model with beta-regression for sensitivity analysis, to test model behavior with tuned input variables. Each panel shows the result of 1 tuning pa-

rameter, eg, ectoderm germ-layer factor (top-left) while keeping all other parameters fixed. Lines ¼ average prediction, Areas ¼ 95% confidence intervals of prediction.

Input variables are scaled to 0 mean and SD. Abbreviations: DGE, differential gene expression; LOO, leaving-one-out; DAG, directed acyclic graph.
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higher specificity and TeraTox a higher sensitivity. Combining
TeraTox and DevToxqp led to a higher prediction accuracy, sug-
gesting a synergistic effect of using complementary assays for
teratogenicity prediction.

Similarly, we observed comparable performance of TeraTox
and mEST, with TeraTox being more sensitive and mEST more
specific. Again, combining both assays led even to an increased
accuracy, which would improve overall predictivity.

Due to rich working experience with the mEST assay, we
could also offer a first-hand comparison between TeraTox and
mEST with regard to manual work, cost, and throughput
(Supplementary Table 10). We conclude that the overall effort
and cost entailed by TeraTox is comparable to that of the mEST.
However, TeraTox offers a much higher throughput thanks to
automation and miniaturization, and it generates quantitative
gene expression data that can be used to compare new chemical
series with existing ones and to further refine the model.

The prediction model presented here is geared towards haz-
ard identification, similar to animal studies, where maximum
tolerated doses are to be used for studies testing DART. In the
context of an overall risk assessment, one immediate step
would be to consider compound potency and to evaluate
whether the in vitro toxic concentrations would be relevant to
human exposure situations. To exemplify this, we highlight
here the FP (Supplementary Tables 2 and 5).

Two of them, progesterone and cetirizine, have a minimal
transcriptome-altering concentration that is larger than 2
orders of magnitude higher than the human max plasma con-
centration. A third compound, RO-2, is likely to be similarly
“overdosed” in vitro. And also, ascorbic acid gives positive sig-
nals only at clearly higher concentrations than usually found in
human plasma. These considerations could be made more ex-
actly on the basis of physiologically based pharmacokinetic
models and considerations of free drug concentrations.
However, the principle is exemplified here, and if eg, 4 of the FP
would be negative at clinically realistic concentrations, the test
specificity would be 76%.

TeraTox offers additional benefits that are not yet available
in any existing models. First, TeraTox is more sensitive than ei-
ther the mEST or the DevToxqp assay, especially when we con-
sider maximum plasma concentrations (Cmax) from human data
whenever possible or model species otherwise (Supplementary
Tables 2 and 3). Detecting human-specific teratogens are critical
for drug discovery and development, as illustrated by
phthalimide-based series of molecules, which includes thalido-
mide (Belair et al., 2020; Donovan et al., 2018; Matyskiela et al.,
2018; Smith and Mitchell, 2018). Thalidomide was correctly
identified as positive by TeraTox. Second, TeraTox reveals
concentration-response teratogenicity and cytotoxicity rela-
tionship. This can be integrated with pharmacokinetic and ex-
posure data to better estimate teratogenic risk in the clinic.
Third, TeraTox generates quantitative gene expression data.
Here, we used these data to reveal germ-layer factors, to build a
predictive model, and to identify pathways and gene-sets that
are regulated by teratogens differently than by nonteratogens.
Gene expression data can be also used to explore mechanisms
of action and to prioritize drug candidates for preclinical
development.

What sets TeraTox apart from other models is that it is less
of a phenotypic black box but rather an interpretable and ex-
plainable model that provides mechanistic insights into gene,
pathway, and germ-layer modulations. TeraTox informs predic-
tions not only based on statistical data patterns but builds upon
biological mechanisms and thus may reflect disturbed

functionalities, similar to those leading to teratogenicity in vivo.
These features put TeraTox conceptually in a group of other
assays that use phenotypic changes or disturbed functionalities
as readouts (Dreser et al., 2020; Hoelting et al., 2016; Meisig et al.,
2020; Pallocca et al., 2016). The model consolidates our previous
intention to “focus on germ layers” and corroborates recent
work exploring gastruloid models that profiles morphological
changes of germ-layers for teratogenicity prediction (Jaklin
et al., 2020; Moris et al., 2020).

Interpretability and explainability analysis shed light on
both the strengths and the limitations of the TeraTox model.
Most importantly, we could distinguish cytotoxicity from tera-
togenicity. We explored machine-learning model variants for
both teratogenicity and cytotoxicity predictions and made the
observation that the best models depend on the target variable.
Whereas germ-layer factors and random forest performed best
for teratogenicity prediction, the combination of all pathway re-
porter genes and regularized linear regression with elastic nets
showed the best prediction for cytotoxicity (Supplementary
Figs. 3a and 3b). There are 2 likely reasons. First, the molecular
phenotyping platform contains well-curated genes that reflect
cytotoxicity and cell death, which were highlighted in a previ-
ous drug screening study using iPS-derived cardiomyocytes
(Drawnel et al., 2017). Therefore, we anticipate that these genes
are used by linear regression to predict cytotoxicity. Second, ter-
atogenicity is notably complex. It can be induced in many differ-
ent ways, with different perturbations leading to different
down-stream changes that are collectively known as teratoge-
nicity. Therefore, a change in the total output of the germ-layer
regulatory network is probably a more robust readout of terato-
genicity than individual genes. Random forest, which is an en-
semble learning method, is better at detecting such
heterogeneous signals than linear regression.

Further studies are warranted to explore several parallel
paths for further optimization of the TeraTox assay. These can
be divided into 4 categories: (1) paths leading to better charac-
terization of EB differentiation, (2) paths leading to testing of
larger chemical spaces beyond pharmaceuticals, (3) paths lead-
ing to better predictive and explanatory algorithms, and (4)
paths leading to better biological models of human embryo de-
velopment. These lines of research could broaden the applica-
bility domain and increase the robustness of the TeraTox assay.
To better characterize EBs, multimodal characterizations of the
EBs using bulk and single-cell omics, morphological profiling,
and time-series experiments could be used. Extension of the as-
say duration to more than 7 days or using other differentiation
protocols may further improve TeraTox capacity to model meso-
derm and endoderm development.

There are several options to further improve the predictivity
and the interpretability of the TeraTox model. To better distin-
guish between nonteratogens and teratogens, we may try to
test the compounds with the TeraTox assay at lower concentra-
tions (especially for nonteratogens), where the lowest concen-
tration should be predicted to have a TS equal to or close to
zero. In this context, it could be feasible to apply the exposure-
based validation approach described by Daston et al. (2014),
based on minimal and maximal concentration-dependent
effects of teratogenicity. Another option could be to include the
TeraTox assay in a test battery to preselect those compounds
that show high cytotoxic interference with weak teratogenicity.
Multimodel data could be used to identify further relevant fea-
tures beyond germ-layer genes and factors. As more data are
collected, we may also optimize the prediction algorithm, for in-
stance using the nearest-neighbor prediction or other variants.
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Finally, the TeraTox assay may benefit from a better modeling of
human embryo development. We may use alternative
morphology-based assays of gastruloids to complement the
TeraTox readout (Baillie-Benson et al., 2020; Moris et al., 2020).
Alternatively, sophisticated microphysiological systems may
better mimic the maternal-placenta-embryo axis and hence,
may recapitulate true embryo exposure levels and give insights
into active drug metabolism although drugs do not need to
cross the placental barrier to cause fetal harm (Blundell et al.,
2016, 2018; Boos et al., 2021). In the future, they may replace the
3D EBs in TeraTox. In the current throughput, though, such sys-
tems will probably be more powerful as a secondary assay to
spot check a few compounds of particular interest. For this pur-
pose, a continuous integration and modeling of data of human
embryogenesis, for instance from omics, imaging, and perturba-
tion studies, is required to guide further optimization of the
TeraTox assay (Canzler et al., 2020; Mantziou et al., 2021; Yan
et al., 2013).

CONCLUSION

We demonstrate that the TeraTox is a novel predictive human
in vitro assay for pharmaceutical teratogenicity prediction that
addresses several limitations of alternative assays regarding
sensitivity, species-specificity, and interpretability. We believe
that its adoption in drug discovery empowers preclinical terato-
genicity assessment. Further optimization of the TeraTox assay
and its routine use in drug-screening processes will lead us to-
wards better preclinical assessment of teratogenicity. Thus, we
solicit the community for helping us with further refining and
validating TeraTox in drug discovery and other contexts.
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