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Abstract
The intestinal apicomplexan parasite   is a major cause ofCryptosporidium
diarrheal disease in humans worldwide. However, treatment options are
severely limited. The search for novel interventions is imperative, yet there are
several challenges to drug development, including intractability of the parasite
and limited technical tools to study it. This review addresses recent, exciting
breakthroughs in this field, including novel cell culture models, strategies for
genetic manipulation, transcriptomics, and promising new drug candidates.
These advances will stimulate the ongoing quest to understand 

 and the pathogenesis of cryptosporidiosis and to develop newCryptosporidium
approaches to combat this disease.
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Introduction
The intestinal apicomplexan parasite Cryptosporidium is respon-
sible for waterborne outbreaks of diarrheal disease worldwide 
and continues to cause opportunistic infection in immunocom-
promised hosts, including patients with untreated HIV/AIDS1. 
Recently, this parasite has been increasingly recognized as a 
major cause of diarrhea with long-term consequences, such as 
malnutrition, growth, and cognitive deficits in young children in 
resource-limited settings2–7. Despite the global burden of crypt-
osporidiosis, treatment options are limited to supportive therapy 
and a single US Food and Drug Administration-approved drug, 
nitazoxanide, which has limited efficacy in malnourished chil-
dren and is ineffective in immunocompromised individuals8–11.  
Thus, there is an urgent need for the development of novel 
strategies to control cryptosporidiosis, particularly in sus-
ceptible populations4. Progress in this field has been severely 
hampered by the notorious intractability of the parasite and 
limited tools to study it4. Recently, however, there have 
been some exciting technological breakthroughs which have 
spurred renewed efforts to understand Cryptosporidium at the  
molecular and cellular levels and the pathogenesis of crypt-
osporidiosis and to develop new approaches to combat this dis-
ease. This article reviews these breakthroughs and discusses 
the continuing challenges associated with Cryptosporidium  
research.

Novel cell culture models enable propagation of 
Cryptosporidium parvum in vitro
There are several constraints to drug development for  
cryptosporidiosis4,12. The pathogenesis of the disease and the 
molecules and pathways that can be targeted for drug devel-
opment are poorly understood13. One of the reasons for this 
is the lack of primary intestinal epithelial cell (IEC) models 
that recapitulate normal human IEC structure and function and  
support robust infection and the completion of the life cycle 
of the parasite, permitting continuous propagation in vitro. 
Most models of C. parvum infection in vitro employ trans-
formed or immortalized adenocarcinoma-derived human IEC 
lines, such as Caco-2, HCT-8, and HT2914,15. Primary human 
and bovine IEC models permit infections and Cryptosporid-
ium hominis and C. parvum, respectively16,17, and C. parvum 
infection in a non-cancer-derived IEC line, FHs 74 Int, has also  
been reported18. However, these cell lines support C. parvum 
infection for only a few days, do not permit completion of the 
life cycle or continuous propagation12, and can display vari-
ation in gene expression depending on culture conditions19.  
Cell-free systems for C. parvum culture have been reported20, 
but although the parasite was observed to complete its life 
cycle by transmission electron microscopy21, these in vitro 
axenic systems do not permit investigations of the parasite  
interactions with the host epithelia.

Recently, however, promising cell culture models that over-
come some of the limitations of earlier models have been 
developed. For instance, Morada et al.22 described a cul-
ture system in a simulated gut-like environment using HCT-8 
cells and polysulfone hollow-fiber technology for continuous  
and long-term production of oocysts. Through the use of  

specialized equipment and culture medium supplements,  
C. parvum oocysts could be continuously propagated for more 
than 6 months. Various developmental stages were identified 
by scanning electron microscopy of infected host cells after 
8 weeks of parasitic growth and by antibody staining using  
anti-sporozoite and anti-oocyst wall antibodies SPORO-GLO 
and CRYPT-A-GLO (http://waterborneinc.com/crypt-a-glo/), 
respectively. This system promises to be useful for large-
scale generation of infective oocysts. Other potential advan-
tages include the availability of a large surface area for efficient 
growth of host cells at high cell densities comparable to in vivo 
conditions and the creation of a biphasic medium that mim-
ics the anaerobic gut environment. However, this technology is  
not readily scalable and is not practical for the screening of 
drugs or for investigations of pathogenesis in multiple repli-
cates in real time. In addition, the hollow-fiber system employs 
the transformed HCT-8 cell line that may not replicate the  
structure and function of primary human intestinal cells.

Miller et al.23 developed a culture system for the propaga-
tion of infective C. parvum oocysts employing the human 
esophageal squamous cell carcinoma cell line COLO-680N. 
Infection with two different C. parvum strains resulted in the 
production of sufficient amounts of infective oocysts (identi-
fied by CRYPT-A-GLO) to enable continuous propagation  
of the parasite. Lipidomics and atomic force microscopy imag-
ing confirmed the presence of oocysts in the culture. This 
seems to be a promising model for propagation of oocysts, 
but it uses an esophageal squamous carcinoma-derived 
line rather than primary human IECs, the natural habitat of  
anthroponotic Cryptosporidium spp.

Two-dimensional culture systems are not ideal, since they 
do not represent the three-dimensional (3D) topology of the  
intestine in vivo. DeCicco Repass et al.24 used a novel 3D bio-
engineered human intestinal tissue system for C. parvum 
infection. This model employs a porous silk protein scaffold-
ing system with a lumen that is seeded with human IEC lines 
Caco-2/HT29-MTX and a “bulk” space surrounding the lumen  
that is seeded with human myofibroblasts (H-InMyoFibs) 
which secrete growth factors that support IEC growth25  
(Figure 1). Immunofluorescence staining using monoclonal  
antibody (mAb) 4E9 which recognizes a glycopeptide epitope26 
and confocal microscopy was used to identify invasive and 
intracellular C. parvum stages. Infection in this model lasted 
for at least 17 days (the longest time tested). Importantly,  
contents from infected scaffolds could be transferred to fresh 
scaffolds to establish new infections for at least three rounds, 
suggesting that infection might be propagated for a longer 
term. Completion of the life cycle, with the formation of 
new oocysts identified by CRYPT-A-GLO, occurred in this 
model, which can be used to evaluate pathogenic processes  
and appears to be amenable to rapid drug screening. How-
ever, the small size of the model is a limitation for large-scale 
propagation. Additionally, the culture system employs trans-
formed adenocarcinoma-derived Caco-2 and HT29-MTX 
cells, which are not representative of primary human IEC  
cells in vivo12.
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This issue was addressed using primary human intesti-
nal enteroid cells to replace the transformed IEC lines in the  
system27. Enteroids are stem cell-derived 3D structures that 
can be generated from crypts derived from human intesti-
nal biopsies, can be passaged indefinitely, and are a more  
physiological alternative to transformed cell lines28,29. This 3D 
ex vivo model supports robust C. parvum infection and results 
in the production of oocysts30. The use of murine-derived enter-
oids for C. parvum infection has also been reported31. Recently, 
Heo et al. used human lung and intestinal epithelial organoids 
and CRYPT-A-GLO and SPRO-GLO antibodies to demon-
strate that these systems can support the complete life cycle 
of C. parvum32. Although the newly generated oocysts were  
infectious in vivo, the yield and efficiency of infection were 
low, and compared with the hollow-fiber system, these orga-
noids could support continuous culture for only 28 days  
concurrent with a decrease in parasite number over time.

The molecular biology toolbox expands
Until recently, reverse genetics approaches were not trac-
table for Cryptosporidium, making the elucidation of viru-
lence factors and pathogenic pathways and the validation of 
drug targets next to impossible4,13. In a transformative break-
through for the field (Figure 2), Vinayak et al.33 tested their 
optimized transfection protocol by targeting the thymidine  
kinase (TK) gene of C. parvum. Parasites were transfected with 
a vector encoding a guide RNA specific to TK and the Strep-
tococcus pyogenes Cas9 endonuclease, which introduces a 
double-stranded break into the TK locus. Expression of the 
guide RNA and of Cas9 was driven by C. parvum promot-
ers. In addition, parasites were co-transfected with a donor 
DNA, which serves as a template to repair the double-stranded 

break introduced by Cas9. This donor DNA encoded a fusion  
protein of the Nluc luciferase reporter gene and the NeoR resist-
ance gene, whose expression was driven by the C. parvum 
enolase promoter. To promote homologous recombination, 
the donor DNA included flanking sequences complementary 
to regions upstream and downstream of the endogenous TK 
gene. This work resulted in the successful creation of a stable  
C. parvum TK knockout line33.

Several components of the canonical RNA interference (RNAi) 
pathway are not encoded in Cryptosporidium genomes, preclud-
ing RNAi mechanisms for gene silencing34,35. In this pathway, 
double-stranded RNA (dsRNA) with sequence complementa-
rity to an mRNA of interest is processed into single-stranded 
RNA (ssRNA), leading to the cleavage of the target mRNA 
by the enzyme Argonaute 2 (Ago2). Castellanos-Gonzalez  
et al.36 addressed this limitation by transfecting parasites with  
human Ago2 protein, which was preloaded with ssRNAs against 
C. parvum transcripts, resulting in the reduced expression of  
targeted transcripts.

Another molecular mechanism of gene silencing was devel-
oped for C. parvum through the use of morpholinos37,38.  
Morpholinos are synthetic DNA analogs that inhibit protein 
translation initiation by base pairing to complementary mRNA. 
In a recent study, excysted sporozoites and HCT-8 cells were  
treated with morpholinos targeting C. parvum lactate dehy-
drogenase (CpLDH) and putative arginine n-methyltransferase  
(CpAMT) prior to in vitro infection, resulting in decreased pro-
tein expression of CpLDH and CpAMT37. In a follow-up study, 
morpholinos optimized for in vivo delivery against CpLDH and  
Cp15/60 were injected intraperitoneally into interferon-gamma  

Figure 1. Bioengineered three-dimensional human intestinal tissue model. Silk cocoons (A) were processed to yield a viscous silk 
solution (B). (C) The silk solution was poured into cylindrical molds, and a wire was inserted to develop a lumen equivalent. Caco-2 and HT29-
MTX cells (D) were seeded into the lumen (E), while the porous bulk space was seeded with H-InMyoFibs. (F) The Caco-2 and HT29-MTX 
cells in the lumen were infected with Cryptosporidium parvum oocysts or purified sporozoites. Intracellular development through asexual and 
sexual cycles occurred to complete the life cycle with the formation of oocysts. 3D, three-dimensional; PDMS, polydimethylsiloxane. Figure 
reproduced with permission from the American Society for Microbiology23.
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knockout mice, which then were infected with C. parvum  
oocysts. Expression of both proteins decreased following  
infection in morpholino-treated mice38. Whether or not protein 
expression rebounds during the course of subsequent in vitro  
infection using these purified oocysts was not ascertained.

The big data approach to transcriptome analysis
To elucidate parasite pathways that are important for 
pathogenesis, it is essential to examine the gene expres-
sion profile of C. parvum during infection. RNA sequenc-
ing (RNA-Seq) has been an invaluable high-throughput, 
deep-sequencing-based approach to mapping the full cellular  
transcriptome. This big data approach allows researchers to 
probe host–pathogen interactions by analyzing transcrip-
tomic changes in both host and pathogen at any point in time. 
In a recent study40, RNA from C. parvum infection of the por-
cine intestinal cell line IPEC-J2 was harvested 24 hours after 
infection and subjected to RNA-Seq analysis. The transcrip-
tomes of oocysts alone and uninfected IPEC-J2 cells were also 
mapped as controls. This study identified genes involved in  
ribosome biogenesis and translation as being upregulated in 
C. parvum during infection in vitro compared with oocysts. In 
addition, cell division pathways were upregulated in infected 
versus uninfected IPEC-J2 cells40. C. parvum transcripts 
accounted for only 2.2% of the total reads in this study, but 
whether that proportion was sufficient to measure low-level  
transcripts was not addressed. Another RNA-Seq study com-
pared the transcriptome of C. parvum sporozoites puri-
fied from oocysts, the intestine of infected calves, or infected  

HCT-8 cells41. General metabolic pathways were upregulated 
during in vivo infection compared with sporozoites alone. In 
addition, mucins, which have been shown to be involved in  
host cell attachment13, were upregulated in vivo. Genes encod-
ing oocyst wall proteins were upregulated during both  
in vitro and in vivo infection compared with sporozoites41. 
However, this study did not assess transcriptomic changes in  
host cells.

The search for novel drugs continues
Development of CRISPR/Cas9-based technology for genetic 
modification of C. parvum has paved the way for evaluating 
promising drug candidates using transgenic parasites in ani-
mal models42 (Figure 3). In a recent report, KDU731, a pyra-
zolopyridine, inhibited the enzymatic activity of recombinant  
C. parvum phosphatidylinositol 4-kinase (PI4K), exhibited anti-
cryptosporidial activity in vitro, and was pharmacologically  
non-toxic43. Treatment with KDU731 of interferon-gamma 
knockout mice infected with transgenic C. parvum resulted 
in a marked decrease in intestinal colonization and dimin-
ished oocyst shedding43. Moreover, KDU731 was efficacious 
in a calf model of cryptosporidiosis, leading to decreased  
oocyst shedding and a reduction in diarrhea. However, treat-
ment did not entirely eliminate parasite shedding or diarrhea in  
these animals43.

Bumped kinase inhibitors (BKIs) are a series of compounds 
that inhibit calcium-dependent protein kinase 1 (CDPK1) activ-
ity in apicomplexan parasites. Several studies to determine the 

Figure 2. Genetic modification of Cryptosporidium. Cryptosporidium parvum oocysts isolated from the feces of infected calves can be 
excysted to release sporozoites which can infect mammalian epithelial cells in culture but only for one or two rounds of replication before 
they die. Vinayak et al. used CRISPR/Cas9 technology to genetically modify C. parvum sporozoites33. Selection and replication of modified 
parasites requires direct injection into surgically isolated intestines of interferon-gamma knockout mice. Modified oocysts collected from 
mouse feces can be analyzed in culture or used to inoculate new mice to maintain the transgenic line. Figure reproduced with permission 
from Springer39.
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efficacy and safety of BKI in the treatment of cryptosporidi-
osis have been published recently44–47. Several of these com-
pounds have been found to reduce the severity of diarrhea 
and fecal oocyst shedding in calf and piglet models of crypt-
osporidiosis caused by C. parvum and C. hominis44,45,47. Unfor-
tunately, the compounds tested were not fully curative, and  
many displayed cytotoxicity, cardiotoxicity, or fetal tox-
icity (or a combination of these) in a variety of safety  
tests44,45,47.

Recently, MMV665917, from the Medicines for Malaria Ven-
ture “Malaria Box” of drugs48, was found to be efficacious 
against cryptosporidiosis in immunocompromised mice and 
neonatal calf models49,50. The severity of diarrhea and oocyst 
shedding in the calf model was reduced but not eliminated50. 
The mechanism of action of MMV665917 remains unknown,  
and toxicity assessments must be performed to establish safety  
in humans.

An alternative approach to drug discovery is to screen for inhi-
bition of a specific parasite target. A screen of the Prestwick 
Chemical Library for compounds that inhibit recombinant  
C. parvum glucose-6-phosphate isomerase (GPI) activity iden-
tified ebselen, a selenium-containing aromatic compound, 
which inhibited C. parvum, but not human, recombinant GPI  
activity51. Likewise, ebselen inhibited C. parvum growth dur-
ing in vitro infection51. However, the selectivity index—the ratio 
of 50% HCT-8 toxicity to 50% parasite inhibition—was only  
about fourfold, and efficacy in animal models was not  
ascertained51.

Ongoing limitations
Despite these recent advances, a number of limitations per-
sist and should be addressed in future studies. For exam-
ple, none of the newer cell culture systems is ideal in all 
respects. Many of these systems have limited visualization 
of parasite growth and development. Most models employ  
antibody-based detection by immunofluorescence. Until recently, 
specific antibodies to most developmental stages were not  

available. Wilke et al. recently reported development of C. par-
vum stage-specific murine mAbs52 which will be useful for 
identifying the intracellular stages present in the various mod-
els. Similarly, scanning or transmission electron microscopy 
relies on morphological assessment of which stages can be 
visualized. With the current availability of genetic manipula-
tion technology for Cryptosporidium, epitope tagging with fluo-
rescent tags or tags which can be fluorescently labeled with  
specific antibodies can be used to assess the presence of various 
stages.

The 3D bioengineered model, employing primary human enter-
oid cells, is one of the most exciting approaches but could 
be enhanced by incorporating additional cell types (such 
as nerve, immune, and endothelial cells), co-culturing with  
gut microbiota, and introducing physiological conditions 
(such as flow, peristalsis, and low oxygen tension) to develop  
an integrated “mini-gut” system.

Generating transgenic C. parvum strains using CRISPR/ 
Cas9-based technology will likely advance and transform 
research on this important parasite33,39,53. However, the selection 
and maintenance of transgenic strains are currently laborious and 
expensive. Transgenic C. parvum strains cannot be propagated  
continually in vitro, requiring direct injection of transfected spo-
rozoites into the surgically exposed small intestine of paromomy-
cin-treated, interferon-gamma knockout mice for selection and  
propagation33. Importantly, if a target gene is essential for the inva-
sion of small intestinal cells, it is currently not possible to gen-
erate stable transgenic strains of these parasites. Strategies for 
generating conditional knockouts or for complementing deleted  
genes have not yet been reported. NeoR, conferring resistance 
against paromomycin, is the only selectable marker currently 
available. Of the newer techniques for genetic manipulation of  
C. parvum, only the CRISPR/Cas9-based gene deletion has 
been reproduced in another system43, and this remains the only  
technique for targeted deletion, as opposed to knockdown of  
C. parvum genes. Finally, genetic manipulation of C. hominis, 
the species which is most relevant for human infection, is not yet  
possible.

Figure 3. A drug-discovery screening pipeline for Cryptosporidium. (1) A high content imaging infection assay in vitro was used to 
identify Cryptosporidium parvum inhibitory compounds. (2) Secondary screening using a cytopathic effect-based assay was used to 
identify imidazopyrazines and pyrazolopyridines with inhibitory activity against C. parvum and Cryptosporidium hominis. (3) Identification, 
expression, and enzymatic activity of the C. parvum phosphatidylinositol-4-OH kinase (PI4K). (4) Pharmacokinetics and toxicity testing of 
KDU731. (5) Activity of KDU731 against transgenic C. parvum infection in interferon-gamma knockout mice. (6) Activity of KDU731 against 
native C. parvum infection in the neonatal calf model. (7) Additional preclinical evaluation is needed before initiation of human clinical trials. 
Figure reproduced with permission from Elsevier42.
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For RNA-Seq analysis to be of optimal value, a high enough 
proportion of host cells must be infected in order for tran-
scriptomic changes in the host to be detected. Likewise, in 
order to accurately quantify changes in the transcriptome of 
the parasite, the proportion of parasite transcripts to host tran-
scripts must constitute a threshold of the total RNA pool  
to be analyzed. These issues might be overcome by apply-
ing single-cell RNA-Seq and increasing sequencing depth (or 
enriching for parasite transcripts prior to sequencing or both). 
In such an approach, RNA-Seq-based investigations should 
allow scientists to explore unknown genes or pathways that 
are essential for survival of the parasite and thus represent  
potential drug targets.

Significant advances have been made in the search for 
novel drugs for the treatment of cryptosporidiosis. How-
ever, some of these candidates do not eliminate oocyst shed-
ding, lead to only modest reduction in diarrhea severity or 
duration (or both), or have been neither rigorously tested for  
toxicity nor evaluated in pre-clinical trials. Nonetheless, many 
of these compounds are modifiable, and it might be possible 
to develop new analogs with enhanced efficacy and decreased  
toxicity to human cells. To the best of our knowledge, none 

of the drugs has reached the human clinical trial stage. In an 
effort to identify additional novel targets or inhibitors (or both), 
further studies using transgenic, transcriptomic, and drug  
screening tools are warranted.

Summary
Here, we have reviewed recent, promising advances in novel 
cell culture systems, genetic and molecular techniques, and 
drug discovery for Cryptosporidium. Space constraints pre-
clude an appraisal of other recent advances in the clinical, 
diagnostic, and epidemiological aspects of cryptosporidiosis,  
the biochemistry and cellular biology of the parasite, and the 
innate and adaptive immune responses to infection. However, 
the present review shows that recent innovations are advanc-
ing knowledge of Cryptosporidium and provide a basis for the 
development of effective and practical strategies for the pre-
vention and control of cryptosporidiosis in the vulnerable  
populations who need them most.
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