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Introduction

Alternative methods of delivering cardiac resynchronization
therapy (CRT), including left ventricular (LV) endocardial
pacing, His bundle pacing, and left bundle branch pacing,
have been developed in an effort to improve CRT. Noninva-
sive cardiac mapping using electrocardiographic imaging
(ECGi) is a method of assessing ventricular activation and
has been used in the CRT population to predict and assess
response, guide LV lead placement, and optimize therapy.' ™
In this report we describe the electrical effects of these
different pacing modalities using ECGi.

Case report

A 62-year-old man underwent an electrophysiology and
ECGi study 21 weeks after the implantation of a St Jude
Quadra Assura MP CRT-D system (St Jude Medical, Inc,
St Paul, MN). This was implanted following a new diagnosis
of heart failure during a hospital admission for breathlessness
and syncope. Admission electrocardiogram showed sinus
rhythm with left bundle branch block (LBBB) and a QRS
duration of 170 ms. Transthoracic echocardiogram showed
a dilated left ventricle with severely impaired systolic func-
tion (ejection fraction 25%), normal right ventricular (RV)
function, and mild mitral regurgitation. He underwent a
coronary angiogram, which showed unobstructed coronary
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KEY TEACHING POINTS

o Electrocardiographic imaging (ECGi) is a
noninvasive method for mapping electrical
activation of the heart.

e Endocardial pacing, His bundle pacing, and left
bundle branch pacing are alternative methods of
delivery of cardiac resynchronization therapy (CRT)
and demonstrate different activation patterns
using ECGi.

e Comparison of alternative methods of CRT using an
electrophysiology study and ECGi is a potential
technique to tailor pacing strategy in patients who
do not respond to conventional CRT.

arteries. He underwent cardiac magnetic resonance imaging,
which confirmed the diagnosis of nonischemic cardiomyop-
athy with no evidence of scar on late gadolinium enhance-
ment. The patient had a background of treated prostate
cancer, hypertension, and hypercholesterolemia.

The electrophysiology and ECGi study were performed as
part of a mechanistic cohort study (ClinialTrials.gov identi-
fier NCT04322877). The patient provided written consent
for the study, which was conducted in accordance with the
Declaration of Helsinki and approved by the local ethics
committee. The patient was fitted with a 252-electrode Cardi-
olnsight Sensor Array Vest (Medtronic, Minneapolis, MN)
before the procedure and underwent a low-dose computed
tomography scan to obtain electrode and cardiac positions,
as previously described.” Conventional CRT was delivered
through the implanted CRT-D device. Temporary His bundle
pacing was achieved using a high right atrial quadripolar
catheter for atrial pacing and a roving decapolar catheter
(6F Livewire 115 cm, St Jude Medical, Inc, St Paul, MN)
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Fluoroscopy images of catheter positions. A: Endocardial pacing. B: His bundle pacing. C: Left bundle branch pacing. CS = coronary sinus;

ICD = implantable cardioverter-defibrillator; LV = left ventricle; RA = right atrium; RV = right ventricle.

to locate and pace the His bundle. Endocardial CRT was
performed using the high right atrial quadripolar catheter, a
roving decapolar catheter at the RV apex, and a second
roving decapolar catheter (6F Livewire 115 cm, St Jude Med-
ical, Inc) at the basal lateral wall of the left ventricle, via
femoral arterial access with a retrograde aortic approach.
Left bundle branch pacing was performed using the high
right atrial quadripolar catheter and the roving decapolar
catheter in the left ventricle by locating a left bundle signal
on the septum. Fluoroscopy images of catheter positions

are shown in Figure 1. All temporary pacing was performed
at 10 beats per minute above intrinsic rate with a fixed output
of 5V at 0.5 ms and an atrioventricular delay of 100 ms.

Activation maps were created using the ECSYNC Cardi-
olnsight software (Medtronic, Minneapolis, MN) and the
following activation parameters were calculated:

(1) Global right/left ventricular electrical synchrony
(VVsync): the difference between the mean RV activa-
tion time and the mean LV activation time.
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Figure 2

Activation maps for each pacing configuration. Early activation is shown in red and late activation is shown in blue. CRT = cardiac resynchronization ther-

apy; CS = coronary sinus; LAD = left anterior descending artery; LBBB = left bundle branch block; LV = left ventricle; LVdisp = left ventricular dispersion time; LVtat
= left ventricular total activation time; RV = right ventricle; VVsync = right/left ventricular electrical synchrony; VVtat = biventricular total activation time.

(2) Global biventricular total activation time (VVtat): a mea-
sure of the total time required for both ventricles to activate.

(3) Global left ventricular total activation time (LVtat): a
measure of the total time required for the left ventricle
to activate.

(4) Global left ventricular dispersion time (LVdisp): the
standard deviation of LV activation times; a measure of
dyssynchrony within the left ventricle.

These measures have been previously validated in patients
undergoing ECGi assessment during CRT.”"°

The activation maps and activation parameters are dis-
played in Figure 2. The maps demonstrate different activation
patterns between different modes of CRT delivery. Baseline
intrinsic conduction shows an LBBB pattern with slow con-
duction across the anterior wall and late activation of the

basal lateral wall (seen in blue). A similar activation pattern
is seen in RV pacing. All 4 methods of CRT resulted in
reversal of LBBB. The activation maps for conventional
CRT and endocardial CRT demonstrate early activation
(seen in red) at the RV apex and in the mid lateral and basal
lateral LV walls, respectively. In contrast, His bundle and left
bundle branch pacing show early activation in the septum
with rapid activation across the LV, which is consistent
with recruitment of the His-Purkinje network.

As expected, intrinsic (LBBB) conduction showed dys-
synchronous late activation of the left ventricle compared
to the right ventricle, demonstrated by a very negative
VVsync. All methods of CRT improved right/left ventricular
synchrony, with VVsync having values closer to zero. In
addition, all methods of CRT improved biventricular total
activation (VVtat) and left ventricular activation (LVtat)
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times as well as dyssynchrony within the left ventricle
(LVdisp). Interestingly, in this patient the improvement in
VVtat, LVtat, and LVdisp was greater with endocardial
CRT, His bundle pacing, and left bundle branch pacing,
compared to conventional CRT.

Discussion
This case demonstrates the feasibility and utility of ECGi to
compare different methods of delivering CRT. Although
there has been great interest in alternatives to conventional
CRT, to our knowledge this is the first report of the electrical
effects of conventional CRT, endocardial CRT, His bundle
pacing, and left bundle branch pacing in the same patient.
In this patient, the alternative methods of CRT delivery
seemed to result in superior ventricular resynchronization
compared to conventional CRT. However, the cohort of
patients in whom CRT is indicated is a heterogenous group
and it is unlikely that a “one-size-fits-all” method of CRT de-
livery will be optimal in all patients. Differences in cardiac
anatomy, scar, and conduction block within the His-
Purkinje system are likely to affect response to different
methods of CRT delivery. An electrophysiology study with
ECGi assessment may therefore be a useful endeavor to
find the optimal means of CRT delivery prior to implantation.
Endocardial pacing results in more physiological activa-
tion of the myocardium and mechanistic studies have
suggested an improvement in hemodynamics and activation
times over conventional CRT.” Our group has demonstrated
that, in a group of ischemic CRT nonresponders, pacing at the
same site endocardially resulted in a significantly greater
acute hemodynamic response and shorter QRS duration
compared to epicardially.” It also allows the operator to target
an optimal area of myocardium without scar and where there
is late mechanical activation, without restriction by coronary
venous anatomy. Clinical studies have demonstrated the
feasibility and effectiveness of both wired and wireless
endocardial pacing systems, though concerns remain about
thromboembolic risk and procedural complications.” "’
Biventricular pacing results in delivery of 2 nonphysio-
logical wavefronts, which merge to activate the myocardium.
Recruitment of the His-Purkinje system to activate the ventri-
cles is an attractive concept to achieve synchrony in the heart
failure population. It has been theorized that pacing the
bundle of His with sufficient output can reverse bundle
branch block. Observational studies have demonstrated the
feasibility and effectiveness of His bundle pacing in deliv-
ering CRT to patients with heart failure, though thresholds
required for capture and bundle-branch correction are
high.'” Amold and colleagues'’ directly compared His
bundle pacing to conventional CRT in 23 patients with heart
failure and LBBB, using ECGi and hemodynamic assess-
ment. They found that His bundle pacing delivered better
ventricular resynchronization and a better acute hemody-
namic response. More recently, left bundle branch pacing

has been proposed as a means to reverse LBBB at lower
thresholds and has been shown to be a feasible method of
CRT delivery in small observational studies.'*"

Conclusion

To our knowledge, this is the first report of a direct compar-
ison of conventional CRT, endocardial CRT, His bundle
pacing, and left bundle branch pacing in the same patient.
Randomized controlled trials are required to assess the
superiority of these newer techniques over conventional
CRT. Given the heterogeneous cohort of patients who are
indicated for CRT, it is unlikely that a single technique will
be optimal in every patient. An electrophysiology study
with ECGi is a potential method of assessment to help tailor
therapy to individual patients.
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