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Abstract: The development of timelapse videos for the investigation of growing microbial colonies
has gained increasing interest due to its low cost and complexity implementation. In the present
study, a simple experimental setup is proposed for periodic snapshot acquisition of a petri dish
cultivating a fungus of the genus Candida SPP, thus creating a timelapse video. A computational
algorithm, based on image processing techniques is proposed for estimating the microbial population
and for extracting the experimental population curves, showing the time evolution of the population
of microbes at any region of the dish. Likewise, a novel mathematical population evolution
modeling approach is reported, which is based on the logistic function (LF). Parameter estimation of
the aforementioned model is described and visually assessed, in comparison with the conventional
and widely-used LF method. The effect of the image analysis parameterization is also highlighted.
Our experiments take into account different area sizes, i.e., the number of pixels in the neighborhood,
to generate population curves and calculate the model parameters. Our results reveal that, as
the size of the area increases, the curve becomes smoother, the signal-to-noise-ratio increases and the
estimation of model parameters becomes more accurate.
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1. Introduction

During the last decades, image capturing and processing have evolved from scarce technology,
used by professionals for niche applications, to a rapidly advancing research field with application in
low-cost and complexity data acquisition of long duration physical and/or biological phenomena [1].
To this end, a great amount of research effort has been spent on designing image processing
and machine learning-based approaches that not only quantify the population growth for image
sequences, but also provide accurate predictions concerning its evolution.

Scanning the open technical literature, there are several published papers that report the use of
images and logistic functions (LFs) for predicting a specific-cell type population growth [2–10]. In more
detail, in [2], the use of eight consecutive images, which were acquired by a single reflex (SLR) camera,
was presented, in conjunction with the probability of survival of hamster stem cells, which was modeled
according to the LF approach. Additionally, in [3], the authors showed that the in-vitro cellular growth
rate may be used as survival probability of the fetus in case of hamsters, while, in [4], a multi-camera
approach for modeling larva population by means of LF was presented. Another example of timelapse
application in population behavior is delivered in [5], where the insect Costelytra zealandica was
infected with the bacteria Yersinia entomophaga and its behavior was observed and recorded by
acquiring 1 image per 10 min, using a digital SLR camera. Fluorescence substances were used on
the insects to facilitate analysis of the resulting image sequence. More recently, in [6], the construction
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of a special incubation chamber was described that uses two petri dishes to control humidity for
a long duration. Images were acquired every 10 min for 40 days and used to record and study
the morphology of bacterial colonies, such as streptomycin, bacillus subtillis E42, serratia marcescens,
arthrobacter agilis, and nestekonia SP. The timelapse technique has also been applied to agriculture [7],
embryo moprhokinetics [8] and microbial interaction [9,10].

From the data processing point of view, a number of LF-based functions have been employed
for modeling and/or predicting the population evolution based on the birth and death rates [11,12].
In this direction, in [13,14], the bi-LF was introduced to model population evolution that show two
overlapping or sequential phases of logistic growth. The two LFs were summed and fitted to rice
crop evolution data to handle an initial growth increase followed by a decrease. The combined
curve provided a good fit to the data under investigation. Of note, non-linear least squares are
used to estimate the parameter values of the function. Meanwhile, in [15], the LF is augmented
by using an additive constant to accommodate varying capacity. This method was applied to two
actual cases of human population growth. Moreover, in [16], the bi-phasic LF was used for modeling
the sudden changes in the evolution of research papers and patents. The combination of two LFs
was treated in a systematic way, using the following categories: (i) Sequential (sum of two time
translated curves), (ii) superposed simultaneous curves, (iii) converging (first logistic growth combined
with a second logistic function, reaching the maximum at about the same time) and (iv) diverging
(different growth rates and carrying capacities). In all aforementioned cases, the resulting curves
were unable to accommodate data decreasing trends. Additionally, in [17], a number of different
extensions of the LF were discussed including the generalized logistic regression, the Von Bertalanffy,
and the Blumberg expressions. Again, these expressions were unable to model decreasing phases of
the data. Finally, in [18], the combertzian population growth model, which is a double exponential
model, with parameters that control the time shift, the maximum asymptotic population and the
maximum growth rate, was applied to investigate the evolution of breast cancer cells.

To the best of the authors’ knowledge, the problems of modeling the decreasing phase of the data
have not been adequately addressed in the technical literature. Motivated by this, the current
contribution presents an appropriate growth approach that is able to model both the increasing
and decreasing phases and verifies its efficiency by means of experiment-driven microbial population
modeling. In particular, we propose an experimental setup for periodic snapshot recording of
the evolution of a fungus on a petri dish. The selected fungus is the Candida species, which
is the most common cause of fungal infections [19–22]. The acquired images are processed in
the red–green–blue (RGB) color system to quantify the number of microbes in each pixel of the plate.
A novel mathematical model of the time evolution of the fungus for individual pixel/regions of
the plate is presented, which introduces an LF with second degree polynomial time exponent
capable of modeling population curves that may eventually become decreasing. Finally, we apply
parametric imaging to depict the spatial distribution of a quantity proportional to the growth rate of
the microbial population. The proposed approach is expected to open a new road to automatic data
acquisition, modeling, and prediction of different evolution processes. The results are further validated
and the robustness of the proposed method assessed using two more publicly available timelapse
videos with a different acquisition method and microbial colonies of different species.

The rest of this paper is organized as follows: Section 2 is focused on presenting the methodology
that we follow. In more detail, the experimental setups accompanied by the developed theoretical
framework are reported in this section. Next, in Section 3 experimental results that verify the proposed
analysis and the accuracy of the proposed modeling function are presented. Finally, useful remarks
and conclusions summarizing this work are provided in Section 4.

Notations: Unless otherwise stated, in what follows, lower and upper case bold letters denote
vectors and matrices, respectively. Moreover, A∪ B stand for the union of the sets A and B, while ⊕
and •, respectively, represent the morphological dilation and erosion. Additionally, (·)T and (·)−1,
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respectively, stand for the transpose and inverse operator. Finally, exp (·) and ln (·), respectively,
denote the exponential and the natural logarithm.

2. Methodology

This section aims at reporting the methodology that is used for deriving and modeling
the experimental data with the aid of LF with second degree (LFSD) exponent. In particular,
in Section 2.1, the experimental setup is described, while the approach that we use to
estimate the microbe population evolution and generate its curves is reported in Section 2.2.
Finally, Section 2.3 presents the proposed time-shifted LFSD exponent approach, while the parametric
imaging is reported in Section 2.4.

2.1. Experimental Setup

The experiment took place at the Department of Computer Science and Biomedical Informatics.
The experimental setup consisted of a Logitec 920 camera, used to acquire images of the petri dish
that was placed inside the incubator. As illustrated in Figure 1, an artificial light source of a white,
6 Watt light emitting diode (LED) was used for illumination. Images were captured on an inexpensive
laptop using the free version of video-velocity software (http://www.candylabs.com/videovelocity).
The Candida SPP was used as a fungus. The evolution of Candida SPP took place on a Biomeriex
cos petri dish. The red color of the plate is convenient for the post processing of the acquired images.
The camera was placed directly above the petri dish, at an approximate distance of 15 cm. Camera focus
was set manually and motion detection was disactivated. Image resolution was set to 360 × 640
pixels. The period of frame acquisition was set to 15 s and the fungus was allowed to grow for 50 h,
24 min and 36 s, resulting in a total of 12, 099 jpeg color images. The first 3800 of them contained no
evidence of fungus evolution; thus, they were excluded from the study to facilitate further processing,
leaving 8300 to participate in further processing. Indicative examples of the microbial evolution are
presented in Figure 2.

Figure 1. Experimental setup.

http://www.candylabs.com/videovelocity
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(a) No 5094. (b) No 12099 (last frame).
Figure 2. Two petri dish 1 frames in different microbial evolution states.

In order to extent the validation of the proposed algorithm, as well as test its robustness, two more
time lapse movies of microbial/fungi growth in petri dish were used, namely petri dish 2 and 3,
respectively. In petri dish 2, a number of different cultures were recorded on a blood sheep of
similar color as the one that we used in our experiment. The time lapse movie was obtained from
Youtube (https://www.youtube.com/watch?v=XLmk0zYIFjE) and consists of 880 frames of 720 lines
by 1280 columns. For petri dish 3, another timelapse movie was obtained as a publicly available file,
described in [23]. The movie was acquired using a scanner, with a period of one frame every 5 min.
A total number of 2250 frames consisting of 720 lines by 1280 columns were extracted and processed.
The frames were cropped inside the dish.

2.2. Image-Based Measurement of Microbe Population and Generation of Experimental Population Curves

As can be observed in Figure 2, the sheep blood agar plate 1 and 2 has a distinct red color.
The fungal colonies color is different than the plate’s; thus, we make the fundamental assumption that
the number of microbes of each imaged pixel is proportional to difference between the two colors.
Formally, the number of microbes at each pixel (i, j) at time t, can be estimated by the difference of
the red channel value Rt

i,j from the corresponding value at the initial frame R0
i,j. The total number of

microbes are computed for all pixels in the current frame t.
The pixels that lie outside the plate should be excluded. In this direction, a binary mask, Mi,j,

is defined with size equal to the one of the frame, which ideally should be 1 in all pixels inside the plate
and 0 otherwise. In other words, the pixels inside the plate can be detected by using the following
heuristic condition:

Mi,j = 1⇔
{

R0
i,j ≥ 2G

}
∩
{

R0
i,j ≥ 2B0

i,j

}
, (1)

where G0
i,j and B0

i,j are, respectively, the values of the green and blue channel of pixel (i, j) in
the initial frame. The binary mask in Equation (1) is further processed using the following
morphological operation:

M̃ = (M⊕ B1) • B2, (2)

where M is a matrix with elements Mi,j, while B1 and B2 are, respectively, square structuring elements
of size 11× 11 and 31× 31.

The total number of microbes in the current frame t can be obtained as

Nt = ∑
i,j

∆t
i,j M̃i,j, (3)

https://www.youtube.com/watch?v=XLmk0zYIFjE
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where M̃i,j is the i, j element of the matrix M̃, while

∆t
i,j =

{
Rt

i,j − R0
i,j,

∣∣∣Rt
i,j − R0

i,j

∣∣∣ ≥ T

0, otherwise
, (4)

with T being a threshold, which is applied in order to prevent insignificant color changes from
contributing to the population calculation. The threshold is experimentally determined and is set to 10.
The total estimated number of microbes in the whole plate for each frame is illustrated in Figure 3.
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Figure 3. The evolution of total number of microbes in the whole plate, according to Equation (3).

In the case of the third petri dish, which is radically different than the red-colored circular petri
dishes 1 and 2, the following minor modifications were made to the image-based measurement
algorithm. Since the whole frame contains microbial colonies there is no need to define the binary
mask as in Equations (1)–(3) can be simplified as Mij = 1 one for all i, j. Finally, since the original
color of the plate is black, Equation (4) should be modified, in order to take into account all chromatic
channels, as

∆ij = max
(
rij, gij, bij

)
, (5)

where

rij =

{
|Rt

ij − R0
ij|, for |Rt

ij − R0
ij| ≥ T

0, otherwise
, (6)

gij =

{
|Gt

ij − G0
ij|, for |Gt

ij − G0
ij| ≥ T

0, otherwise
, (7)

and

bij =

{
|Bt

ij − B0
ij|, for |Bt

ij − B0
ij| ≥ T

0, otherwise
. (8)

From Equation (3), it becomes evident that the population of microbes in a region of interest (ROI),
A, of the plate can be evaluated as

Nt ∝ ∑
(i,j)∈A

∆i,j. (9)

The ROI is a square defined round its central pixel of size (2r + 1) × (2r + 1). An indicative
example is presented in Figure 4a, where the result of applying Expression (9) to each pixel of the last



Sensors 2020, 20, 2545 6 of 17

frame for r = 8 pixel is provided. Figure 4b depicts a typical example of an experimental population
curve (blue) accompanied by the smoothed population one (black). The experimental curves show
statistical fluctuations, due to inaccuracies of the estimation method of the population, which are
considered as noise. In order to increase the accuracy of population modeling function, smoothing of
the extracted curve is necessary. In this direction, we employ a 27-element median filter.

12099

(a) (b)
Figure 4. (a) The estimated number of microbes according to Equation (9) for each pixel, encoded in
shades of gray. (b) A curve example and its smoothing effect at a random point of plate by using
median filter.

The instantaneous signal-to-noise ratio (SNR) is defined as

γ(t) =
s(t)
n(t)

, (10)

where s(t) and n(t) are, respectively, the signal and noise amplitudes. Note that the signal amplitude
is measured as the mean value of the curve, while the noise amplitude is calculated as the standard
deviation of the curve at the same time interval. Let us consider tp points before and after the current
frame, t, then s(t) and n(t) can be, respectively, obtained as

s(t) =
1

2tp + 1

t+tp

∑
τ=t−tp

Nτ , (11)

n(t) =

√√√√ 1
2tp + 1

t+tp

∑
τ=t−tp

(Nτ − s(τ)). (12)

2.3. The Proposed Time-Shifted LFSD Exponent

At the onset of the LF model, the population grows exponentially, but after some time, the rate
of increase reduces until it reaches zero. Thus, the LF approximates asymptotically a fixed value
that represents a theoretical maximum limit to the population size under given conditions, such as
the resource availability decrease, toxic products concentration, etc. Let pLF(t) denote the percentage
of the population maximum at time t, which can be expressed as

pLF(t) =
1

1 + exp (− (b1t + b0))
, (13)

where b0 and b1 are LF-specific parameters.
As the colony evolves further, it is possible for its actual population curve to exhibit a downward

trend and become decreasing, due to lack of nutrients, or the accumulation of toxic metabolic products.
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In order to model this type of population trend, we modify the conventional LF by introducing a second
degree polynomial as exponent. The LFSD can be written as

pLFSD(t) =
1

1 + exp (− (b2t2 + b1t + b0))
. (14)

In contrary to the conventional LF, the LFSD cannot be easily adjusted to fit
time-translated experimental data. That would require the exponent of LFSD to become
−
(

b2 (t− ts)
2 + b1 (t− ts) + b0

)
, introducing an extra parameter ts, which cannot be determined by

solving a linear system of equations. Instead, we alleviate this problem by measuring experimentally
the time ts of the first appearance of non-zero experimental data. Thus, given the values of
the population Ni, for i = 1, · · · , n, where i represents different time values, LFSD can be rewritten as

pLFSD(t + ts) =
1

1 + exp (− (b2t2 + b1t + b0))
, (15)

where b0, b1, and b2 are LFSD-specific parameters. In order to use Equation (15) for modeling
the experimental population curve of a colony on the plate, we have to normalize the population curve
in the range [0, 1]. In this direction, we set

pt =
Nt

Nmax + e
, (16)

where Nmax is the maximum value of the population curve and e is a small positive number.
From Equation (15), we can obtain a linear form that facilitates the calculation of parameter b0, b1,

and b2, as

yi = ln
(

pLFSD(ti + ts)

1− pLFSD(ti + ts)

)
, (17)

or equivalently

yi = b2t2
i + b1ti + b0. (18)

Given the values of (ti, yi) with i = 1, · · · , N, the parameters b0, b1, and b2 can be obtained as
the solution of

Tb = y, (19)

where b = [b1, b2, b3]
T , y = [y1, · · · , yN ], and

T =

 t2
1 t1 1
...

...
...

t2
N tN 1

 . (20)

From Equation (19), b can be calculated as

b =
(

TTT
)−1

TTy. (21)

Theorem 1. The maximum value of the population curve can be achieved at

tmax = − b1

2b2
+ ts. (22)
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Proof. The growth rate can be evaluated as

ρ =
dyi
dti

, (23)

or equivalently

ρ =
dyi

dpLFSD(ti + ts)

dpLFSD(ti + ts)

dti
, (24)

which can be analytically written as

ρ = C (2b2ti + b1) exp
(
−
(

b2t2
i + b1ti + b0

))
, (25)

where

C =
1

pLFSD(ti + ts) (1− pLFSD(ti + ts))
. (26)

In order to evaluate tmax, we set ρ = 0 and we get Equation (22).

Remark 1. Note that if the population curve is monotonically increasing during the time period of image
acquisition, then Equation (22) returns a value outside the time frame. This value should be discarded.

An example of determining the model parameters for the experimental population curve of
the plate that exhibits a late decreasing phase is shown in Figure 5. Modeling the experimental
data using LF and LFSD is performed, respectively shown in pink and green curve. From this
figure, it becomes evident that the LFSD achieves more accurate modeling compared to the LF,
because the former is able to model the last phase, when the population declines, while, in the deceasing
phase, the latter increases monotonically with its slope approaching zero.

Figure 5. The experimental curve of the fungi on the whole plate is illustrated in blue and the modeling
of the logistic function (LF) with linear and square exponent with pink and green, respectively.

2.4. The Parametric Image

It is possible to apply the experimental population curve extraction and its parameter estimation
to each pixel of the frame, so that the values of the model parameters can be calculated separately
for each non-zero pixel and displayed as a parametric image. In this study, parametric images are
constructed for the parameters b2 and b1 of the LFSD, b1 of the LF, tmax as calculated by Equation (22)
from the LFSD and t0. Therefore, the parametric image shows regions of the plate with a different
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population growth rate. Figure 6 shows the value of the coefficient b2 for the LFSD model for ROI with
r = 4.

Figure 6. The parametric image resulting from the determination of the linear exponent b2 of the LF
with second degree (LFSD), for each non-zero pixel of the image in the final frame, using the region of
interest (ROI) with r = 4 pixels.

3. Results

This section is devoted to presenting experimental results that evaluate the effectiveness and
accuracy of the proposed approach. In this direction, in Figure 7, an indicative example is depicted,
where, in the final acquired frame, two regions of the plate, which contain several colonies, are selected.
The extracted population curves are also presented in Figure 7d,e. It is evident that the curve of
the smaller blue area, which is depicted in Figure 7b,d, shows a decreasing trend. Finally, as illustrated
in Figure 7c,e, the evolution curve of the yellow area has a monotonically increasing trend.
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(e)
Figure 7. (a) The last snapshot of the petri dish, along with two selected areas containing many colonies,
depicted in yellow and blue; (b,c) the selected areas of the plate magnified; (d,e) the corresponding
experimental population curves of the blue and yellow areas, respectively.
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Next, the influence of the selected area size is explored. First, a pixel is selected and the
experimental population curve is calculated for different sizes of the square region centered at
the selected pixel. As depicted in Figure 8, for each experimental curve, the modeling is performed
using both the LF and LFSD approaches. Moreover, the LFSD approach is observed to be more accurate
compared to the LF. Interestingly, it becomes obvios that as the value of r decreases, the population
curve becomes more noisy.
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(i)
Figure 8. The modeling of the generated experimental curves with LF and LFSD for a different size
area r, around the central point. (a) r = 15, (b) r = 14, (c) r = 13, (d) r = 12, (e) r = 11, (f) r = 10,
(g) r = 9, (h) r = 8, (i) r = 7.

For each r parameter, the coefficients of the exponential polynomial in the case of LF and LFSD
are , respectively, reported in Tables 1 and 2. Notice that b1 in the case of LF and b2, b1 of LFSD are
population growth rate metrics. The consistency of the curve extraction and proposed modeling is
shown in Figure 9, where tmax is calculated using Equation (22). It can be observed that tmax does not
vary substantially even for drastically r changes.

Table 1. The values of b1 of LF for different values of r, for the selected pixel of the dish.

Size of Are (Pixel) Number of Pixels in the Area b1(×10−3) b0

7 225 8.39 −1.918
8 289 8.44 −1.962
9 361 8.46 −1.811
10 441 8.61 −2.040
11 529 8.51 −1.976
12 625 8.68 −2.004
13 729 8.20 −1.828
14 841 8.68 −2.263
15 961 8.72 −2.386
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Table 2. The values of b2, b1, b0 of LFSD for different values of r, for the selected pixel of the dish.

Size of Are (Pixel) Number of Pixels in the Area b2(×10−7) b1(×10−3) b0

7 225 −1.06 1.59 −2.934
8 289 −0.78 1.35 −2.647
9 361 −1.01 1.57 −2.786

10 441 −1.26 1.78 −3.316
11 529 −1.25 1.77 −3.246
12 625 −1.23 1.78 −3.273
13 729 −1.31 1.79 −3.182
14 841 −1.60 2.11 −4.052
15 961 −1.78 2.27 −4.431

Figure 9. The instantaneous signal-to-noise ratio (SNR) for the population curve in Figure 8,
calculated for ROI size r = 5 and r = 12.

To highlight the superiority of LFSD against the conventional LF, in Figure 10a, we present
a population evolution, which after a specific frame is decreasing. Figure 10b illustrates the estimated
population against the LF-based model. From this figure, it becomes evident that the conventional
LF is incapable of modeling this behavior. This highlights the importance of LFSD for modeling such
trends. The number of pixels with negative b1 in the conventional LF in the whole petri dish is also
reported in Table 3. We notice that the number of pixels having negative exponent b1 decreases as
the radius of the ROI area increases (Figure 11). However, the proposed LFSD does not suffer from
this shortcoming.

(a) (b)
Figure 10. (a) An example of a population curve with negative b1 of the LF. (b) The logarithmic quotient
and its classic LF modeling.
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Table 3. The effect of r to the determination of b1 for the conventional LF population model.

r Number of Pixels with b1 < 0

2 376
4 229
8 85

Figure 11. The value of b1 coefficient of the LF as a function of the number of pixels in ROI.

The extracted population curves exhibit noticeable fluctuation, which appears to increase as
the local mean value of the curve increases. Figure 9 plots the instantaneous signal-to-noise ratio (SNR)
for the population curve shown in Figure 8. The parameter tp is set to 80. The logarithmic definition of
SNR was used. It becomes apparent that as the population increases with time, both the amplitude of
signal and noise increases, however the signal amplitude increases faster than the noise (curve’s local
standard deviation); thus, the SNR overall increases. Furthermore, as expected, the noise decreases as
the size of the ROI used for the calculation increases.

The time ts of the first appearance of non-zero experimental data for each pixel is shown as
a parametric image in Figure 12.

Figure 12. Parametric image of the time of first microbial appearance ts.

Similarly, tmax is shown in Figure 13a and also superimposed on the petri dish in Figure 13b,
using shades of green.
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(a) (b)
Figure 13. The pixels with observed zero growth rate during the experiment, shown in green,
superimposed on the final frame of the petri dish.

Finally, Figure 14 shows parametric images of b2 of LF, with their color scale, for two different
radii r = 4 and 8 pixels, respectively. Visual inspection of the parametric images b1 and considering
the influence of the b1 factor on the population curve, suggests that areas with a high parameter values
exhibit a low population density.

(a) r = 4 (b) r = 4

(c) r = 8 (d) r = 8
Figure 14. The effect of r to the determination of b2 (a,c) and b1 (b,d) for the LFSD population model
are shown for r = 4, 8.

In Figure 15, four locations are shown on different colonies of petri dish 2 in the final frame.
The population curves that were extracted and modeled using the LF and the proposed LFSD,
are shown in Figure 16. Again, it can be observed that the LFSD achieves more accurate population
modeling in the cases of populations reaching their maximum during the acquisition, as well as in
the case of population’s continuous grow.
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A

B

C

D

Figure 15. The final frame of petri dish 2, with four locations marked on different colonies, from which
population curves are extracted and modeled.

(a) (b)

(c) (d)
Figure 16. The modeling of the generated experimental curves with LF and LFSD for area of size r = 5,
around the central point. The curves are extracted from locations marked as (a) A, (b) B, (c) C, and (d)
D on the final frame of the petri dish 2.

The parametric image of petri dish 2 that depicts the time in which the population is maximized,
is shown in Figure 17. Blue color represents pixels with continuously increasing population that did
not exhibit maximum value during the acquisition, yellow color marks pixels whose tmax cannot be
determined because the curve is too noisy to be modeled (or pixels outside the dish) and finally shades
of green color (from black to light green) encode the determined value of tmax for the remaining pixels,
in the range [0, 900] frame. Note that even the yellow pixels inside the petri dish appear in areas where
no visible colony growth could be detected
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Figure 17. The final frame of petri dish 2, with four locations marked on different colonies, from which
population curves are extracted and modeled.

In Figure 18, four locations are shown on different colonies of petri dish 3. The extracted
population curves and the extracted LF and LFSD-based models are depicted in Figure 19. It can be
observed that the LFSD achieves more accurate population modeling.

A

C

B

D

Figure 18. The final frame of petri dish 3, with four locations marked on different colonies.

(a) (b)

(c) (d)
Figure 19. The modeling of the generated experimental curves with LF and LFSD for area of size r = 5,
around the central point. The curves are extracted from locations marked as (a) A, (b) B, (c) C, and (d)
D on the final frame of the petri dish 2.
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4. Conclusions

In this paper, a low-complexity approach for petri dish image acquisition, automatic measure
and mathematically modeling fungus evolution was presented. The images were acquired
using an inexpensive web camera. An image-based heuristic method for microbial number
estimation was described and applied for the generation of experimental population curves. A novel
modeling approach based on the LFSD was presented for the population evolution and compared
with the conventional LF. Our results highlighted that the the proposed approach outperforms
the commonly-used LF one, in terms of accuracy, since it can also capture decreasing trends of
the population evolution. The concept of parametric imaging was studied in order to further improve
the visualization of the LFSD model parameters. Finally, the different origins of the three petri
dishes, the variety of image acquisition process, image quality and resolution and the different
species of growing microorganisms, show the robustness of the proposed population measurement
and modeling method.

Future work may include comparison between the growth measures identified in this work,
such as the rate of growth and the time of maximum population, between different cultures of the same
or different micro-organisms. Such comparisons also require identical image acquisition conditions
and equipment and possibly color histogram normalization of the images, adapted to the background
color of each individual dish.
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