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Abstract:

Effective treatment of pediatric acute leukemia is dependent on accurate genomic
classification, typically derived from a combination of multiple time-consuming and
costly techniques such as flow cytometry, fluorescence in situ hybridization (FISH),
karyotype analysis, targeted PCR, and microarrays (Arber et al., 2016; Iacobucci &
Mullighan, 2017; Narayanan & Weinberg, 2020). We investigated the feasibility of a
comprehensive single-assay classification approach using long-read sequencing, with
real-time genome target enrichment, to classify chromosomal abnormalities and
structural variants characteristic of acute leukemia. We performed whole genome
sequencing on DNA from diagnostic peripheral blood or bone marrow for 54 pediatric
acute leukemia cases with diverse genomic subtypes. We demonstrated the
characterization of known, clinically relevant karyotype abnormalities and structural
variants concordant with standard-of-care clinical testing. Subtype-defining genomic
alterations were identified in all cases following a maximum of forty-eight hours of
sequencing. In 18 cases, we performed real-time analysis – concurrent with sequencing
– and identified the driving alteration in as little as fifteen minutes (for karyotype) or up
to six hours (for complex structural variants). Whole genome nanopore sequencing with
adaptive sampling has the potential to provide detailed genomic classification of acute
leukemia specimens with reduced cost and turnaround time compared to the current
standard of care.
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Introduction:

B-cell acute lymphoblastic leukemia (B-ALL) is the most common type of pediatric
cancer. B-ALL shares genomic underpinnings across the age spectrum into late
adulthood, albeit with increased relative frequency of high-risk genomic subtypes. Acute
Myeloid Leukemia (AML) accounts for 15-20% of pediatric acute leukemia cases and is
defined by large-scale structural variation and small sequence variations, which,
similarly to B-ALL, are detectable with whole-genome sequencing (de Rooij, Zwann &
van den Heuvel-Eibrink, 2015). Currently, B-ALL and AML cases are classified into
genomic subtypes through a cascade of internal and external testing that is complex,
costly, and often lacks comprehensiveness. These tests include karyotype analysis,
fluorescence in situ hybridization (FISH), polymerase chain reaction (PCR) testing,
targeted sequencing panels, and/or comprehensive genomic sequencing (Arber, 2016;
Iacobucci, 2017; Narayanan, 2020). The "standard-of-care" diagnostic pipeline varies
greatly by testing facility, with diagnosis in resource-limited areas being particularly
challenging due to limited availability of diagnostic tools (Gupta et al., 2015). The
multiple distinct, costly, and laborious techniques, which are necessary to accurately
classify pediatric acute leukemia into clinically relevant genomic subtypes, have
implications for prognosis, selection of treatment intensity, and precision medicine
approaches.

Single assay sequencing-based classification approaches are a potential solution
to reduce the complexity of the standard-of-care cascade of tests, minimize costs, and
expand the comprehensiveness of genomic classification. Short-read sequencing
(including whole-genome, whole-exome, transcriptome sequencing, or a combination
thereof) is an established single assay approach to resolve structural variation
associated with B-ALL and AML (Zhang et al., 2016; Liu et al., 2016; Fischer et al.,
2015; Paulsson et al., 2015; Leisch et al., 2019). Long-read sequencing approaches
offer potential relative advantages, including decreased turn-around time, decreased
computational complexity, decreased cost, and improved structural variation detection
(Jeck et al., 2019; Liu et al., 2020; Oikonomopoulos et al., 2016; Jain et al., 2018).
Long-read sequencing approaches, like Oxford Nanopore Technologies (ONT)
platforms, have the potential to generate faster and more cost-effective results
compared with short-read sequencing methods – this is in part due to the ability to
generate sequence data continuously and asynchronously such that sequencing starts
generating data immediately and can continue until a user-defined limit is reached or
until a confident genomic characterization is made.

Adaptive sampling is a nanopore-specific in silico enrichment technique that
optimizes sequencing by selectively enriching for fusion oncogene targets crucial for
understanding disease origins, while maintaining broad genomic coverage necessary
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for detecting large-scale chromosomal alterations. Adaptive sampling is performed by
modulating the current of nanopores during sequencing to keep DNA fragments of
interest and physically ejecting fragments not matching a predefined list of targets. The
signal generated by each pore is analyzed continuously to identify the source (location)
of the DNA in the genome. After ~1 second of sequencing time, a decision is made to
either keep (if the sequence is near a gene of interest) or eject each read. If an “eject”
decision is made, the voltage bias on the corresponding nanopore is reversed,
effectively removing the DNA from the pore and allowing another to enter. This selective
enrichment, resulting in a 10- to 20-fold increase in sequencing depth over enrichment
targets, does not rely on targeted sample preparation (ex., biotin probes or selective
PCR amplification), and also maintains the sequencing breadth necessary to determine
copy-number variation status, and the sensitivity crucial to identifying gene fusions
(Weilguny et al., 2023; Martin et al., 2022). ONT sequencing platforms balance focused
analysis and comprehensive genomic sequencing, offering a more efficient use of
resources and time.

We demonstrate the feasibility of using nanopore-based long-read sequencing as
a classification tool in pediatric B-ALL and AML through a combination of retrospective
sequencing of clinically validated samples and real-time sequencing of diagnostic
samples from UNC Hospitals. We employ a novel bioinformatics pipeline using
nanopore adaptive whole-genome sequencing data to infer genetic abnormalities at
multiple scales: chromosome-level aneuploidy, large-scale structural variants including
inter-chromosomal translocations, and gene-level copy-number variation and small
sequence variants. This approach correctly classifies clinically relevant aneuploidy
(hyperdiploidy, hypodiploidy), translocations that result in fusion transcripts (ex.,
ETV6::RUNX1), as well as complex rearrangements (ex., involving DUX4 and IGH), and
subchromosomal copy-number variants (ex., iAMP21, CDKN2A, ERG, FLT3-ITD).
Additionally, we show potential for genotyping of single nucleotide variation (SNV) at
pharmacogenomically relevant loci, including TMPT and NUDT15. In this pipeline, we
optimized sample preparation, sequencing, and adaptive sampling parameters to
robustly identify fusions and small variants while maintaining the breadth necessary to
visualize gross changes in chromosome copy number.

Materials and Methods:

We performed ONT whole genome sequencing (WGS) on fifty-four (54) acute leukemia
specimens representing diverse clinically diagnosed genomic subtypes (retrospective
sampling; n=36) or new diagnoses before clinical genomic subtyping (real-time
sampling; n=18) (Table 1). DNA from these specimens was extracted from peripheral
blood mononuclear cells (PBMCs), bone marrow mononuclear cells (BMMCs), or whole
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blood (Supplemental Table 1). Samples were obtained from the University of North
Carolina at Chapel Hill (UNC) and St. Jude Children's Research Hospital (SJCRH) with
approval by their respective Institutional Review Boards. Illumina RNA sequencing was
available for samples from SJCRH. Clinical diagnosis at UNC was determined by
G-banding karyotype analysis, FISH, and sometimes microarray as part of the standard
of care.

DNA extraction and shearing
DNA was extracted from cryopreserved or fresh samples using the ZymoBIOMICS
MagBead DNA/RNA kit following manufacturer's instructions (Zymo Research).
Fragment sizes in excess of 20Kbp - without significant degradation - were verified by
gel electrophoresis. Extracted DNA was sheared using a 26G-1" needle for a total of 7
passes to obtain a fragment size distribution for optimal nanopore sequencing
throughput. Size selection was performed using 0.4 volumes of Ampure XP Beads
(Beckman Coulter). DNA was quantified using the Qubit fluorometer with the Qubit
dsDNA Quantification, High Sensitivity Assay Kit (ThermoFisher Scientific).

Library preparation and sequencing
Ligation-based library preparation of native DNA was performed following the
manufacturer's instructions (ONT; SQK-LSK 109, SQK-LSK 110, SQK-LSK 112, and
SQK-LSK 114, SQK-NBD 114). Samples were sequenced either multiplex or singly on
FLO-MIN106, FLO-PRO002, FLO-PRO112, or FLO-PRO114M flow cells for up to 72
hours or until the available pores were exhausted. Samples were sequenced on a
PromethION 2 Solo (P2) machine or MinION device – all except four samples were
sequenced using adaptive sampling (see Supplemental Table 1). Adaptive sampling
was performed during sequencing to enrich 59 genes commonly involved in
translocations/fusions in B-ALL and AML (Supplemental Table 2). Six samples were
sequenced with adaptive sampling using a gene panel composed of 150 genes - this
enhancement was made to enrich for additional genes or gene regions associated with
B-ALL, AML, and T-ALL (see Supplemental Table 3; Supplemental Table 1). To inform
the scope of relevant fusions, we referenced previous work detailing the landscape of
ALL and AML genomic subtypes (Brady et al., 2022; Umeda et al., 2024). First, single
partner genes were parsed from gene fusions detected by RNA-seq or WGS. Genes
that occurred as a fusion partner in more than one distinct case were included. We
included the entire genomic range for each gene or locus (ex., IGH), as annotated on
GRCh38, and a margin of 50Kbp on either side. Reads were base-called (and
de-multiplexed, if applicable) using Dorado (v0.5.1-0.6.0) in super-accurate duplex
mode. Base-called reads were aligned to the GRCh38 human reference genome using
minimap2 (Li, 2018).
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Digital karyotyping and aneuploidy inference
Relative copy number across the genome at the chromosome level ("digital karyotype")
was inferred based on relative sequencing depth by assessing genome-wide and
chromosome-level depth of coverage (Figure 1A). Briefly, we infer a baseline diploid
(uniform) sequencing depth equivalent to the non-blast percentage (typically low), then
assess the relative read depth above baseline, where a 2:3 ratio is observed between
diploid and triploid chromosomes and 1:2 between haploid and diploid, respectively. To
compare with G-banding karyotypes and assess gross anueploidy levels, we discuss
only whole-chromosome and arm-level gains and losses, although smaller
subchromosomal gains and losses are also clearly evident. To avoid the potentially
confounding effect of adaptive sampling on relative sequencing depth assessment, we
constructed this coarse-scale depth as a function of reads per million base pairs (Mbp),
where each read contributes a count of one to the bin in which the center of the read
aligns.

Translocation and fusion detection
Putative translocations were characterized by counting reads for which multiple
alignments existed to two independent genes in our enrichment set (ex., ETV6 and
RUNX1) (Figure 1D). A read was considered "anchored" in a gene if an alignment of
≧500nt existed within 5Kbp of the gene – this accounted for rearrangements involving
the translocation of promoters outside the annotated gene boundaries. Known repetitive
elements (Smit et al., 2013-2015), centromere and satellite sequences, and segmental
duplications were masked to avoid false positives caused by ambiguous alignments and
transposable elements. Translocations between two genes in our target set with at least
two independent supporting reads were subsequently validated by visualization of the
supporting and putative breakpoints. Fusions detected in our samples had a minimum
of 3, and as many as 104 supporting (non-duplex) reads (Supplementary Table 4). Two
apparently independent reads can sometimes represent both strands of a "duplex" read
that were not appropriately collapsed during duplex basecalling. Duplex reads were
identified conservatively and considered a single read if two reads supporting the same
translocation were acquired through the same sequencing channel within 30 seconds of
one another.

Small-scale and intragenic copy-number variation
Smaller-scale (sub-chromosomal) copy number variation (ex., iAMP21, CDKN2A, and
ERG deletion, CRLF2-P2RY8 interstitial deletion) was determined by a combination of
sequencing depth and split read alignment evidence (Figure 1B). Focal deletions are
characterized by a haploid (or multiple thereof) drop in read depth and reads
split-mapped to either side of the deletion breakpoints. We consider the full
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per-nucleotide sequencing depth to evaluate intragenic copy-number variation within
genes in our enrichment set.

Targeted SNV and insertion/deletion calling
Due to uneven coverage resulting from adaptive sampling enrichment and to
additionally capture moderate-sized insertions/deletions, existing SNV calling tools for
nanopore sequencing data were found to be ineffective. We implemented a
straightforward reference-guided assembly approach to identify SNVs and small-scale
insertions and deletions (indels) above 0.3 minor allele frequency (MAF). This threshold
of 0.3 MAF detected heterozygous and homozygous variants consistent with known
molecular genetics across our pediatric leukemia cohort, the majority of which have
blast percentages greater than 80%. Briefly, within each enriched gene region, we align
all overlapping reads to the GRCh38 reference genome and build a consensus
sequence, including SNVs and indels at or above 0.3 MAF. All overlapping reads are
subsequently realigned to the consensus sequence and SNV and indel variants
exceeding 0.3 MAF are reported. Small-scale indels, notably FLT3-ITD, were likewise
identified by building a local consensus sequence from a high-depth sequence covering
our target genes. We additionally devised a notion of in silico PCR to recapitulate
commonly used capillary electrophoresis methods to characterize FLT3-ITD (Kiyoi et al.,
1999) where read segments bounded by FLT3 11F
(GCAATTTAGGTATGAAAGCCAGC) and 12R (CTTTCAGCATTTTGACGGCAACC)
primers were extracted and plotted by size (Figure S1).

Evaluation and validation
Leukemia lineage was determined by flow cytometry. The ground truth of subtypes was
determined by G-banding karyotype analysis, FISH, copy-number microarray, Illumina
sequencing, or some combination thereof. Illumina RNA sequencing and fusion
detection and/or expression-based subtyping (ex., DUX4r) determined a subset of
cases. We evaluated the performance of our WGS-based analysis against the final
consensus subtype following this multimodal characterization.

Cost analysis
To evaluate the cost of adaptive nanopore sequencing, we conducted a microcosting
analysis of reagents and consumables. A costing sensitivity analysis was conducted
based on the sequencing depth to account for uncertainties associated with practical
implementation. Activity-based costing for human resources was excluded as sunken
costs for the purposes of this analysis.
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Figure 1. Analytical overview. (A) large-scale copy-number characterization (karyotyping) based
on relative chromosome-wide sequencing depth, (B) small-scale/intragenic copy number
variation detection based on sequencing depth and split-read mapping, (C) single nucleotide
variation (SNV) calling within enriched gene targets, and (D) fusion gene identification based on
split alignment of long reads.

Results:

For samples run singleplex with adaptive sampling on the P2 Solo, we generated an
average of 12X whole-genome coverage and 86X coverage over target genes. For all
samples run with adaptive sampling (including multiplexed aneuploid samples), we
achieved a relative enrichment of 7.2X (range 0.9 - 16.4X). Samples exhibiting very
poor enrichment resulted from severely fragmented input DNA (0154, 0160) or adaptive
sampling failure (0229, 0238). Samples undergoing adaptive sampling from fresh
samples for real-time analysis ranged from 4.2 - 12.5X enrichment.

Nanopore whole genome sequencing with and without adaptive sampling accurately
identifies clinically relevant karyotype profiles and gene fusions in acute leukemias

The primary subtype for 27 of 54 samples showed gross changes at the chromosome
level (aneuploidy) (Figure 2). Clinically relevant subtypes classified included high
hyperdiploidy (>50 chromosomes; n=10), low hypodiploidy (31-39 chromosomes; n=4),
and near-haploidy (24-30 chromosomes; n=4) (Table 1). Ten additional samples were
aneuploid (45-50 chromosomes) with (n=8) or without (n=2) other known genomic
drivers (Supplemental Table 1). In all 27 aneuploid cases, changes in gross karyotype
detected by WGS nanopore sequencing (both with (n=25) and without (n=2) adaptive
sampling) were consistent with clinical classification. 2/54 samples had low blast count
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(<30%) that prohibited precise genomic classification (samples 0131, 0133) (Figure S2).
In cases 0154 and 0164, we estimated six copies of RUNX1 within a broader regional
amplification pattern (Figure S3), indicating an intrachromosomal amplification of
chromosome 21 (iAMP21) B-ALL primary subtype, defined by at least four copies of
RUNX1 and focal amplification.

Figure 2. Digital karyotypes are inferred based on the relative number of reads per
chromosome; blue points show the number of reads in non-overlapping 1Mbp bins and red lines
indicate the median for the entire chromosome. (A) Patient sample 0052 represents a case of
B-ALL with a high hyperdiploid primary subtype. Our inferred digital karyotype is 55, XY, +4, +5,
+6, +10, +14, +17, +18, +21, +21. (B) Sample 0225 represents B-ALL with a near haploid
primary subtype. Our inferred digital karyotype is 27, XY, +10, +18, +21. (C) Sample 0223 is
B-ALL with low hypodiploidy, inferred to be 38, XX, -3p, -4, -7, -9, +11q, -15, -16, -17. In all
cases, we only annotate whole-chromosome and arm-level changes for the purposes of gross
aneuploidy detection, but smaller sub-chromosomal copy-number changes are also
conspicuous.

We detected 17 unique gene fusions across all samples (Supplemental Table 1;
Supplemental Table 4). Identified fusion-driven primary subtypes of B-ALL were:
ETV6::RUNX1, TCF3::PBX1, Philadelphia (Ph) (BCR::ALB1), Ph-like including CRLF2r
(CRLF2::IGH; PAX5::MLLT3; MEF2D::CSF1R; EBF1::PDGFRB), MEF2Dr
(MEF2D::BCL9), ZNF384r (ZNF384::EP300; TCF3::ZNF384) and DUX4r (DUX4::IGH).
Fusion-driven primary subtypes of AML identified (n=3) were: RUNX1::RUNX1T1,
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KMT2Ar (KMT2A::MLLT1, KMT2A::MLLT10; KMT2A:USP2), and NUP98::NSD1 (Table
1; Supplemental Table 1). Gene fusions within B-ALL fell into two major categories:
balanced translocations and complex rearrangements (ex., DUX4r; CRLF2r). The
primary characterization of structural rearrangements from long-read WGS consists of
reads aligning to distant genes or regions. Adaptive sampling enriches for reads
spanning involved genes, providing strong and consistent support for these structural
variants (Figure 3; Figure 4). In several instances, nanopore-generated WGS data
provided additional information about structural variation that was not detected through
clinical assays. In one case, clinical classification identified one of two fusion partners,
whereas nanopore WGS identified both fusion partners – for sample 0130, clinical
testing classified sample 0130 as PDGFRB or CSF1R with an unknown fusion partner
while sequencing data identified a precise MEF2D::PDGFRB fusion. In other cases,
clinical break-apart FISH assays only identified one component of the likely fusion
(NUP98 in sample 0158 and KMT2A in sample 0172), while the partner gene with
prognostic significance was only identified after nanopore sequencing, (NUP98::NSD1
and KMT2A::USP2). In two cases (0157 and 0162), an IGH::DUX4 fusion (which is
karyotypically cryptic) was not reported clinically (by karyotyping and FISH) but was
detected in our real-time sequencing analysis.
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Figure 3. Sample 0250 represents a case of B-ALL with an ETV6::RUNX1 primary subtype. (A)
Long reads aligning to ETV6 (left) and RUNX1 (right); blue bars represent matched fragments
overlapping the putative breakpoint; gray bars are singly-mapping. Relative sequencing depth is
also shown above, indicating discontinuous coverage representing small indels at the putative
translocation breakpoint resulting from imperfect double-strand break repair. (B) A sample of
reads supporting the putative ETV6::RUNX1 breakpoint, showing segments mapping to ETV6
(blue) and RUNX1 (red) indicating an inverted translocation consistent with ETV6 intron 5-6
fused to RUNX1 intron 1-2, matching their respective coding orientation.

Small-scale and intragenic copy-number variation and single nucleotide variation are
sensitively characterized in enriched regions

Nanopore WGS produces support for clinically relevant small-scale structural variants
affecting genes associated with ALL and AML, including CRLF2-P2RY8 interstitial
deletion (0060, 0136, 0163, 0238), partial or total loss of CDKN2A (0153, 0165), and
heterogeneous ERG deletion (0162). A full list of observed small variants, including
CNVs and SNVs is provided in Table S5. We accurately detect these deletions with a
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combination of sequencing depth and long reads spanning the deletion boundaries
(Figure 4B).

Figure 4. Sample 0162 with DUX4-IGH rearrangement (A) where blue bars indicate reads
aligning to both regions, (B) with a focal deletion in ERG characterized by a drop in sequencing
depth and reads split across the deletion boundaries (orange).

We assessed the utility of adaptive WGS to call single-nucleotide polymorphisms
(SNPs) and small insertions by examining pharmacogenomically relevant SNVs in
TPMT, and FLT3 internal tandem duplication (FLT3-ITD) - a driving mutation in pediatric
AML (Table S5). We identified relevant SNVs in TPMT in both cases (0136, 0162) with
clinically identified mutations (A154T, Y240C). These are trivially phased in our long
reads and confirmed to occur on the same haplotype. FLT3-ITD was called in one AML
case (0141), characterized by a consensus tandem duplication of FLT3 CDS loci
1823-1904 (81nt). To recapitulate commonly used PCR and capillary electrophoresis
detection of FLT3-ITD (Kiyoi et al., 1999), we identified 46 reads that include FLT3 11F
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and 12R primer sites. The size distribution of these ITD-spanning reads is shown in
Figure S1, producing an ITD:WT allelic ratio (AR) of 0.64, consistent with the clinically
reported AR of 0.65.

Clinically relevant genomic variation and tumorigenic drivers are robustly detectable
with a single rapid, low-cost assay

Real-time sequencing and analysis generates sample classifications within 9 hours of
sample receipt. DNA extraction and shearing using a modified version of the
ZymoBIOMICS MagBead DNA/RNA kit took less than 2 hours, and library preparation
took approximately 75 minutes. Using the high-throughput PromethION flow cells, a
digital karyotype could be inferred within 15 minutes of the start of sequencing. Fusion
detection (defined as two or more independent reads supporting a single given fusion)
typically took between 3 and 6 hours from the start of sequencing (Fig. 5). In
concordance with our retrospective sampling, real-time classification using our
nanopore-based WGS approach was 100% consistent with clinically-derived primary
subtype classification.

Figure 5. Real-time sample processing and analysis timeline. DNA extraction and library
preparation took 3 hours, and sample classification took between 3 and 6 hours. Complete
sample classification (from sample receipt to classification) took between 6 and 9 hours.

We performed a microcosting exercise to provide information on the costs associated
with this proposed single assay approach. Our evaluation encompassed the expenses
associated with consumables and reagents for both extraction and library preparation.
We also factored in the cost of flow cells, estimated based on a moderate bulk purchase
of 32 units. Given that the required sequencing depth may vary across genomic
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subtypes, we performed a sensitivity analysis to account for this uncertainty. Our
findings revealed that when dedicating an entire flow cell to a single specimen, the
material costs amounted to $934.64. However, these costs can be optimized by running
multiple specimens per flow cell. Specifically, the material cost per specimen decreased
to $483.18 when processing two specimens per flow cell, and further reduced to
$249.06 when running four specimens per flow cell (detailed breakdown available in
Supplemental Table 6). This cost structure demonstrates the potential for significant
economies of scale, offering flexibility in balancing cost-efficiency with the specific
requirements of genomic analyses.

Discussion:

Advancements in genomic classification of acute leukemia over the past decades have
led to improved prognostic stratification, risk-adapted therapeutic selection, and
precision therapy. While some treatment centers perform comprehensive genomic
profiling of all patients with acute leukemia, this is the exception. At most treatment
centers in high-income countries (HICs), genomic classification continues to rely on
long-established techniques in cytogenetics, supported by targeted molecular profiling.
More importantly, most cancer treatment centers globally are in low and middle-income
countries (LMICs), often without access to reliable cytogenetic testing approaches.
Therefore, accessible, scalable approaches to improve clinical genomic classification of
acute leukemia are critically needed.

The motivation to pursue nanopore adaptive WGS is for simplified identification of
well-established clinically useful genomic results, as opposed to a focus on discovering
new biological insights. The results presented suggest that, as a single assay
classification tool, nanopore-based adaptive whole-genome sequencing accurately
classifies B-ALL into core genomic subtypes, with the potential to identify clinically
relevant AML genomic subtypes, as well as clinically actionable pharmacogenetic
subtypes. We have demonstrated proof of principle that nanopore long-read whole
genome sequencing can provide all clinically relevant genomic information currently
offered by traditional diagnostic testing (karyotype, FISH, and occasional microarray) for
pediatric acute leukemia. In our cohort, there was no loss in sensitivity or throughput
with a variety of sample preparations – robust results were generated from freshly
collected as well as cryopreserved samples, including whole blood, isolated
mononuclear cells, bone marrow aspirate, and peripheral blood (Supplemental Table 1).
Likewise, nanopore-based WGS is less reliant on high-quality viable cells that are
beneficial for karyotype and FISH analysis. Our approach comprehensively identifies
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known variation commonly characterized by a combination of karyotyping, FISH, and
targeted molecular tests.

Iterative adjustment of this sequencing approach to focus on B-ALL, all acute leukemia,
or solid malignancies, would be made without modifications to wet lab sample
preparation. The differences in genomic targets and data analysis required only minimal
informatic changes. The simplicity in reagents and wet lab training across focused
assays offers a large advantage in the supply chain, human resources, cost, and speed
of assay improvements. The material costs, which we provided in a sensitivity analysis
across assay throughput and depth, compares favorably with the traditional combined
multiple technology approach of karyotype, FISH, targeted molecular approaches
traditionally used to determine genomic subtypes of acute leukemia.

The long reads produced by nanopore sequencing are particularly useful for identifying
complex structural rearrangements that are difficult to identify with current clinical
approaches, such as DUX4 rearrangements. DUX4 rearrangements make up about
14% of B-ALL cases (Lee et al., 2021), yet structural variations involving DUX4 are
often not well characterized due to tandem D4Z4 repeat cassettes containing DUX4
(Rehn et al., 2020). The identification of DUX4 rearrangements commonly relies on the
detection of fusion transcripts by RNA sequencing (Bařinka et al., 2022). In one
retrospective (0222) and two prospective real-time samples (0157, 0162), we detected
structural variation leading to a DUX4::IGH gene fusion, emphasizing the potential
added information of nanopore adaptive WGS even in advanced diagnostic settings.

This assay provides a level of characterization of aneuploid and small copy number
changes that is critical for clinical decision-making. While hyperdiploid karyotype is
generally a favorable prognostic factor, multiple groups have demonstrated that the
prognosis is influenced by specific chromosome gains. More recently, multiple groups
have demonstrated the potential prognostic value of small deletions in certain contexts,
specifically IKZF1 deletion (Boer et al., 2016; Mullighan et al., 2009). It is important for
future genomic classification approaches to B-ALL to include small deletions in the
diagnostic results.

Pharmacogenomics is a rapidly expanding field with increased clinical relevance. For
patients with ALL, the key pharmacogenomic information needed is TPMT and NUDT15
genotype, which has direct clinical implications. In HICs, the genotype is typically
determined by a targeted molecular assay. We show the potential for Nanopore
adaptive WGS to detect known SNPs in TPMT with the same assay that provides
genomic classification of B-ALL. This provides another example of cost savings in HIC
and expansion of clinically relevant pharmacogenomic information in LMICs.
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Nanopore-based WGS is a promising approach for the classification of B-ALL, yet
accurate classification is constrained in cases with low blast percentages and is
sometimes limited to subtypes defined by genomic structural variation. For instance,
gains of chromosomes 4, 6, 14, 17, 18, and 21 were detected by microarray (but not
traditional karyotyping) in sample 0133 – these gains were largely indetectable with our
current analytical pipeline. Likewise, with patient sample 0131 (near haploid), gains of
chromosomes 21 and X were shown through clinical testing but were undetectable in
nanopore WGS (Supplementary Figure 3). Additionally, a small portion of acute
leukemia cases are defined by expression profiles without subtype defining DNA
variation, such as the proposed ETV6-like, KMT2A-like, and ZNF384-like cases, limiting
the utility of DNA-based classification approaches in these cases (Gu et al., 2019).

Optimization and automation of the sequencing pipeline are essential to democratizing
this approach, thereby increasing throughput and decreasing the material and labor
costs associated with classification. We will optimize the assay by exploring the limits of
detection based on both blast percentage and sequencing depth. This can be done both
in silico and with sample and sequencing variation. The sequencing depth required is
crucial to optimizing cost and throughput with particular implications for lower-resourced
settings. Currently, karyotyping and determination of small deletions or gains using
nanopore-based WGS requires inferring a karyotype based on the relative number of
reads per chromosome. We will develop automated calling of digital karyotypes, small
insertions, and deletions. Finally, with an eye toward clinical development and
regulatory approvals, subsequent validation steps will be performed in a CLIA-certified
laboratory space.
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Supplemental Material:

Figure S1. Recapitulating commonly used FLT3-ITD PCR and capillary electrophoretic
analysis using in silico primer capture—sample 0141 with clinically reported AR 0.65.
We identified 46 reads spanning FLT3 primers, 28 consisting of 300-309nt and 18
containing 377-392nt, inferring an ITD:WT ratio of 0.64.

(A)

(B)

Figure S2. Patient samples 0131 and 0133 represent cases of B-ALL with an
inconclusive primary subtype due to low blast count. (A) For patient sample 0131 (25%
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blast count), clinical karyotype analysis showed a near haploid primary subtype (B) For
patient sample 0133 (27% blast count), clinical microarray showed gains of
chromosomes 4, 6, 14, 17, 18, and 21.

Figure S3. Sample 0164 with iAMP21. Depth of coverage over chromosome 21 (15Mbp
- 45Mbp) shows segmental copy number variation with six apparent copies over the
region spanning RUNX1.

Table S1. Sample metadata including clinical genomics, sequencing characteristics,
and sequencing-based copy-number and fusion drivers.

Table S2. List and coordinates of genes used in 59-gene set enrichment
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Table S3. List and coordinates of genes used in 152-gene set enrichment

Table S4. Translocation/fusion genes and read-level support

Table S5. Focal copy-number variation and SNVs in enriched clinically-relevant gene
targets
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