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Presentation of tumor-specific or tumor-associated peptides by HLA class I molecules to
CD8+ T cells is the foundation of epitope-centric cancer immunotherapies. While often in
silico HLA binding predictions or in vitro immunogenicity assays are utilized to select
candidates, mass spectrometry-based immunopeptidomics is currently the only method
providing a direct proof of actual cell surface presentation. Despite much progress in the
last decade, identification of such HLA-presented peptides remains challenging. Here we
review typical workflows and current developments in the field of immunopeptidomics,
highlight the challenges which remain to be solved and emphasize the importance of
direct target validation for clinical immunotherapy development.

Keywords: immunopeptidomics, T cell epitope, tumor antigen, HLA class I, neoantigen, cancer immunotherapy
INTRODUCTION

Immunotherapy has been established as the fourth pillar of cancer treatment. The immune system’s
ability to discriminate self from non-self constitutes the basis of all immunotherapeutic
interventions. Essential for this discrimination process are small peptides, termed epitopes,
presented via human leukocyte antigen (HLA) complexes at the cell surface allowing constant
monitoring of both intra- and extracellular protein expression and thus the cell’s health state. HLA
class I molecules are expressed by virtually all nucleated cells and present short peptides (8-15
amino acids) of mainly intracellular origin. HLA class I:peptide complexes are surveyed by CD8+ T
cells and allow them to identify and, ultimately, eliminate infected or malignant cells. HLA class II
expression is restricted to professional antigen presenting cells and mainly responsible for the
display of longer peptides (up to 25 amino acids) of extracellular origin to CD4+ T cells (1).
Collectively, all HLA-presented peptides are termed immunopeptidome.

Essential for the development of epitope-specific cancer immunotherapies such as therapeutic
vaccines or T cell receptor (TCR)-transgenic T cells is the identification of tumor-associated antigens
(TAAs) or tumor-specific antigens (TSAs). Tumor-associated antigens show low expression or are
absent in healthy, adult tissue (2). TAAs are categorized into developmental antigens (normally
expressed only during embryonal development), cancer-testis antigens (normally expressed only in
reproductive tissue), overexpressed antigens, and post-translationally modified antigens. Examples of
org April 2022 | Volume 13 | Article 8839891
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well-studied TAAs include the developmental antigen CEA
(carcinoembryonic antigen), the cancer-testis antigens of the
MAGE (melanoma-associated antigen) family and NY-ESO-1, the
overexpressed TAAs epidermal growth factor receptor 2 (HER2) in
breast cancer or CD19 in B cell malignancies, and the post-
translationally modified antigen MUC-1 (3). Importantly,
immune responses against TAAs are limited by central tolerance
mechanisms and often lack complete specificity to cancer cells. In
contrast, tumor-specific antigens represent optimal targets since
they are exclusively expressed on cancer cells but not on healthy
host cells and are therefore not subject to central tolerance. TSAs
can arise from genomic protein-coding alterations such as single
nucleotide variants, gene fusions, or InDel mutations (4–9).
Collectively, these TSAs have been termed “neoantigens”. More
recently, the antigenic repertoire has been extended by “non-
canonical tumor antigens”, for which it is not yet clear if they are
tumor-associated or truly tumor-specific, and therefore their
possible clinical relevance is highly debated. They arise from
alternative mRNA splicing (10, 11), RNA editing (12, 13), usage
of alternative transcription start sites or reading frames (14, 15), as
well as cryptic peptides that are produced by proteasomal splicing
and lack exome evidence (16, 17). Other sources of tumor antigens
include peptides with post-translational modifications (18, 19) and
peptides of viral (20, 21) or bacterial origin (22) presented in a
tumor-associated or tumor-specific manner (Figure 1).

The main strategies used today to identify neoantigens are based
on next-generation sequencing data and subsequent prioritization
of candidates using in silico HLA binding prediction. At best,
peptide immunogenicity is further validated using in vitro assays,
however, whether these peptides are actually presented via HLA
class I molecules on the target cell surface is rarely confirmed. This is
all the more important, because sequencing data and even
assessment of a potential source protein’s expression level are not
directly reflected in epitope presentation. In fact, biogenesis of HLA
class I-presented peptides does not obey the “law of mass action”,
meaning that the proportion of presented epitopes does not
represent the amount of the source proteins within the cell’s
proteome (23). While this allows the efficient sampling of a large
part of a cell’s proteome and the timely recognition of malignant or
infected cells, it hampers the identification of neoantigens solely
based on next generation sequencing and in silico HLA binding
prediction. Additionally, peptides derived from non-canonical open
reading frames constitute a non-neglectable part of the
immunopeptidome, which, however, is not completely assessable
by basic next-generation sequencing approaches (24, 25).

Currently, the only available technique to provide a direct
proof of presentation for clinically relevant target epitopes is
mass spectrometry-based immunopeptidomics.
STAGES OF A TYPICAL
IMMUNOPEPTIDOMICS WORKFLOW

Sequencing Approaches to Define Tumor
Antigens (Setting the “Search Space”)
In order to identify tumor-specific peptide sequences in
immunopeptidomics assays, these sequences first have to be
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identified from next-generation sequencing data and included
into the “search space” [recently reviewed in (26)]. At the DNA
level, data generated by whole-genome sequencing (WGS) and
whole-exome sequencing (WES) are commonly used for this
task. While WES is less cost-intensive than WGS, it only allows
the identification of tumor antigens derived from protein-coding
parts of the genome. Analyses deploying RNA sequencing
technologies further allow the identification of potential tumor
antigens derived from other sources such as alternative splicing,
intron retention, RNA editing and other non-canonical
sequences. Additionally, RNA sequencing provides information
on gene expression levels, which, however, should be handled
with caution when prioritizing tumor antigen candidates (see
above and “Lessons learned from immunopeptidomics”).
Ribosome profiling (Ribo-seq) allows the identification of
transcripts undergoing active translation. Using the inherent
periodicity of the obtained reads it is possible to generate
sample-specific de novo reference proteomes including
previously unannotated ORFs potentially harboring tumor
antigens (15, 27).

Importantly, all these workflows usually generate large
datasets of potential tumor antigens, exceeding the capacity to
test all of them in laborious and time-consuming cellular assays.
Thus, computational revision of the “search space” is typically
performed as a next step.

HLA Ligand Processing and Binding
Prediction Approaches (Revising the
“Search Space”)
Since there are a large number of biological processes involved in
antigen processing and presentation, there are just as many
computational tools to predict if a given peptide is likely to be
presented at the cell surface. For HLA class I ligands, ubiquitinated
proteins are digested in the cytosol by the proteasome, which can
exist in the canonical form and, induced by interferons, as
immunoproteasome. Given the different cleavage specificities of
these subtypes, some tumor antigens require one or the other form
to be generated efficiently (28, 29). Several algorithms exist for the
prediction of proteasomal cleavage sites, for example, NetChop20S
(30) and ProteaSMM (31) which are trained on in vitro
degradation data. After their release from the proteasome into
the cytosol, peptides may be further trimmed by cytosolic
peptidases such as e.g. TPPII. NetChopCterm (30) is trained on
actual HLA ligand data taking into account these other proteases
involved in antigen processing and therefore performs best for
prediction of HLA ligand processing (32). Resulting peptides are
transported into the endoplasmatic reticulum (ER) via transporter
associated with antigen processing (TAP) molecules, which again
show selectivity for certain peptide characteristics. As for
proteasomal cleavage, several algorithms have been developed to
model peptide transport into the ER (31, 33, 34). In the ER,
peptides can be further trimmed by ER-resident peptidases such as
endoplasmatic reticulum aminopeptidases (ERAP), before being
loaded onto HLA class I molecules. Both, polygeny and
polymorphism of the HLA class I gene locus ensure that a large
peptide repertoire can be displayed to CD8+ T cells by forming
different peptide binding groves. Conserved amino acids at the
April 2022 | Volume 13 | Article 883989
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anchor positions of the bound peptides allow sequence clustering
to identify HLA binding motifs (35–37), defining HLA supertypes
and developing algorithms for HLA binding prediction. Since the
binding affinity of a peptide to a given HLAmolecule is thought to
be the most critical determinant of actual peptide presentation,
Frontiers in Immunology | www.frontiersin.org 3
much effort has been invested in the development and constant
improvement of such algorithms (38–40).While most of the initial
algorithms were based solely on binding affinity data, newer
iterations have been much improved by the incorporation of
eluted ligand data generated by mass spectrometry (41, 42).
FIGURE 1 | Processes involved in antigen processing and presentation and their effect on the generation of a diverse HLA class I peptide repertoire. Peptides for
surface presentation by HLA class I molecules are generated by transcription of DNA into mRNA and subsequent translation into proteins. Here, processes such as
genetic variation and epigenetic regulation at the gene level, alternative splicing and RNA editing at the transcript level, the translation of alternative open reading
frames (ORFs) and non-coding regions and post-transcriptional modifications (PTMs) can enlarge the peptide repertoire. Eventually, proteins are degraded by the
proteasome, generating peptides. Here, proteasomal splicing can increase peptide diversity while proteasomal degradation can also reduce the size of the repertoire
by destroying some potential HLA binders. Finally, peptides are selectively conveyed via the transporter associated with antigen processing (TAP) into the lumen of
the endoplasmic reticulum (ER). Here, some peptides are further trimmed by ER-associated aminopeptidases (ERAP) and then selectively associate with specific
human leukocyte antigen (HLA) complexes. Eventually, stable HLA:peptide complexes are transported to the cell surface for interaction with CD8+ T cells. Created
with BioRender.com.
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Nevertheless, several studies reported discrepancies between
predicted binders and actually presented peptides (43–45).
Moreover, shortlisting of candidates by HLA binding predictions
creates an a priori bias and might exclude actually presented
tumor-specific epitopes (46, 47). Both considerations are
particularly important when utilizing predictions for rare HLA
alleles with little to no data available to train the respective
algorithms. Ultimately, tumor-specific peptides presented by
HLA class I molecules at the cell surface have to be recognized
by CD8+ T cells in order to induce tumor cell elimination. As not
all presented tumor-specific epitopes trigger the necessary T cell
activation, recent modeling approaches focused on the prediction
of immunogenicity based on peptide presentation and recognition
characteristics (48, 49) or by structural modeling of HLA:peptide
and HLA:peptide:TCR complexes (50, 51). A number of
computational pipelines implementing next-generation
sequencing data and prediction of HLA ligand processing and
binding have been proposed and used to prioritize tumor antigen
candidates [(52, 53); for an extensive list see (54)].

MS Methodologies for
Immunopeptidomics
(Exploring the “Search Space”)
The field of immunopeptidomics first emerged in the early 1990s
when peptides presented by HLA molecules were characterized
using Edman degradation (35, 55) and mass spectrometry (56).
More recently, the field gained new momentum with the
introduction of high-sensitivity MS instrumentation and the
finding that T cells, reactivated by immune checkpoint blockade,
specifically recognize tumor-specific epitopes (57–59). In contrast
to the enormous technical advancements, the basic principles of
immunopeptidomics sample preparation have remained largely
the same (60). HLA-presented peptides are either dissociated
nonspecifically by mild acid elution (MAE) or HLA:peptide
complexes are purified by immunoprecipitation (IP) using a
specific antibody with subsequent separation of peptides and
HLA molecules. Sample preparation by IP represents the
currently preferred method due to its high specificity and
increased yield compared to MAE (61).

Different MS acquisition methods have been applied for the
interrogation of the immunopeptidome and the identification of
tumor antigens: data-dependent acquisition (DDA), targeted
data acquisition, and more recently data-independent
acquisition (DIA). As most immunopeptidomic experiments
aim at the identification of yet unknown epitopes, discovery-
driven DDA is the most commonly used method for the
generation of tandem mass spectra. The obtained data is then
used for the identification of peptides and their amino acid
sequence either by comparison to theoretical mass spectra of all
precursors in a database with a similar mass-to-charge (m/z)
ratio, by de novo sequencing, or a combination of the two
approaches. Using DDA, several thousand unique HLA class I-
presented peptides can be identified. Since the heuristic selection
and subsequent fragmentation of peptide precursors depend on
their abundance, low abundant peptides (such as most tumor-
specific epitopes) are prone to be missed by DDA, and DDA
Frontiers in Immunology | www.frontiersin.org 4
lacks reproducibility and quantitative accuracy. In contrast,
targeted acquisition methods such as selective/multiple
reaction monitoring (S/MRM) and parallel reaction monitoring
(PRM) are considered the gold standard for identification and
quantification, in particular of low abundant peptides. In
targeted approaches, only predefined peptides are selected for
fragmentation. A predefined subset of fragments in the case of S/
MRM or all fragments in the case of PRM are then detected and
used for identification and quantification. The major drawbacks
of these targeted approaches are the need for a priori knowledge
of the analyte of interest, i.e. the epitope, as well as the labor-
intensive pre-selection of suitable transitions in the case of S/
MRM analyses. Targeted analyses are thus restricted to the
detection of pre-defined peptide subsets of limited size and do
not offer comprehensive investigation of the complete
immunopeptidome. More recently, DIA has been introduced
for the analysis of the immunopeptidome leading to
improvements in both reproducibility and quantification
compared to DDA (62–64). For DIA, all precursors within a
defined mass-to-charge window are subjected to fragmentation
in an unbiased manner generating highly convoluted mass
spectra. This process is iterated across the full mass-to-charge
range to generate a “digital map” of the analyzed sample. To
identify peptides from such mass spectra, they are compared to a
spectral library containing fragmentation and retention time
information of the peptides of interest. The generation of a
high-quality spectral library usually requires preceding extensive
DDA analysis of the same or a related sample. More recently, the
introduction of library-free approaches (65–67) and tools for in
silico prediction of mass spectra (68–70) have enabled
comparable performances without the need of an experimental
spectral library.
CONSIDERATIONS BEFORE AND AFTER
MASS SPECTROMETRY

Besides the major improvements in instrumentation, several other
aspects of a typical immunopeptidomics workflow have been
subjected to optimization. For example, the analysis of the
immunopeptidomes from HLA-monoallelic cell lines does not
require deconvolution of HLA binding motifs and was shown to
improve predictive power of HLA binding algorithms trained on
the respective data (71). Other studies utilized secreted and C-
terminally tagged HLA class I molecules to increase the
purification yield and reduce the need for detergents during
sample preparation (72, 73). In the future, similar approaches
for rare and poorly investigated HLA alleles might uncover their
binding motifs and further improve HLA binding predictions.
Additionally, it has been reported that various parameters such as
the usage of different detergents for cell lysis or choice of peptide
purification methods can both affect the yield and repertoire of
identified peptides (74). Studies employing heavy-labelled HLA:
peptide complexes estimated peptide losses of up to 99% during
immunoprecipitation (75, 76). Several novel approaches for the
sample preparation process have been proposed in order to
April 2022 | Volume 13 | Article 883989
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improve both sensitivity and reproducibility, including a high-
throughput immunoprecipitation protocol (77), a semi-automated
workflow utilizing TMT labeling (78), as well as a microfluidic-
based HLA enrichment protocol (79).

For proteogenomics, and mass spectrometry-based
immunopeptidomics in particular, extremely inflated search
spaces such as those created for example from three- or six-
frame translations of RNA-seq and Ribo-Seq data can significantly
increase the rate of false-positive identifications (80). This rate can
be controlled by target-decoy approaches. Here, decoy sequences
(e.g. reversed canonical protein sequences) are included into the
database and score distributions of target and decoy matches can
be used to separate false from true identifications and calculate
false discovery rates (81–83). The confidence in peptide
identifications can be increased by combining the results of
different search engines (15) or by multi-round database search
approaches searching first against canonical protein databases and
subsequently against larger databases containing potential
neoepitopes (47). MS-Rescue (84) and DeepRescore (85) are
machine learning-based algorithms which increase both
sensitivity and reliability of peptide identifications using
information such as peptide binding motifs, retention times and
mass spectra predictions. Moreover, tools to create HLA-specific,
and therefore smaller, peptide databases exist (86, 87) and can be
used to decrease the probability of false-positive identifications.
Additionally, the quality of an immunopeptidomics dataset can be
assessed a posteriori by performing HLA binding predictions as
well as peptide sequence clustering (36) or by correlating observed
retention times with calculated hydrophobicity indices (88) or
predicted retention times (89), respectively. Finally, the ultimate
proof of a correct peptide identification is provided by the
comparison of retention times and mass spectra recorded from
synthetic peptides with those obtained from the biological sample
(21, 90, 91).
LESSONS LEARNED FROM
IMMUNOPEPTIDOMICS

Much progress has been made in the field of immunopeptidomics
in the last decade, however, some limitations still apply. There are
tens of thousands of potential binders per HLA allele and although
it has been shown that there are “hotspots” for the generation of
HLA class I-presented peptides (92, 93), it is unlikely that each and
every HLA class I-presented peptide will be identified (94, 95). In
the case of mutation-derived neoepitopes, it has been postulated
that on average only one such neoepitope is identifiable per 1.8x108

non-synonymous mutations and per 1.1x104 unique HLA class
I-presented peptides (96), emphasizing the need for increased
sensitivity both in sequence variant calling and mass
spectrometry. The latter is best illustrated by comparing the
already impressive sensitivity of modern mass spectrometers in
the attomolar range to the sensitivity of CD8+ T cells, with early
reports suggesting that a single to a few hundred HLA class
I-presented peptides per cell are sufficient to trigger an immune
response (97–99), effectively rendering T cells 103 to 106 times more
sensitive than current generation MS instruments (100). Although
Frontiers in Immunology | www.frontiersin.org 5
often used to prioritize neoepitope candidates, RNA expression data
should be handled with caution as several studies showed that there
is no clear correlation between the transcriptome and the
immunopeptidome (15, 101, 102). Moreover, peptides have been
identified without the detection of the corresponding transcript, for
example if they are derived from long-lived proteins, defective
ribosomal products (DRiPs) or short-lived transcripts that are
rapidly degraded by nonsense-mediated RNA decay (101, 103–105).
IMMUNOLOGICAL VALIDATION OF
TARGET NEOEPITOPES AFTER
IMMUNOPEPTIDOMICS

Using sequencing-based approaches for epitope prioritization,
there usually remain hundreds to thousands of candidates
depending on the mutational load of the investigated sample –
an amount that is unfeasible for validation using classical
approaches such as in vitro binding or T cell killing assays. In
contrast, mass spectrometry-based identification of target epitopes
greatly reduces the number of candidates and additionally limits
them to those actually processed and presented by HLA class I
molecules at the cell surface. For the clinical application of any
epitope-based therapy, proof of immunogenicity, i.e. T cell
reactivity, represents the ultimate prerequisite. It can be assessed
either functionally by the detection of cytokine secretion using
ELISA or ELISPOT assays (106, 107), by the direct detection of T
cells recognizing a given epitope using peptide-MHC multimers
(108, 109) or by in vitro expansion of T cells in combination with
TCR sequencing (110, 111). Other considerations before the
clinical application of any epitope-based therapy should include
the clonal expression and tumor specificity, as well as the
“similarity-to-self” of the target epitope. Clonal expression has
recently been shown to be a critical determinant for tumor
rejection in both mice and humans (112–114). True tumor
specificity is of particular importance to avoid off target effects
as exemplified by severe neurological toxicity in a clinical trial
utilizing MAGE-A3 TCR-engineered T cells (115). Likewise,
“similarity-to-self” should be considered for the selection of
actionable target epitopes to both avoid off-target effects and to
mount effective T cell responses (116). The recent introduction of
the HLA Ligand Atlas (117) provides a comprehensive resource of
HLA-presented peptides for various benign tissues which should
be considered when selecting tumor-associated target epitopes
including those arising from non-canonical sources. Despite the
importance of proving the immunogenicity of a given candidate
epitope, it has to be emphasized that it only can be of therapeutic
benefit if it is actually processed and presented by cancer
cells (Figure 2).
CONCLUDING REMARKS

Mass spectrometry-based immunopeptidomics currently is the only
unbiased methodology for the identification of target epitopes
actually HLA-presented on the cell surface and should be utilized
April 2022 | Volume 13 | Article 883989
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when selecting targets for clinical applications such as adoptive cell
transfer and cancer vaccines. Although mass spectrometry is still
comparatively insensitive relative to T cells and thus might miss
some target epitopes, several studies involving immunopeptidomics
have been performed or are under active investigation in clinical
trials. Vaccination with IMA901, consisting of multiple tumor-
associated epitopes identified and validated by the MS-centric
XPRESIDENT approach (118), showed an association between T
cell responses to tumor-associated epitopes and increased survival in
patients with renal cell carcinoma (119). A personalized dendritic
cell vaccine approach was used for the delivery of mutation-derived
neoepitopes in melanoma patients and shown to promote both
expansion as well as diversity of epitope-specific T cells. HLA class I-
mediated presentation of the selected epitopes was confirmed by
immunopeptidomics (120). Utilizing a warehouse vaccine concept
with 14 HLA class I and class II tumor-associated epitopes, iVAC-
XS15-CLL01 is currently under clinical investigation for the
treatment of chronic lymphocytic leukemia (121). The GAPVAC-
101 trial investigated the combination of a warehouse vaccine and a
fully personalized vaccine in glioblastoma patients and showed the
induction of both CD8+ and CD4+ T cell responses (122).

Ideally, future therapeutic approaches will target epitopes that
are shared between patients. Here, tumor-associated epitopes as
well as viral epitopes are intriguing targets, however also tumor-
Frontiers in Immunology | www.frontiersin.org 6
specific epitopes can be targeted in larger cohorts for some
indications such as microsatellite-instable cancers (123). The
increasing number of non-canonical sources for HLA class I-
presented peptides as well as the identification of bacteria-
derived peptides presented by HLA molecules in a tumor-
specific manner potentially represent a rich pool of targetable
epitopes (22, 124). Additionally, new therapeutic approaches
targeting multiple HLA allotypes will increase the number of
patients benefiting from such interventions (125).

Much progress has beenmade in the field of immunopeptidomics
within the last decade and future technical and computational
advancements overcoming the previously described remaining
limitations and further pushing the limits of peptide detection will
certainly strengthen the importance of mass spectrometry-based
identification of target epitopes in the future. As the ultimate and
most direct proof of epitope presentation remains reserved for
immunopeptidomics, it is expected to become even more integral
to the development of epitope-specific immunotherapies.
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