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Prediction errors (PEs) encode representations of rewarding and aversive experiences
and are critical to reinforcement processing. The feedback-related negativity (FRN), a
component of the event-related potential (ERP) that is sensitive to valenced feedback,
is believed to reflect PE signals. Reinforcement is also studied using frontal midline
theta (FM2) activity, which peaks around the same time as the FRN and increases
in response to unexpected events compared to expected events. We recorded EEG
while participants completed a monetary incentive delay (MID) task that included positive
reinforcement and negative reinforcement conditions with multiple levels of the outcome,
as well as control conditions that had no reinforcement value. Despite the overlap
of FRN and FM2, these measures indexed dissociable cognitive processing. The
FRN was sensitive to errors in both positive and negative reinforcement but not in
control conditions, while frontal theta instead was sensitive to outcomes in positive
reinforcement and control conditions, but not in negative reinforcement conditions.
The FRN was sensitive to the point level of feedback in both positive and negative
reinforcement, while FM2 was not influenced by the feedback point level. Results are
consistent with recent results indicating that the FRN is influenced by unsigned PEs
(i.e., a salience signal). In contrast, we suggest that our findings for frontal theta are
consistent with hypotheses suggesting that the neural generators of FM2 are sensitive
to both negative cues and the need for control.

Keywords: prediction error, salience, reinforcement, feedback-related negativity, FRN, frontal midline theta

INTRODUCTION

We learn the value of stimuli based on rewarding and aversive outcomes (Sutton and Barto, 1998;
Dayan and Balleine, 2002). Neural representations of rewards and punishments are conveyed by
prediction error signals (PEs; Schultz et al., 1997; Pessiglione et al., 2006). PEs reflect the difference
between expectations and outcomes, providing a neural mechanism that optimizes behavior.
PEs are signaled in two ways. Signed PEs encode outcome value (Rescorla and Wagner, 1972).

Frontiers in Human Neuroscience | www.frontiersin.org 1 January 2020 | Volume 13 | Article 452

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2019.00452
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2019.00452&domain=pdf&date_stamp=2020-01-09
https://creativecommons.org/licenses/by/4.0/
mailto:elrawls@uark.edu
https://doi.org/10.3389/fnhum.2019.00452
https://www.frontiersin.org/articles/10.3389/fnhum.2019.00452/full
https://loop.frontiersin.org/people/491756/overview
https://loop.frontiersin.org/people/517099/overview
https://loop.frontiersin.org/people/218329/overview
https://loop.frontiersin.org/people/213410/overview
https://loop.frontiersin.org/people/513013/overview
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Rawls et al. FRN and Theta Processing in Reinforcement

Signed PEs increases themore rewarding an event is and decrease
the more aversive an event is. In contrast, unsigned PEs encode
outcome salience (Pearce and Hall, 1980). Unsigned PEs increase
with the salience of an event, regardless of whether that event is
good or bad (Figure 1). Populations of dopamine (DA) neurons
encoding signed PEs (Schultz et al., 1997; Hollerman and Schultz,
1998), unsigned PEs (Fiorillo et al., 2013; Matsumoto and
Hikosaka, 2009; for review see Bromberg-Martin et al., 2010), and
even both (Ilango et al., 2014; for review see Schultz, 2016) have
been identified, providing a neural mechanism for learning from
rewarding and aversive outcomes.

The feedback-related negativity (FRN), an event-related
potential (ERP) component that occurs following performance
feedback, is thought to index PEs (Holroyd and Coles, 2002;
Holroyd et al., 2003; Frank et al., 2005). Reinforcement Learning
FRN theory (RL-FRN; Holroyd and Coles, 2002) suggests that
DA projections encoding a signed PE inhibit pyramidal cells
in the anterior cingulate cortex (ACC). Therefore, unexpected
rewards increase the rate of DA firing, in turn reducing
ACC activation. However, this hypothesis was challenged by
Talmi et al. (2013), who found that the FRN not only
encoded PEs in positive reinforcement but also in negative
reinforcement. Talmi et al. (2012) examined the expression
of signed vs. unsigned PEs in the FRN time period, failing
to find a value PE but instead suggesting that the FRN
resembles an unsigned PE. Talmi’s team recently replicated
these results (Hird et al., 2018), which seemingly indicates
that the FRN is consistent with an unsigned (salience) PE
signal. In support of this view, Sambrook and Goslin (2015)
conducted a comprehensive meta-analysis using great grand-
averages, which demonstrates overlapping effects of value
and salience during the FRN time period. This same team
published evidence that salience signals are evident during
the time period of the FRN using a single-trial approach
combined with principal components analysis of the scalp
ERP (Sambrook and Goslin, 2016). Sambrook and Goslin
(2014) parametrically manipulated reward levels and therefore
PEs and reported overlapping effects of salience and value
within FRN time ranges. However, studies by this team
included only positive reinforcement conditions, unlike the
aforementioned studies by Talmi’s team. Despite recent evidence
that contradicts the theory that the FRN contains a signed
PE, this is far from a consensus in the field, as many
authors continue to argue that the FRN reflects reward PEs
(Heydari and Holroyd, 2016; Mulligan and Hajcak, 2018; Ribas-
Fernandes et al., 2019). As this debate is currently ongoing
and is far from resolved, the current study is informative
to the current state of research on cortical correlates of
reinforcement processing.

Neural activity in the theta frequency band (frontal midline
theta, FM2) peaks during the time period of the FRN
(Cavanagh and Frank, 2014) and increases in response
to unexpected events (Cavanagh et al., 2012; Mas-Herrero
and Marco-Pallarés, 2014). While FM2 activation has been
considered synonymous with the ERP components with which
it co-occurs (Cavanagh and Frank, 2014), there is evidence
that ERP and time-frequency measures index dissociable

FIGURE 1 | Comparison of signed (“Value”) and unsigned (“Salience”)
prediction errors (PEs). The main difference is in how the terms behave when
outcomes are worse than expected (O < E); a signed prediction error will
decrease with worse outcomes, whereas an unsigned prediction error will
scale with increasing salience regardless of the value of an outcome.

cognitive processes (Hajihosseini and Holroyd, 2013). FM2
is related to adjustments in cognitive control, such as
overriding Pavlovian biases (Cavanagh et al., 2013), but it is
unclear whether FM2 encodes a PE. Instead, FM2 might
signal the need for control as a function of surprise. This
important distinction between surprise and salience is not
acknowledged in much of the extant literature. Specifically,
events can be surprising or unexpected without carrying any
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reinforcement salience, and even in paradigms that titrate
wins and losses at 50%, some outcomes can be more salient
(higher magnitude) than others without any element of
surprise. While it has sometimes been posited that FM2
reflects a salience PE (Cavanagh et al., 2012; Mas-Herrero
and Marco-Pallarés, 2014), these results were assessed solely
based on surprising outcomes in positive reinforcement and
were not examined during negative reinforcement, which
is a necessary condition for examination of salience PEs
(Talmi et al., 2013; Huang and Yu, 2014; Hird et al., 2018).
Furthermore, extant theories contend that the brain regions
generating theta rhythms might be preferentially sensitive
to negative, but not positive, valenced events (Cavanagh
and Frank, 2014; Cavanagh and Shackman, 2015), suggesting
potential differences in the signal communicated by theta
rhythms depending on whether the trial cue was rewarding
or aversive.

To elicit and measure reinforcing win, reinforcing loss, and
non-reinforcing outcome representations in human cortex, we
had participants complete a monetary incentive delay (MID)
task (Knutson et al., 2000, 2001) while recording EEG. This
task has been used in other ERP studies (Broyd et al., 2012),
but considering the analysis of this task as a measure of
PE signaling is novel. Critically, this task includes positive
reinforcement conditions, negative reinforcement conditions,
and control conditions, as well as multiple levels of reinforcement
salience. Money was used as a reinforcer for both the positive
reinforcement condition (correct responding led to increases
in points) and negative reinforcement (correct responding
led to avoidance of point losses). This task is different
from similar designs in that it includes positive and negative
reinforcement cues (signaling reinforcement via attaining reward
or avoiding punishment) as opposed to positive and negative
PEs, as utilized by Sambrook and Goslin (2014) and Talmi
et al. (2012) to examine better- and worse-than-expected
outcomes. In this task, we defined ‘‘unexpected’’ outcomes
as those that are less likely at a whole-task level. This is
a relatively simple definition (that more common outcomes
must be more expected than less likely outcomes) utilized
in the majority of ERP research that examines expectancy
effects in reinforcement (for example, Talmi et al., 2012,
2013; Hajihosseini and Holroyd, 2013; Huang and Yu, 2014).
At a task-averaged level, this definition holds (that more
common outcomes are more expected than less common
outcomes), but it is likely that at a trial-by-trial level
individual expectancies are influenced by factors other than
mere probability (for example see Fischer and Ullsperger,
2013). While it is likely that trial-by-trial approaches could
more accurately model shifts in expectancies compared to
the one-size-fits-all approach of saying more common events
are ‘‘expected’’ and less common events are ‘‘unexpected,’’
we chose to use the standard (task-averaged) approach in
this analysis to facilitate comparison of our results with prior
FRN analyses.

Our task improves on previous designs used for studying
positive and negative reinforcement since direct comparison of
positive and negative reinforcement conditions is generally not

permissible because rewards and aversive stimuli are presented
in different modalities (money and electrical shock; Talmi
et al., 2013; Heydari and Holroyd, 2016). This introduces
an experimental confound—specifically, the punishment is
delivered immediately, while the reward is delivered after
the experiment. By using points (money) as a reinforcer
for both positive and negative reinforcement conditions, our
results control for the potential confound of reinforcement
delivery timing. Furthermore, the modified MID task included
a condition that did not involve reinforcement (a control
condition). This manipulation allowed us to test assumptions
that previous studies have been unable to test in the absence
of a non-reinforced control condition. Specifically, a PE
signal must reflect outcome information for both positive and
negative reinforcement, but not for conditions that do not
involve reinforcement, while an uncertainty signal should be
sensitive to unexpected outcomes with no reinforcement value
(control conditions).

We hypothesized that FRN amplitude would be sensitive to
salience PEs, rather than value PEs. We designed our MID task
so that the timing was titrated to give a 66% accuracy rate (high
expectation of getting a win). Therefore, we hypothesized that
FM2 activation would be greater for error feedback compared
with correct feedback in both reinforcing (negative and positive)
and control trials, consistent with the idea that FM2 reflects
unexpectedness regardless of reinforcement salience.

MATERIALS AND METHODS

Participants
The sample consisted of 81 undergraduate students at the
University of New Orleans. Participants were excluded from the
study if they had a current psychiatric diagnosis, were currently
using any psychoactive medication or had uncorrected visual
impairments. Additionally, five participants were excluded due
to poor EEG connection (more than 10 bad electrodes) and
25 participants were excluded due to insufficient trial count, as
detailed in the processing section. The final sample size consisted
of 51 (26 female; 7 left-handed; age mean = 21, age SD = 4)
participants. Excluded participants did not differ from those
included in terms of sex χ2

(1,N = 81) = 1.46, Fisher’s exact p = 0.25,
age, t(63) = −1.41, p = 0.16, or handedness, χ2

(1,N = 69) = 0.87,
Fisher’s exact p = 0.37. Students were paid for their participation
based on how many points they accrued during the behavioral
task. Informed consent was obtained from all participants prior
to beginning data collection. All components of this study
were approved by the University of New Orleans Institutional
Review Board.

Procedure
Participants were introduced to the testing environment and
informed consent was obtained. Participants completed a battery
of self-report measures before being seated 67 cm in front
of a computer monitor. The EEG net was applied, and the
participant completed a set of practice trials. If their accuracy
was below 66% they repeated the practice block, thus ensuring
that each person fully understood the task (only one person had
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to repeat the practice block). Following the practice block, the
participants completed the behavioral task (detailed below) while
EEG was recorded.

Task Design
Participants completed a modified MID task (Knutson et al.,
2000, 2001). An EEG compatible version of this task is described
by Broyd et al. (2012). We used white stimuli presented on a
black background on a 17-inch monitor using E-prime software
version 2 (Psychology Software Tools, Inc., Pittsburgh, PA, USA)
for all task stimuli.

The MID task begins each trial by presentation of one
of three white cue stimuli. This cue indicated the trial type.
Specifically, a circle indicated positive anticipation, a square
indicated negative anticipation, and a triangle indicated no
reinforcement anticipation (i.e., the control condition). Point
level was signified by the lines on the cue—one line for low
point level trials (±5 points), two lines for medium point level
trials (±10 points), and three lines for high point level trials
(±20 points). Triangle (control) cues did not have point level
indicators. The cue was on-screen for 250 ms and was followed
by a fixation for 1,000–1,500 ms (jittered).

Following the cue, a white square target was shown that
required subjects to press a button quickly in order to obtain
a favorable outcome. Participants were instructed to respond as
quickly as possible when they saw the target stimulus. Responses
were made using the thumb of the dominant hand using a
button box, and the criteria for logging a response as correct or
incorrect was whether the response occurred within an allotted
time period. The length of the stimulus-response window was
dynamically adjusted to maintain a performance accuracy of
66%. The titration was accomplished by lengthening the time
participants were allowed for responses by 20 ms anytime overall
accuracy was below 66% and shortening the time allowed for
responses by 20 ms any time overall accuracy was greater
than 66%.

Following the response period subjects were given outcome
feedback, which consisted of the word ‘‘correct’’ or ‘‘incorrect’’
on the top line, the outcome of the trial on the middle line
(representing how many points were gained or lost on that
trial), and the total score over all trials on the bottom line.
Because wins were titrated at 66%, this task created a positive
expectation. That is, the expectation was of gaining a reward
(positive reinforcement; gaining points) or avoiding an aversive
stimulus (negative reinforcement; avoiding the loss of points)
for correct trials. This task contained 630 trials across three
blocks. The middle block was a social competition manipulation
that was designed to address a different research question (Lee,
unpublished manuscript) and was not analyzed here, resulting
in the final analysis consisting of 420 trials. See Figure 2 for a
diagram of the modified MID task. Behavioral results from this
task are analyzed and described in the supplementary materials
(Supplementary Figure S1). Importantly, accuracy did not differ
between reinforcement type or point levels (given the task speed
titration to show a 66% accuracy rate, this is not surprising).
Therefore, the expectancy of a win also did not differ between
reinforcement type or point level conditions and thus is not

an explanation for reinforcement type or point level condition
differences in brain data.

EEG Data Collection and Analysis
EEG Data Collection and Processing
Dense-array EEG was sampled at 250 Hz using a 129-channel
GSN Hydrocel EEG net and Netstation software (Electrical
Geodesics Inc., Eugene, OR, USA). Once impedance for all
channels was reduced to below 50 kΩ, data acquisition began.
All channels were referenced to Cz during recording. Data
were processed using EEGLAB 13 (Delorme and Makeig,
2004) running in MATLAB 2016b (Mathworks). Continuous
data were high-pass filtered using an 826-point zero-phase
FIR filter with a cutoff frequency of 0.5 Hz (Winkler et al.,
2015), and low-pass filtered using an 82-point zero-phase FIR
filter with a cutoff frequency of 50 Hz. Filtering was achieved
using the EEGLAB pop_eegfiltnew function, which calls the
MATLAB filtfilt function. Bad channels were detected and
removed using EEGLAB’s clean_rawdata plugin (Kothe and
Makeig, 2013; Bigdely-Shamlo et al., 2015; Mullen et al., 2015).
Using this tool, channels were removed if they were flat for
more than 5 s or had correlations lower than 0.7 with their
robust estimate (calculated using neighboring channels). The
average number of bad channels detected was 5.09 ± 3.66
(range: 0–21). Subjects with greater than 10 bad channels
(n = 5) were excluded from further analysis. In order to
accommodate edge artifacts resulting from time-frequency
convolution, continuous EEG data were time-locked to the
appearance of feedback and epoched into relatively long
windows extending from 2 s before feedback onset to 2.5 s
after feedback onset. Epochs were removed based on a lax
threshold of±500µV, thus removing epochs containing extreme
artifacts which can be problematic for ICA processing but
preserving ocular and other stereotyped artifacts (Delorme
and Makeig, 2004; Jung et al., 2000a,b). Infomax independent
component analysis (ICA; Makeig et al., 1996) was computed,
and independent components representing ocular, muscle, or
other stereotyped artifacts were detected and removed using
the ADJUST plugin for EEGLAB (Mognon et al., 2011).
While ADJUST shows high sensitivity for the removal of
eye artifacts (Mognon et al., 2011), we nevertheless verified
the performance of this algorithm by manual examination of
remaining ICA components and continuous EEG to ensure
no blink or eye movement artifacts remained. Since ICA
can only detect and remove stereotyped artifacts (Jung et al.,
2000a,b), remaining artifacts were removed via thresholding
individual epochs at ±200 µV. Finally, removed channels were
interpolated spherically and the EEG was re-referenced to
the montage average. Subjects were excluded from analysis if
they had fewer than 10 trials of clean data in any condition
(excluded n = 25), following the method used in the original
manuscript describing this task design (Broyd et al., 2012).
The average number of removed epochs for the included
sample (after participant exclusion) was 36.33 ± 39.24 out
of 420 total (8.9% of data epochs were removed in the
included sample).
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FIGURE 2 | Monetary incentive delay (MID) task diagram. Image is scaled up for readability. The total number of points shown as the last line of feedback
represents a running average over the entire task, allowing participants to track their progress as the task went on.

EEG Analyses
All ERP analyses were conducted at electrode FCz where
FRN amplitude was maximal, in line with typical FRN
studies (Donkers et al., 2005; Cohen and Ranganath,

2007; Broyd et al., 2012; Hajihosseini and Holroyd, 2013).
ERP waveforms were baseline corrected for 300 ms
preceding the feedback stimulus. Based on the inspection
of scalp grand-averaged topographic plots and ERP
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waveforms, FRN activation peaked at 300 ms and was
therefore calculated as the mean voltage deflection between
250–350 ms. We quantified FRN activity as the mean
activity in each condition from 250 to 350 ms since mean
windows are less likely to contain artifact compared to
minimum measures or base-to-peak measures (Luck, 2014;
Luck and Gaspelin, 2017).

Time-frequency transformations were calculated using
the EEG lab newtimef() function. Time-domain data were
transformed to a time-frequency representation by convolving
single trials with a family of Morlet wavelets (Goupillaud et al.,
1984) centered on 30 logarithmically-spaced peak frequencies
ranging from 1 Hz to 30 Hz. The number of cycles used
for each wavelet was adaptive, ranging from three cycles at
1 Hz to 15 cycles at 30 Hz. The single-trial spectral power
was taken as the squared magnitude of the complex result
of the convolution [(real2) + (imaginary2)]. Trial-averaged
power values were normalized using a decibel (dB) transform
[dB = 10 × log10(power/baseline)] within each frequency
band, where the baseline was the average power at each peak
frequency band from 500 to 200 ms before feedback. Baseline
correction was done using a condition-averaged baseline. This
baseline normalization is necessary for condition comparisons,
as it represents data from all conditions, participants, sensors,
and frequencies on the same scale, thus allowing quantitative
comparison (as outlined in Cohen, 2014). Inspection of grand-
average time-frequency plots showed that FM2 activation
was maximally centered on electrode FCz between 200 and
450 ms post-stimulus (Supplementary Figure S4), a time
range and topography that was consistent with previous studies
(Luu et al., 2004; Hajihosseini and Holroyd, 2013). Therefore,
FM2 activation was also measured at electrode FCz. Based on
inspection of the grand-average spectrogram, FM2 activation
was measured as the mean activation between 4 and 8 Hz
(exact frequencies: 4.09, 4.59, 5.17, 5.81, 6.53, and 7.34 Hz)
and from 200 to 450 ms. Cohen and Donner (2013) argue that
conflict-related theta might be non-phase-locked in nature,
and Cohen (2014) suggests that one way to examine whether
the calculated theta activity is phase-locked or non-phase-
locked is to subtract the averaged ERP from single trials.
However, this procedure, as far as we are aware, has never
been used to examine reinforcement-related theta activity.
We present an exploratory analysis of non-phase-locked theta
activity in the supplement (Supplementary Figure S3) but
present the more standard full time-frequency data in the
main body of the manuscript to facilitate comparison with
current literature.

While frequencies other than theta were not a focus of the
current analysis, time-frequency plots at FCz showed striking
task-related influences at alpha frequencies (9–15Hz). Therefore,
we present an exploratory analysis of the alpha activity in the
supplement (Supplementary Figure S2). Note that while we
decided to include this analysis post hoc, we chose the time and
frequency windows for which alpha was extracted by examining
condition-averaged power so as not to bias our results. For
alpha analysis, we measured activation between 9 and 15 Hz
(exact frequencies: 9.28, 10.44, 11.74, 13.20, and 14.84 Hz) and

from 300 to 600 ms post-feedback. Similarly, delta activation has
been implicated in reinforcement, particularly reward processing
(Bernat et al., 2015). We extracted delta activity from sensor Pz
with a frequency range of 1–3 Hz (exact frequencies: 1, 1.12, 1.26,
1.42, 1.60, 1.80, 2.02, 2.27, 2.56, and 2.87 Hz) and a time range
of 300–600 ms based on examination of condition-averaged
activity. Results of delta and alpha time-frequency analysis are
described in the supplement (Supplementary Figure S2).

Statistical Analysis
To determine if there were any FRN or FM2 differences
due to reinforcement type, outcome, or point level of trial,
two 2 (positive reinforcement or negative reinforcement) × 2
(correct or error) × 3 (low, medium, or high point level)
repeated-measures ANOVA were conducted on FRN and FM2
activation. However, since the control condition (triangle, no
reinforcement value) did not include multiple point levels, two
separate 3 (positive, negative, or no reinforcement) × 2 (correct
or error) repeated-measures ANOVAs were conducted on FRN
and FM2 activation. The three-point levels were averaged over
for these analyses for both positive and negative reinforcement
since control conditions did not include multiple point levels.
Repeated-measures ANOVAs were conducted in SPSS and the
Greenhouse–Geisser correction was applied to all repeated-
measures tests with more than one degree of freedom. Significant
omnibusmain effects and interaction effects fromANOVAswere
characterized post hoc using the EMMEANS command in SPSS
(Field, 2013). Since the ANOVA models did not include any
covariates and no cells were missing from the analysis (i.e., all
participants completed all conditions), these comparisons are
equivalent to simple linear contrasts. For all post hoc contrasts
of significant F-tests, we used a Bonferroni correction to control
for multiple comparisons. Full output of all ANOVAs and
post hoc contrasts are presented in Supplementary Tables
S1–S12.

We also ran control analyses to demonstrate that activation
during the baseline window did not differ by condition. These
analyses were necessary because two of the main factors of
interest (reinforcement type and point level) were already known
to the participant at the time of feedback, and this knowledge
could have led to condition differences in the baseline window
which may have spilled over into the effects of interest (Cohen,
2014). For theta baseline analysis, we computed raw spectral
power (no baseline correction) for each level of reinforcement
type and point value and averaged spectral power over theta
frequencies from −500 to −200 ms pre-feedback. For ERP
baseline analysis, we averaged the evoked potential from−300 to
0 ms pre-feedback for each level of reinforcement type and
point level. For baseline analysis, we averaged over, correct and
error feedback within each level of reinforcement type and point
level, as these conditions were not yet known to the participant
before feedback. We conducted a repeated-measures ANOVA
with one factor (trial type) consisting of seven levels (positive
reinforcement—large, positive reinforcement—medium,
positive reinforcement—small, negative reinforcement—large,
negative reinforcement—medium, negative
reinforcement—small, and control) to determine whether
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baseline theta power or ERP differences existed for
any conditions.

RESULTS

Condition Differences in
Feedback-Related Negativity
Preliminary analysis demonstrated that there were no detectable
condition differences in the ERP baseline window of −300 to
0 ms pre-feedback, F(6,45) = 1.18, p = 0.32, η2 = 0.02,
ε = 0.9. Therefore, we carried out all statistical testing of
FRN activation using this choice of baseline window. The
initial three-way repeated measures ANOVA on FRN amplitude
indicated a main effect of point level (low, medium, or high)
on FRN amplitude, F(2,100) = 11.52, p < 0.001, η2 = 0.19,
ε = 0.92 (Figure 3), as well as an interaction between
reinforcement type (positive or negative reinforcement) and
outcome (correct or error), F(1,50) = 50.50, p < 0.001, η2 = 0.50,
ε = 1.0.

To characterize the main effect of point level (high vs.
medium vs. low point-level; averaging over the other factors
not included in this effect), post hoc linear contrasts were
examined as described in ‘‘Statistical Analysis’’ section. Contrasts
indicated that FRNs were less negative for high-point trials
than both medium-point trials, mean difference = 0.56 µV,
95% CI = (0.3, 0.82), p < 0.001, and low-point trials, mean
difference = 0.68 µV, 95% CI = (0.34, 1.02), p < 0.001. The
FRN difference between medium and low point trials was
not significant.

Post hoc linear contrasts (‘‘Statistical Analysis’’ section) was
also used to characterize the significant interaction between
reinforcement type and trial outcome (averaging over point
level). These tests, therefore, examined the simple effect of
reinforcement type (positive or negative) on FRN amplitudes
within each level of outcome (correct or error), as well as
the effect of the outcome on FRN amplitudes within each
level of reinforcement type. Interestingly, results revealed
opposite effects between positive and negative reinforcement.
For positive reinforcement conditions, FRN amplitudes were
more negative for reward omission (error trials, do not gain
points) compared to reward delivery (correct trials, gain points)
feedback, mean difference =−0.70µV, 95%CI = (−1.14,−0.26),
p = 0.002. However, for negative reinforcement conditions, FRN
amplitudes were more negative for avoidance of aversive stimuli
(correct trials, avoid losing points) compared to aversive stimulus
delivery (error trials, lose points), mean difference = 1.01 µV,
95% CI = (0.58, 1.43), p< 0.001.

We interpret this finding as support for salience coding by
FRN activation because the salience of point feedback (level
of points), regardless of signed value (positive or negative
reinforcement), impacts FRN amplitude (i.e., the ANOVA
indicated a significant main effect of point level rather than
an interaction between point level and reinforcement type).
FRN amplitude did not differ in sign between positive and
negative reinforcement but instead coded the absolute value of
the delivered stimulus (FRN became less negative with increased

point level for both positive and negative reinforcement; see
Figure 3, bottom panel).

For the second ANOVA on FRN amplitude, point level
(low, medium, or high) for positive and negative reinforcement
was averaged over in order to allow comparison with control
conditions, which did not include multiple point levels. The
two-way repeated measures ANOVA indicated a main effect
of reinforcement type (positive, negative, or control) on FRN
amplitude, F(2,100) = 22.88, p < 0.001, η2 = 0.31, ε = 0.73, which
was subsumed by a significant interaction between reinforcement
type and outcome (correct or error), F(2,100) = 17.14, p < 0.001,
η2 = 0.26, ε = 0.90.

Post hoc linear contrasts (‘‘Statistical Analysis’’ section) were
used to characterize the interaction of reinforcement type
(positive, negative, or control) and outcome (correct or error) on
FRN amplitude. Critically, in control trials there was no effect of
outcome (correct or error) on FRN amplitude (p = 0.94), unlike
FRN amplitudes in positive (p < 0.01) and negative (p < 0.001)
reinforcement conditions (Figure 4). This important control
analysis shows that FRN activation is only sensitive to reinforcing
error feedback, but not to non-reinforcing error feedback.
Furthermore, while correct and error outcomes were delivered
at unequal rates in this study, this second analysis indicates
that in the absence of reinforcement, expectancy differences in
correct and error rates do not impact FRN amplitude. This
supports the previous theory that the FRN signals a PE, but our
results refine this theory and suggest that neural activation during
the FRN time period follows a salience function rather than a
value function.

Condition Differences in Frontal Midline
Theta
Preliminary analysis of non-baseline-corrected time-frequency
power demonstrated that there were no detectable condition
differences in the baseline window of −500 to −200 ms pre-
feedback, F(6,45) = 0.96, p = 0.44, η2 = 0.02, ε = 0.71. Therefore,
we carried out all statistical testing of theta activation using this
choice of baseline window. All FM2 analyses were conducted
identically to the FRN analyses described already. The initial
three-way repeated-measures ANOVA showed no effect of point
level (low, medium, or high) on FM2 amplitude, F(1,100) = 2.30,
p = 0.11, η2 = 0.04, ε = 0.99, and no interaction of point level with
any other variables, all p > 0.1. These null results rule out point
level as an explanation for any differences in theta activation.
Therefore, low,medium, and high point level trials were averaged
over for further theta analyses.

A second two-way repeated measures ANOVA on FM2
power indicated a main effect of outcome (correct or error),
F(1,50) = 17.14, p < 0.001, η2 = 0.26, ε = 1.0, which was
subsumed by a significant interaction between reinforcement
type (positive, negative, or control) and outcome (correct or
error), F(2,100) = 4.64, p = 0.016, η2 = 0.09, ε = 0.85.

Post hoc linear contrasts (‘‘Statistical Analysis’’ section)
were used to characterize the significant interaction between
reinforcement type and outcome. The results indicated that
error trials resulted in greater theta activation than correct
trials for positive reinforcement, mean difference = 0.86 dB,
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FIGURE 3 | Event-related potential (ERP) waveforms measured at FCz (top), topographic distributions of the medium-high and low-high difference in the
feedback-related negativity (FRN) time window (middle), and mean FRN amplitudes (bottom), showing the main effect of point salience on the FRN. This plot
describes the main effect of point level as confirmed via ANOVA, therefore all ERP waveforms are collapsed over the correct and error outcomes, and positive and
negative reinforcement. Note ERPs are plotted negative downward, such that larger FRN activation is depicted as a waveform drop. FCz is marked by a white
ellipse. The shaded region is the time period across which the FRN was measured. Error bars represent 1 ± SEM. ∗∗∗p < 0.001.

95% CI = (0.53, 1.19), p < 0.001, and control trials, mean
difference = 0.64 dB, 95% CI = (0.13, 1.15), p = 0.016. However,
post hoc linear contrasts indicated no effect of outcome (correct
or error) in negative reinforcement trials suggesting that in

this paradigm theta activation did not differentiate between
avoided (correct, avoidance of loss of points) and delivered
aversive (loss of points) stimuli. See Figure 5 for a summary of
FM2 results.
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FIGURE 4 | ERP waveforms measured at FCz (top), topographic distributions of the error-correct difference in the FRN time window (middle), and mean FRN
amplitudes (bottom), depicting interaction effect of reinforcement type and outcome on FRN. This plot describes the interaction effect of reinforcement type and
outcome as confirmed via ANOVA, therefore all ERP waveforms are collapsed over low, medium, and high point levels. Note ERPs are plotted negative downward,
such that larger FRN activation is depicted as a waveform drop. FCz is marked by a white ellipse. The shaded region is the time period across which the FRN was
measured. Error bars represent 1 ± SEM. ∗∗p < 0.01, ∗∗∗p < 0.001.

For correct feedback, FM2 power was greater for negative
reinforcement than positive, mean difference = 0.30 dB, 95%
CI = (0.04, 0.57), p = 0.021. This pattern was reversed for error
feedback; FM2 power was greater for positive reinforcement
than negative, mean difference = 0.44 dB, 95% CI = (0.08,
0.79), p = 0.013. Therefore, in negative reinforcement conditions,
FM2 power is elevated even for correct feedback, compared
to both correct positive and correct control conditions, but
is not sensitive to error feedback. This supports the theory
that overlapping regions in the midcingulate cortex index
negative affect and cognitive control signaling (Shackman et al.,
2011), and supports the hypothesis that FM2 incorporates

elements of both cognitive control and negative cues. FM2
might index overlapping information about negative affect
and unexpectedness, but does not always appear to signal
PEs—evidenced by the significant effect of error feedback on
FM2 in control conditions. It is important to note in this
case that unsigned PEs and unexpectedness are not one and
the same, although some authors have suggested they are. As
mentioned previously, outcomes with no reinforcement salience
can still be ‘‘surprising’’ while equally expected outcomes can
be more or less salient than one another. More specifically,
a PE incorporates information about expectancy and outcome
valence, not merely surprise. Therefore, this might support
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the notion that theta signals surprise but not necessarily
unsigned PEs.

DISCUSSION

The Reinforcement Learning FRN Theory
(RL-FRN)
RL-FRN (Holroyd and Coles, 2002) specifies that the FRN
reflects a signed PE. RL-FRN suggests that DA neurons project
to the ACC, inhibiting pyramidal cells. This inhibitory function
accounts for decreased FRN amplitudes during reward omission
compared to reward delivery. Reward omission could decrease
DA activity from baseline, disinhibiting pyramidal cells in ACC
and producing a more negative FRN in comparison to reward
delivery. In our study, the control condition did not show a
difference between correct and error trial outcome. This suggests
that the FRN is reinforcement-specific, in line with the RL-FRN
theory. While it is possible that the FRN results are contaminated
by component overlap with the P3, as in Novak and Foti (2015),
this is unlikely given the topographic maps of the FRN effect.
More specifically, this effect is clearly mediofrontal in both
positive and negative reinforcement conditions, suggesting that
this signal is not contaminated by the P3 component overlap.

Our study included negative reinforcement conditions, in
addition to themore common positive reinforcement conditions.
In negative reinforcement conditions, a correct response resulted
in the avoidance of an aversive stimulus (avoiding loss of points
or money). Meanwhile, if subjects were too slow in their response
an aversive stimulus was delivered (i.e., loss of points or money).
Critically, FRN amplitude was more negative for the avoidance of
an aversive stimulus than for the delivery of an aversive stimulus.
These results follow those of recent studies in suggesting that the
FRN might encode unsigned (salience) PEs rather than signed
(value) PEs. Talmi et al. (2013) alternated blocks of positive
and negative reinforcement and found that FRN amplitudes
were larger (more negative) for omitted rewards compared to
delivered rewards, as expected. Talmi et al. (2013) also found
larger FRN amplitudes for avoided aversive stimuli than for
delivered aversive stimuli. Similarly, Huang and Yu (2014) used
a blocked presentation of positive and negative reinforcement
trials and found larger FRN activation for the avoidance of loss
than for losses. These results mirror ours and suggest that the
FRN encodes salience PEs rather than value PEs. Notably, a
2015 review by Sambrook and Goslin used great grand-averages
to conduct a meta-analysis of ERP studies on reward PEs. This
study found evidence that the FRN encoded information in
a manner consistent with a reward PE, but this study also
found notable effects of salience throughout many parts of the
waveform. This raises the important need to examine under
which conditions the FRN behaves as a signed or unsigned PE.

Heydari and Holroyd (2016) used a difference wave approach
and found an apparently delayed reward positivity in negative
reinforcement, occurring during the time period of the P3 rather
than the FRN. Our results instead indicate that the mediofrontal
topography of the FRN is reversed for negative compared
to positive reinforcement—i.e., all ‘‘salient’’ outcomes (point
gains and point losses) appear to inhibit the FRN. A possible

explanation for the delayed signal found in Heydari and Holroyd
(2016) is that they used different types of reinforcers for
positive compared with negative reinforcement conditions. Since
money (positive reinforcer) was paid at the end of the task but
electrical shock (negative reinforcer) was delivered immediately,
this introduces an experimental confound in the timing of
reinforcement delivery. The MID task titrates wins and losses at
different rates (66% and 33% loss), and therefore it is possible
that this result is skewed by the different expectancies for
different valenced outcomes. This possibility is reduced through
the analysis of the control condition, where results indicate that
different expectation rates for wins or losses do not impact the
FRN, in the absence of reinforcing feedback. Still, we are unable
to make concrete claims as to whether the expectancy difference
between win and loss outcomes might have contributed to the
apparent FRN differences we observed. However, von Borries
et al. (2013) note that FRN amplitude depends on outcome
valence but is insensitive to expectancy. A similar effect was
also reported by Hajihosseini and Holroyd (2013), whose results
indicated that the FRNwas sensitive to outcome valence over and
above any explanatory power of expectancy.

The idea that the FRN encodes salience PEs for poor
unexpected outcomes supports our finding of more negative
FRNs for omitted rewards and losses compared to delivered
rewards and losses, as well as our lack of FRN differences
in control conditions. Furthermore, we found the main effect
of point level (low, medium, or high) on the FRN, i.e., for
both positive and negative reinforcement, FRNs were less
negative for high point levels than low point levels. Since
point level is positively valenced for positive reinforcement
conditions (references gains in points) and negatively valenced
for negative reinforcement conditions (references loss of points),
our main effect of point level provides further evidence that
the FRN signals salience, not value. However, this study is
unable to authoritatively describe whether these signals are due
to ‘‘bad’’ outcomes or to unexpected outcomes. Future studies
should examine modification of this task where all conditions
analyzed are equally likely, or where probability is parametrically
modified, to further dissociate the information representation of
the FRN. Furthermore, in this task ‘‘unexpected’’ outcomes were
determined simply to be those outcomes with lower probability
(error outcomes). While this must hold true for the condition
averages across the entire task (more common outcomes are by
definition expected in comparison to less common outcomes),
this definition does not necessarily hold at a trial-by-trial level.
That is, it is likely that the expectancy of an outcome at a trial-
by-trial level is influenced by a weighted average of previous
outcomes, as well as influenced by the participant’s subjective
reading of their own behavior. While it is impossible to know
what a participant subjectively believes about their own behavior,
future analyses should use fine-grained trial-by-trial analysis to
disambiguate the exact representation of PE and reinforcement.

Frontal Midline Theta Is Not
Reinforcement-Specific
We observed increased theta power in response to unexpected
outcomes (i.e., error trials, unexpected because the task was
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FIGURE 5 | Time-frequency spectrograms measured at FCz (top), topographic distributions of the error-correct difference in frontal midline theta (FM2) time
(200–450 ms) and frequency ranges (4–8 Hz; middle), and mean FM2 power (bottom) depicting the interaction between reinforcement type (positive, negative, or
control) and outcome (correct or error). Frequency-specific power is dB-transformed using −500 to −200 ms pre-feedback as baseline. FCz is marked by a white
ellipse. Black outlines enclose the region of data exported for statistical analysis. Error bars represent 1 ± SEM. ∗p < 0.05, ∗∗∗p < 0.001.
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weighted towards correct trials, 34% vs. 66%) in positive
reinforcement conditions and control conditions. This finding
is inconsistent with the notion that FM2 indexes a PE
and highlighting the importance of including a control
condition where subjects are primed with a point level of
zero. Interestingly, in negative reinforcement conditions, the
outcome did not influence FM2 power. This finding is
consistent with the hypothesis that frontal theta is sensitive to
surprise, the need for control, and negative cueing (Cavanagh
and Shackman, 2015). FM2 is prominent following the
need for control, as in error monitoring. However, our
results indicate that FM2 is overall enhanced following
negative cues, even in correct feedback conditions. Since
negative reinforcement/correct theta is enhanced over positive
reinforcement/correct theta, we conclude that theta is overall
enhanced following the cueing of negative reinforcement.
Specifically, following correct feedback FM2 is elevated
for negative reinforcement conditions compared to positive
reinforcement, which might represent an effect of aversive
priming on theta signaling. However, theta is decreased for
error feedback in negative reinforcement conditions compared
to positive reinforcement error feedback—this suggests that
negative priming might reduce subsequent control abilities.
Probably the potential for loss of points resulted in increased
baseline FM2 power, such that the increase in power for error
feedback was not significant. These results are broadly consistent
with the theory that FM2 acts as a general ‘‘alarm’’ signaling
the need for increased control and negative cueing (Cavanagh
and Frank, 2014). Although not a focus of the current study,
alpha frequencies and delta frequencies were also examined.
Alpha and delta frequencies showed a power increase for error
outcomes compared to correct outcomes (S1), suggesting that
neural oscillatory responses might be tightly linked to outcome
processing but not reinforcement.

CONCLUSION

Our findings are consistent with the hypothesis that the FRN
signals PEs while FM2 power instead might reflect a compound
signal of control and aversion, but does not index PEs, in
line with the Adaptive Control Hypothesis (tACH; Cavanagh
and Shackman, 2015). Critically, we show that the FRN is
consistent with an unsigned (salience) PE signal, rather than a
signed (value) PE signal, which is not in accordance with the
RL-FRN theory. This study uses the MID task, and therefore
is unable to directly test for expectancy. We note that while
losses are unexpected in control conditions, there is no impact
of loss on the control FRN, which is in line with previous
literature suggesting that outcome valence impacts the FRN
over and above expectancy (Hajihosseini and Holroyd, 2013;
von Borries et al., 2013). These results add to an overall
understanding of the diversity of frontal cortical function during
reinforcement. While in this particular paradigm the FRN is
closer to a salience than value signal (as indicated by the
polarity flip between positive and negative conditions), evidence
suggests that the representation of a value or salience signal in
the FRN is highly context-dependent (Sambrook and Goslin,

2014, 2015). Finally, previous studies have shown context-
dependence of the FRN such that expectations are modulated
by previous outcomes using blocked presentation designs. Our
design instead randomly intermixed positive, negative, and
control trials (with fully predictive cues so the subject knew
which trial type they were on). Since the probability of a
previous trial being a positive or negative reinforcement one
was equal, we argue that context-dependence is unlikely to
influence our results. Stated differently, other than the cue,
the expectancy for positive, negative, and control trials must
be equivalent due to the random design. We conclude that
in the context of an established electrophysiological paradigm
examining reinforcement processing (Broyd et al., 2012), the
FRN encodes salience through similar mechanisms in negative
reinforcement and positive reinforcement, providing a common
pathway for reinforcement through signaling unsigned PEs.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by University of New Orleans Institutional Review
Board. The patients/participants provided their written informed
consent to participate in this study.

AUTHOR CONTRIBUTIONS

All authors contributed and approved the completedmanuscript.
Manuscript drafting and statistics were completed by ER
supervised by CL. Substantial edits were completed by CL,
VM, and ES. Data were collected and study was organized and
conceptualized by YL and SM, as part of YL’s masters thesis (Lee,
2014), supervised by ES.

FUNDING

The funding for this study was provided by the Arkansas
Biosciences Institute (0402-27504-21-0216) to CL. The content
is solely the responsibility of the authors and does not necessarily
represent the official views of the ABI. Data were collected as part
of YL’s masters thesis at the University of New Orleans.

ACKNOWLEDGMENTS

We thank Mejdy M. Jabr, Carl Armes, and Jena Michel for help
in data collection.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2019.00452/full#supplementary-material.

Frontiers in Human Neuroscience | www.frontiersin.org 12 January 2020 | Volume 13 | Article 452

https://www.frontiersin.org/articles/10.3389/fnhum.2019.00452/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2019.00452/full#supplementary-material
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Rawls et al. FRN and Theta Processing in Reinforcement

REFERENCES

Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K. M., and Robbins, K. A. (2015).
The PREP pipeline: standardized preprocessing for large-scale EEG analysis.
Front. Neuroinform. 9:16. doi: 10.3389/fninf.2015.00016

Bromberg-Martin, E. S., Matsumoto, M., and Hikosaka, O. (2010). Dopamine in
motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834.
doi: 10.1016/j.neuron.2010.11.022

Broyd, S. J., Richards, H. J., Helps, S. K., Chronaki, G., Bamford, S., and Sonuga-
Barke, E. J. (2012). An electrophysiological monetary incentive delay (e-MID)
task: a way to decompose the different components of neural response to
positive and negativemonetary reinforcement. J. Neurosci. Methods 209, 40–49.
doi: 10.1016/j.jneumeth.2012.05.015

Cavanagh, J. F., Eisenberg, I., Guitart-Masip, M., Huys, Q., and Frank, M. J. (2013).
Frontal theta overrides pavlovian learning biases. J. Neurosci. 33, 8541–8548.
doi: 10.1523/jneurosci.5754-12.2013

Cavanagh, J. F., Figueroa, C. M., Cohen, M. X., and Frank, M. J. (2012).
Frontal theta reflects uncertainty and unexpectedness during exploration and
exploitation. Cereb. Cortex 22, 2575–2586. doi: 10.1093/cercor/bhr332

Cavanagh, J. F., and Frank, M. J. (2014). Frontal theta as a mechanism for cognitive
control. Trends Cogn. Sci. 18, 414–421. doi: 10.1016/j.tics.2014.04.012

Cavanagh, J. F., and Shackman, A. J. (2015). Frontal midline theta reflects anxiety
and cognitive control: meta-analytic evidence. J. Physiol. Paris 109, 3–15.
doi: 10.1016/j.jphysparis.2014.04.003

Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice.
Cambridge, MA: MIT press.

Cohen, M. X., and Donner, T. H. (2013). Midfrontal conflict-related theta-band
power reflects neural oscillations that predict behavior. J. Neurophysiol. 110,
2752–2763. doi: 10.1152/jn.00479.2013

Cohen, M. X., and Ranganath, C. (2007). Reinforcement learning signals predict
future decisions. J. Neurosci. 27, 371–378. doi: 10.1523/jneurosci.4421-06.2007

Dayan, P., and Balleine, B. W. (2002). Reward, motivation, and
reinforcement learning. Neuron 36, 285–298. doi: 10.1016/s0896-6273(02)
00963-7

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis
of single-trial EEG dynamics including independent component analysis.
J. Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Donkers, F. C., Nieuwenhuis, S., and van Boxtel, G. J. (2005). Mediofrontal
negativities in the absence of responding. Cogn. Brain Res. 25, 777–787.
doi: 10.1016/j.cogbrainres.2005.09.007

Field, A. (2013).Discovering Statistics Using IBM SPSS Statistics. Sage.
Fiorillo, C. D., Song, M. R., and Yun, S. R. (2013). Multiphasic temporal dynamics

in responses of midbrain dopamine neurons to appetitive and aversive stimuli.
J. Neurosci. 33, 4710–4725. doi: 10.1523/jneurosci.3883-12.2013

Fischer, A. G., and Ullsperger, M. (2013). Real and fictive outcomes are processed
differently but converge on a common adaptive mechanism. Neuron 79,
1243–1255. doi: 10.1016/j.neuron.2013.07.006

Frank,M. J.,Woroch, B. S., and Curran, T. (2005). Error-related negativity predicts
reinforcement learning and conflict biases. Neuron 47, 495–501. doi: 10.1016/j.
neuron.2005.06.020

Goupillaud, P., Grossmann, A., and Morlet, J. (1984). Cycle-octave and
related transforms in seismic signal analysis. Geoexploration 23, 85–102.
doi: 10.1016/0016-7142(84)90025-5

Hajihosseini, A., and Holroyd, C. B. (2013). Frontal midline theta and
N200 amplitude reflect complementary information about expectancy and
outcome evaluation. Psychophysiology 50, 550–562. doi: 10.1111/psyp.12040

Heydari, S., and Holroyd, C. B. (2016). Reward positivity: reward prediction
error or salience prediction error? Psychophysiology 53, 1185–1192.
doi: 10.1111/psyp.12673

Hird, E. J., El-Deredy, W., Jones, A., and Talmi, D. (2018). Temporal dissociation
of salience and prediction error responses to appetitive and aversive taste.
Psychophysiology 55:e12976. doi: 10.1111/psyp.12976

Hollerman, J. R., and Schultz, W. (1998). Dopamine neurons report an error in
the temporal prediction of reward during learning. Nat. Neurosci. 1, 304–309.
doi: 10.1038/1124

Holroyd, C. B., and Coles, M. G. H. (2002). The neural basis of human error
processing: reinforcement learning, dopamine, and the error-related negativity.
Psychol. Rev. 109, 679–709. doi: 10.1037/0033-295x.109.4.679

Holroyd, C. B., Nieuwenhuis, S., Yeung, N., and Cohen, J. D. (2003). Errors in
reward prediction are reflected in the event-related brain potential.Neuroreport
14, 2481–2484. doi: 10.1097/00001756-200312190-00037

Huang, Y., and Yu, R. (2014). The feedback-related negativity reflects ‘‘more or
less’’ prediction error in appetitive and aversive conditions. Front. Neurosci.
8:108. doi: 10.3389/fnins.2014.00108

Ilango, A., Kesner, A. J., Keller, K. L., Stuber, G. D., Bonci, A., and
Ikemoto, S. (2014). Similar roles of substantia nigra and ventral tegmental
dopamine neurons in reward and aversion. J. Neurosci. 34, 817–822.
doi: 10.1523/JNEUROSCI.1703-13.2014

Jung, T.-P., Makeig, S., Humphries, C., Lee, T. W., McKeown, M. J., Iragui, V.,
et al. (2000a). Removing electroencephalographic artifacts by blind source
separation. Psychophysiology 37, 163–178. doi: 10.1017/s0048577200980259

Jung, T.-P., Makeig, S., Westerfield, W., Townsend, J., Courchesne, E., and
Sejnowski, T. J. (2000b). Removal of eye activity artifacts from visual event-
related potentials in normal and clinical subjects. Clin. Neurophysiol. 111,
1745–1758. doi: 10.1016/s1388-2457(00)00386-2

Knutson, B., Adams, C. M., Fong, G. W., and Hommer, D. (2001). Anticipation of
increasingmonetary reward selectively recruits nucleus accumbens. J. Neurosci.
21:RC159. doi: 10.1523/jneurosci.21-16-j0002.2001

Knutson, B., Westdorp, A., Kaiser, E., and Hommer, D. (2000). FMRI visualization
of brain activity during a monetary incentive delay task.Neuroimage 12, 20–27.
doi: 10.1006/nimg.2000.0593

Kothe, C. A., and Makeig, S. (2013). BCILAB: a platform for brain-
computer interface development. J. Neural Eng. 10:056014. doi: 10.1088/1741-
2560/10/5/056014

Lee, Y. (2014). Testosterone reactivity and neural activation in the MID task.
University of New Orleans Theses and Dissertations. Available online at:
https://scholarworks.uno.edu/td/1930

Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique.
Cambridge, MA: MIT Press.

Luck, S. J., and Gaspelin, N. (2017). How to get statistically significant effects in
any ERP experiment (and why you shouldn’t). Psychophysiology 54, 146–157.
doi: 10.1111/psyp.12639

Luu, P., Tucker, D. M., and Makeig, S. (2004). Frontal midline theta
and the error-related negativity: neurophysiological mechanisms of action
regulation. Clin. Neurophysiol. 115, 1821–1835. doi: 10.1016/j.clinph.2004.
03.031

Makeig, S., Bell, A. J., Jung, T. P., and Sejnowski, T. J. (1996). ‘‘Independent
component analysis of electroencephalographic data,’’ in Advances in Neural
Information Processing Systems, eds D. Touretzky, M. Mozer and M. Hasselmo
(Cambridge, MA: MIT Press), 145–151.

Mas-Herrero, E., and Marco-Pallarés, J. (2014). Frontal theta oscillatory activity
is a common mechanism for the computation of unexpected outcomes and
learning rate. J. Cogn. Neurosci. 26, 447–458. doi: 10.1162/jocn_a_00516

Matsumoto, M., and Hikosaka, O. (2009). Two types of dopamine neuron
distinctively convey positive and negative motivational signals. Nature 459,
837–841. doi: 10.1038/nature08028

Mognon, A., Jovicich, J., Bruzzone, L., and Buiatti, M. (2011). ADJUST: an
automatic EEG artifact detector based on the joint use of spatial and temporal
features. Psychophysiology 48, 229–240. doi: 10.1111/j.1469-8986.2010.01061.x

Mullen, T. R., Kothe, C. A., Chi, Y.M., Ojeda, A., Kerth, T., Makeig, S., et al. (2015).
Real-time neuroimaging and cognitive monitoring using wearable dry EEG.
IEEE Trans. Biomed. Eng. 62, 2553–2567. doi: 10.1109/tbme.2015.2481482

Mulligan, E. M., and Hajcak, G. (2018). The electrocortical response to rewarding
and aversive feedback: The reward positivity does not reflect salience in simple
gambling tasks. Int. J. Psychophysiol. 132, 262–267. doi: 10.1016/j.ijpsycho.
2017.11.015

Novak, K. D., and Foti, D. (2015). Teasing apart the anticipatory and
consummatory processing of monetary incentives: an event-related potential
study of reward dynamics. Psychophysiology 52, 1470–1482. doi: 10.1111/psyp.
12504

Pearce, J. M., and Hall, G. (1980). Amodel for Pavlovian learning: variations in the
effectiveness of conditioned but not of unconditioned stimuli. Psychol. Rev. 87,
532–552. doi: 10.1037/0033-295x.87.6.532

Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J., and Frith, C. D. (2006).
Dopamine-dependent prediction errors underpin reward-seeking behaviour in
humans. Nature 442, 1042–1045. doi: 10.1038/nature05051

Frontiers in Human Neuroscience | www.frontiersin.org 13 January 2020 | Volume 13 | Article 452

https://doi.org/10.3389/fninf.2015.00016
https://doi.org/10.1016/j.neuron.2010.11.022
https://doi.org/10.1016/j.jneumeth.2012.05.015
https://doi.org/10.1523/jneurosci.5754-12.2013
https://doi.org/10.1093/cercor/bhr332
https://doi.org/10.1016/j.tics.2014.04.012
https://doi.org/10.1016/j.jphysparis.2014.04.003
https://doi.org/10.1152/jn.00479.2013
https://doi.org/10.1523/jneurosci.4421-06.2007
https://doi.org/10.1016/s0896-6273(02)00963-7
https://doi.org/10.1016/s0896-6273(02)00963-7
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.cogbrainres.2005.09.007
https://doi.org/10.1523/jneurosci.3883-12.2013
https://doi.org/10.1016/j.neuron.2013.07.006
https://doi.org/10.1016/j.neuron.2005.06.020
https://doi.org/10.1016/j.neuron.2005.06.020
https://doi.org/10.1016/0016-7142(84)90025-5
https://doi.org/10.1111/psyp.12040
https://doi.org/10.1111/psyp.12673
https://doi.org/10.1111/psyp.12976
https://doi.org/10.1038/1124
https://doi.org/10.1037/0033-295x.109.4.679
https://doi.org/10.1097/00001756-200312190-00037
https://doi.org/10.3389/fnins.2014.00108
https://doi.org/10.1523/JNEUROSCI.1703-13.2014
https://doi.org/10.1017/s0048577200980259
https://doi.org/10.1016/s1388-2457(00)00386-2
https://doi.org/10.1523/jneurosci.21-16-j0002.2001
https://doi.org/10.1006/nimg.2000.0593
https://doi.org/10.1088/1741-2560/10/5/056014
https://doi.org/10.1088/1741-2560/10/5/056014
https://scholarworks.uno.edu/td/1930
https://doi.org/10.1111/psyp.12639
https://doi.org/10.1016/j.clinph.2004.03.031
https://doi.org/10.1016/j.clinph.2004.03.031
https://doi.org/10.1162/jocn_a_00516
https://doi.org/10.1038/nature08028
https://doi.org/10.1111/j.1469-8986.2010.01061.x
https://doi.org/10.1109/tbme.2015.2481482
https://doi.org/10.1016/j.ijpsycho.2017.11.015
https://doi.org/10.1016/j.ijpsycho.2017.11.015
https://doi.org/10.1111/psyp.12504
https://doi.org/10.1111/psyp.12504
https://doi.org/10.1037/0033-295x.87.6.532
https://doi.org/10.1038/nature05051
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Rawls et al. FRN and Theta Processing in Reinforcement

Ribas-Fernandes, J. J., Shahnazian, D., Holroyd, C. B., and Botvinick,M.M. (2019).
Subgoal-and goal-related reward prediction errors in medial prefrontal cortex.
J. Cogn. Neurosci. 31, 8–23. doi: 10.1162/jocn_a_01341

Rescorla, R. A., and Wagner, A. R. (1972). A theory of Pavlovian conditioning:
variations in the effectiveness of reinforcement and nonreinforcement. Class.
Cond. Curr. Res. Theory 2, 64–99.

Sambrook, T. D., and Goslin, J. (2014). Mediofrontal event-related potentials in
response to positive, negative and unsigned prediction errors.Neuropsychologia
61, 1–10. doi: 10.1016/j.neuropsychologia.2014.06.004

Sambrook, T. D., and Goslin, J. (2015). A neural reward prediction error revealed
by a meta-analysis of ERPs using great grand averages. Psychol. Bull. 141,
213–235. doi: 10.1037/bul0000006

Sambrook, T. D., and Goslin, J. (2016). Principal components analysis of reward
prediction errors in a reinforcement learning task. Neuroimage 124, 276–286.
doi: 10.1016/j.neuroimage.2015.07.032

Schultz, W. (2016). Dopamine reward prediction-error signaling: a
two-component response. Nat. Rev. Neurosci. 17, 183–195. doi: 10.1038/nrn.
2015.26

Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural substrate of
prediction and reward. Science 275, 1593–1599. doi: 10.1126/science.275.53
06.1593

Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J.,
and Davidson, R. J. (2011). The integration of negative affect, pain and
cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 12, 154–167.
doi: 10.1038/nrn2994

Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learning: An Introduction.
Cambridge, MA: MIT press.

Talmi, D., Atkinson, R., and El-Deredy,W. (2013). The feedback-related negativity
signals salience prediction errors, not reward prediction errors. J. Neurosci. 33,
8264–8269. doi: 10.1523/JNEUROSCI.5695-12.2013

Talmi, D., Fuentemilla, L., Litvak, V., Duzel, E., and Dolan, R. J. (2012).
An MEG signature corresponding to an axiomatic model of reward
prediction error. Neuroimage 59, 635–645. doi: 10.1016/j.neuroimage.2011.
06.051

von Borries, A. K. L., Verkes, R. J., Bulten, B. H., Cools, R., and de Bruijn, E. R. A.
(2013). Feedback-related negativity codes outcome valence, but not outcome
expectancy, during reversal learning. Cogn. Affect. Behav. Neurosci. 13,
737–746. doi: 10.3758/s13415-013-0150-1

Winkler, I., Debener, S., Müller, K. R., and Tangermann, M. (2015). ‘‘On the
influence of high-pass filtering on ICA-based artifact reduction in EEG-
ERP,’’ in Proceedings of the 37th Annual International Conference of the IEEE
Engineering inMedicine and Biology Society (EMBC) (Milan: IEEE), 4101–4105.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Rawls, Miskovic, Moody, Lee, Shirtcliff and Lamm. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 14 January 2020 | Volume 13 | Article 452

https://doi.org/10.1162/jocn_a_01341
https://doi.org/10.1016/j.neuropsychologia.2014.06.004
https://doi.org/10.1037/bul0000006
https://doi.org/10.1016/j.neuroimage.2015.07.032
https://doi.org/10.1038/nrn.2015.26
https://doi.org/10.1038/nrn.2015.26
https://doi.org/10.1126/science.275.5306.1593
https://doi.org/10.1126/science.275.5306.1593
https://doi.org/10.1038/nrn2994
https://doi.org/10.1523/JNEUROSCI.5695-12.2013
https://doi.org/10.1016/j.neuroimage.2011.06.051
https://doi.org/10.1016/j.neuroimage.2011.06.051
https://doi.org/10.3758/s13415-013-0150-1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	Feedback-Related Negativity and Frontal Midline Theta Reflect Dissociable Processing of Reinforcement
	INTRODUCTION
	MATERIALS AND METHODS
	Participants
	Procedure
	Task Design
	EEG Data Collection and Analysis
	EEG Data Collection and Processing
	EEG Analyses
	Statistical Analysis


	RESULTS
	Condition Differences in Feedback-Related Negativity
	Condition Differences in Frontal Midline Theta

	DISCUSSION
	The Reinforcement Learning FRN Theory (RL-FRN)
	Frontal Midline Theta Is Not Reinforcement-Specific

	CONCLUSION
	DATA AVAILABILITY STATEMENT
	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEGMENTS
	SUPPLEMENTARY MATERIAL
	REFERENCES


