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ABSTRACT

Quantitative analyses of next-generation
sequencing (NGS) data, such as the detection of
copy number variations (CNVs), remain challenging.
Current methods detect CNVs as changes in
the depth of coverage along chromosomes.
Technological or genomic variations in the depth
of coverage thus lead to a high false discovery
rate (FDR), even upon correction for GC content. In
the context of association studies between CNVs
and disease, a high FDR means many false CNVs,
thereby decreasing the discovery power of the study
after correction for multiple testing. We propose
‘Copy Number estimation by a Mixture Of
PoissonS’ (cn.MOPS), a data processing pipeline
for CNV detection in NGS data. In contrast to previ-
ous approaches, cn.MOPS incorporates modeling
of depths of coverage across samples at each
genomic position. Therefore, cn.MOPS is not
affected by read count variations along chromo-
somes. Using a Bayesian approach, cn.MOPS
decomposes variations in the depth of coverage
across samples into integer copy numbers and
noise by means of its mixture components and
Poisson distributions, respectively. The noise
estimate allows for reducing the FDR by filtering
out detections having high noise that are likely to
be false detections. We compared cn.MOPS with
the five most popular methods for CNV detection
in NGS data using four benchmark datasets: (i)
simulated data, (ii) NGS data from a male HapMap
individual with implanted CNVs from the X chromo-
some, (iii) data from HapMap individuals with known
CNVs, (iv) high coverage data from the 1000

Genomes Project. cn.MOPS outperformed its five
competitors in terms of precision (1–FDR) and
recall for both gains and losses in all benchmark
data sets. The software cn.MOPS is publicly avail-
able as an R package at http://www.bioinf.jku.at/
software/cnmops/ and at Bioconductor.

INTRODUCTION

Next-generation sequencing (NGS) has evolved into an
important technology for genotyping (1) and genome
assembly (2). NGS has also been applied to transcrip-
tomics (mRNA-Seq), where it revealed new splice
variants and new transcripts (3). Despite these successes,
quantitative analyses of NGS data, for instance, determin-
ation of the expression levels of genes, are still challenging
(4,5). Estimation of DNA copy numbers is another im-
portant kind of quantitative analysis, in which local
depths of coverage must be mapped to integer copy
numbers. Copy number analysis by NGS has the follow-
ing potential advantages compared with array-based tech-
niques: (i) estimation of integer copy numbers from NGS
data is more accurate for large copy numbers, since
depths of coverage scale linearly with copy numbers (6).
(ii) Breakpoints of copy number regions can be
determined more precisely (7) because they do not rely
on predefined probes. (iii) Allele-specific copy numbers
may be estimated for observed alleles, while array-based
techniques are restricted to predefined alleles. Allele-
specific copy numbers are of interest because they allow
for determining whether an allele is fully functional, which
is important, for example, for the identification of muta-
tions leading to cancer development (8).
In the following, we review existing methods for

estimating DNA copy numbers in NGS data. These
methods represent the depth of coverage either as read
counts or as log read counts in an interval and can be
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classified into (a) approaches detecting read count devi-
ations and (b) reference-based approaches. Class (a)
methods detect CNVs as deviations of (log) read counts
from an average (log) read count of a chromosome. Class
(b) methods detect CNVs as intervals for which (log) read
count ratios between a sample and a reference deviate
from 1 (0). This reference can either be a designated
control sample or a constructed average sample.
MOFDOC (‘MOdel Free Depth Of Coverage’) belongs

to class (a) and has been used by Alkan et al. (6),
Campbell et al. (9), Wang et al. (10), Bentley et al. (11)
and Wheeler et al. (12) for NGS copy number detection
and earlier by Bailey et al. (13) for whole-genome shotgun
sequencing. The variant of MOFDOC, as introduced
by Alkan et al. (6), first divides the genome into
non-overlapping segments of equal length in which reads
are counted. Note that some variants of MOFDOC are
based on log read counts. Using the overall mean and
standard deviation of those segment read counts, each
segment is characterized by the multiple of the standard
deviation by which its read count differs from the overall
mean. A segmentation algorithm combines consecutive
segments into a gain segment if they have read counts
larger than three times the standard deviation above the
mean; analogously, it combines segments into a loss
segment if they have read counts smaller than two times
the standard deviation below the mean (see blue boxes in
Figure 2). GC correction is crucial for proper performance
of MOFDOC because of the GC content bias of NGS
(14). However, MOFDOC, like most class (a) methods,
has a high false discovery rate (FDR), even upon GC cor-
rection. The reason is that mean segment read counts for
copy number two may vary along the chromosome due to
technological biases or local genomic characteristics.
These read count variations along the chromosome
appear consistently across samples, for example, all
samples tend to have either larger or smaller read counts
(see Supplementary Figure S11 and the third bar in Figure
2). Class (a) methods confound these variations with copy
number changes leading to false discoveries.
EWT (‘Event-Wise Testing’), introduced by Yoon et al.

(15), is identical to MOFDOC except for the final segmen-
tation algorithm. EWT uses a probabilistic approach to
join consecutive segments that, under a Gaussian assump-
tion, show either significantly larger or significantly
smaller read counts than the overall mean (see blue
boxes in Figure 2). As for MOFDOC, read count
variations along the chromosome lead to false CNVs
(see Supplementary Figure S11).
JointSLM (16) also belongs to class (a), and extends the

idea of EWT to a simultaneous segmentation of multiple
samples. Again, the genome is divided into equally sized,
non-overlapping segments for which the logarithm of
GC-corrected and normalized (divided by the median
per sample) read counts is computed. A hidden Markov
model (HMM) slides along the chromosome and simul-
taneously scans the log-normalized read counts of all
samples. The more samples show large or small read
counts, the more likely a segment is detected (see blue
boxes in Figure 2). JointSLM hardly detects CNVs that
occur only in a few samples, because its HMM uses a

single state variable for simultaneously explaining the
copy numbers of all individuals (see Supplementary
Figure S9). Furthermore, CNV regions may contain
both gains and losses (17), which impedes JointSLM in
detecting such regions, since samples have propensities
to transit to different HMM hidden states. Like other
class (a) methods, JointSLM detects spurious regions if
they contain read counts that, due to genomic and tech-
nical biases, are smaller or larger than the chromosome
average (see Supplementary Figure S11). Note that we
consider JointSLM as a class (a) method because it
detects simultaneous deviations of log read counts from
an average log read count.

SeqSeg (7) is a class (b) method that was designed to
identify copy number aberrations (CNAs) in tumor
samples by comparing them to references, that is, their
matched controls. SeqSeg evaluates the likelihood of
each tumor read being a CNA breakpoint and keeps the
most likely ones, thereby segmenting the chromosome.
For each segment, the ratio between sample read counts
and reference read counts is computed. Segments are
called gains if their ratios are above 1.5, which corres-
ponds to a copy number of at least 3, or losses if their
ratios are below 0.5, which corresponds to a copy number
of at most 1. Read count variations along the chromo-
some stemming, for instance, from the GC bias are impli-
citly corrected because these variations affect both the
tumor sample and the reference in a similar way. SeqSeg
relies on a single reference and does not consider local
read count variations across replicates or multiple
samples. Consequently, SeqSeg falsely detects CNVs in
genomic regions where read counts of replicates are
highly variable (see Supplementary Figure S12).

rSW-seq (18) improves SeqSeg with respect to break-
point identification, but the local read count variability
remains disregarded. Note that both methods, SeqSeg
and rSW-seq, were designed for CNA detection in
tumor samples, especially at the breakpoint identification
step.

CNAseg (19) was also designed to detect CNAs in
tumor samples, using an approach similar to that of
SeqSeg. CNAseg, like JointSLM for a single sample,
employs an HMM for joining equally sized, non-
overlapping segments using the difference in segment
read counts between tumor and reference. The resulting
segments are joined on the basis of a �2 statistic.

CNV-Seq (20) is another class (b) method. It also
divides the genome into equally sized, non-overlapping
segments for which read count ratios are computed
using a reference sample. The read counts are assumed
to follow a Poisson distribution, which is approximated
by a Gaussian distribution. Subsequently, the Geary-
Hinkley transformation is applied to the ratios of
Gaussians to produce an approximately Gaussian
output. In a final step, a segmentation algorithm joins
consecutive segments with log ratios above or below
a certain threshold. Like all other methods, CNV-Seq
is prone to falsely detecting CNVs since it does not
take local read count variability into account
(see Supplementary Figure S12).
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FREEC (‘control-FREE Copy number calling’) is a
class (b) method suggested by Boeva et al. (21). FREEC
also counts reads in equally sized, non-overlapping
segments and computes read count ratios per segment
using a reference sample. Hypothetical read counts
estimated by a polynomial function of the segment’s GC
content can be used instead of a reference. In the segmen-
tation step, the breakpoints are determined by LASSO
(‘Least Absolute Shrinkage eStimatOr’) regression (22).
FREEC does not consider local read count variability
either, which makes it susceptible to falsely discovered
CNVs (see Supplementary Figure S12).

In summary, existing methods suffer from a high
FDR that results (i) from read count variations along
the chromosome, especially if no references are used,
and (ii) from variations in read counts (noisy counts)
across samples that may occur even for constant
copy numbers. The high FDR can be moderated for
paired-end reads by confirming CNVs by means of
clusters of discordant read pairs—incorrect orientation,
order or distance (23). However, this approach may
considerably decrease the discovery power
since clusters may be missed, especially in cases of low
coverage.

Below we introduce cn.MOPS, a CNV detection
method together with a data processing pipeline which,
in contrast to most previous methods, (i) provides
integer copy numbers, (ii) estimates variations in read
counts across samples and (iii) uses these estimates for
CNV calling, thereby keeping the FDR low. A high
FDR is particularly critical in association studies
between CNVs and diseases: a high FDR implies many
false CNVs. Correction for multiple testing must then
consider these false discoveries, which increases the cor-
rected P-values and reduces the discovery power of a
study. The novelty of cn.MOPS is modeling across
samples, which improves the performance considerably,
as technical and biological variations are estimated and
taken into account. By ‘modeling across samples’ we
mean the construction of a generative model that
explains how the data have been produced. This model
decomposes the read count of each sample into signal
and noise. The idea of modeling across samples has
already improved CNV detection in microarray data by
reducing the FDR, as the recent cn.FARMS method (24)
demonstrates.

METHODS

The cn.MOPS processing pipeline is depicted in Figure 1.
The left column shows modeling across samples and
integer copy number estimation that are unique to the
cn.MOPS pipeline. On the right-hand side, GC correction
is unique to some previous analysis pipelines; however,
this step is not necessary for cn.MOPS, as the local
model automatically captures GC content effects. The
steps of the cn.MOPS processing pipeline and the central
cn.MOPS model are described in the following
subsections.

Read mapping and segment read counts

After quality control, read mapping is the first step in
analyzing NGS data with respect to CNVs (Figure 1).
Depending on the technology, the read length and
whether the reads are single or paired, the parameters of
the mapping method should be adjusted to minimize the
number of false positives without generating too many
false negatives. The most important mapping parameters
are the number of mismatches allowed and the gap par-
ameters of the employed alignment algorithm. These par-
ameters depend on the expected sequencing errors [see (14)
for a statistical analysis of sequencing errors]. If multiple
best mapping positions are found for a read, then the read
can be randomly assigned to one of them, to all of them,
or can be discarded. In our experiments, we mapped the
reads by Bowtie (25) for paired reads, allowed two
mismatches and mapped to one random best mapping
position.
After read mapping, segments must be defined in which

the reads are counted (Figure 1). For cn.MOPS, as for all
other approaches except SeqSeg and rSW-seq, the genome
is first divided into non-overlapping segments in which
reads are counted. Previous methods compare read
counts along the chromosome (depth of coverage) and
must therefore have equally sized segments in which
reads are counted. Although cn.MOPS also uses equally
sized segments by default, equal size is not strictly
required, since a separate model is generated for each
segment. The later segmentation along the chromosome
is based on the expected copy number, which is independ-
ent of the segment length. If the sizes of segments in which
reads are counted are variable, then the resolution can be
traded off against the confidence in the estimated copy
numbers.

Sample normalization and GC correction

GC correction is a crucial first step for proper performance
of class (a) methods, such as MOFDOC (Figure 1). These
methods subsequently apply a segmentation algorithm to
(log) read counts along the chromosome. Therefore, the
(log) read counts must be normalized to be comparable
between different genomic loci. Since the numbers of reads
within segments depend on their GC content (14), the
segments’ (log) read counts must be normalized for their
GC content.
Sample normalization is important for modeling across

samples because the reads of all samples are assumed to be
caused by the same model (Figure 1). Sample normaliza-
tion corrects the read counts of one sample by the number
of mappable reads of the sample to make read counts
comparable across samples. Using data of HapMap indi-
viduals from the 1000 Genomes Project (26), we tested
read counts of 25 kbp segments for being Poisson
distributed with and without sample normalization.
Without sample normalization, the Poisson assumption
was rejected by a Poisson test (27) for 92% of the
segments. Using normalization, however, the Poisson as-
sumption was rejected for only 2% of the segments.
Segments that were rejected coincide significantly with
known CNV regions according to Fisher’s exact test
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with p< 2.2e-16 (for details see Supplementary
Table S1). Thus, our model assumption that, for a con-
stant copy number, the read counts are Poisson distri-
buted is justified with sample normalization. This
assumption is also in concordance with the findings of
Sathirapongsasuti et al. (28).

The mixture of Poissons model

Our main contribution and novelty is modeling of read
count variations across samples in order to separate vari-
ations caused by copy numbers from local variations
caused by technical or biological noise (Figure 1). For
CNV detection, we use a mixture of Poissons model that
is not affected by read count variations along the

chromosome, because a separate model is constructed at
each DNA locus. The model incorporates the linear
dependency between average read counts in segments
and copy numbers (6,7). In contrast to existing methods,
cn.MOPS provides integer copy numbers together with
their confidence intervals. Model selection in a Bayesian
framework is based on maximizing the posterior by an
expectation maximization (EM) algorithm. Most import-
antly, a Dirichlet prior on the mixture components prefers
a constant copy number of 2 for all samples. Only if the
data drive the posterior away from this prior, the segment
receives a high informative/non-informative call (I/NI
call), that is, the part of the CNV call which detects vari-
ation across samples.

Figure 1. The processing pipelines for CNV detection in NGS data. Left column: modeling across samples and integer copy number estimation are
unique to cn.MOPS. Right column: either GC correction [class (a) methods] or read count ratios [class (b) methods] are required for previous
pipelines.
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The Model. cn.MOPS is a generative probabilistic model
that explains the observed read counts by copy numbers
and by measurement variations. Consequently, the
model assumes that the read counts x in a segment are
distributed across samples according to a mixture of
Poissons, in which each mixture component corresponds
to specific copy number and the Poisson parameter reflects
the noise:

pðxÞ ¼
Xn
i¼0

�i Pðx; i
2�Þ : ð1Þ

In this model, ai is the percentage of samples with copy
number i for 0� i� n, and � is the mean read count for
copy number 2. P is the Poisson distribution:

Pðx;�Þ ¼
1

x!
e�� �x : ð2Þ

The model integrates the assumption that the read counts
are linearly related to the number of copies. For copy
number i� 1, the mean read count is thus � ¼ i

2 �. For
copy number i=0, we assume a Poisson distribution
with parameter � ¼ �

2 �, which accounts for background
noise stemming from wrongly or ambiguously mapped
reads and for sample contamination by other DNA. See
Supplementary Section S2.5, for a justification of the noise
model. Note, that the results of cn.MOPS are robust
against the choice of the hyperparameter e (see
Supplementary Section S3.8). The robustness is due to
the fact that copy number zero can be detected with a
broad range of e values.
The model in Equation (1) allows estimation of integer

copy numbers with fixed model parameters ai and �. The
prior probability that a read count stems from copy
number i is p(i)= ai. The likelihood that a read count x
is produced by the i-th mixture component is

call +
I/NI

call +
I/NI

call −
I/NI

call +
I/NI

call −
I/NI

Figure 2. Illustration of the basic concept of cn.MOPS: a CNV call incorporates the detection of variation across samples (I/NI call) and the
detection of variation along a chromosome (segmentation). Curves show read counts along one chromosome for five samples. I/NI calls (green)
detect variation across samples (green vertical boxes). A CNV (red box) is called if consecutive segments have high I/NI calls. Blue boxes mark
segments that segmentation algorithm of class (a) methods (see the ‘Introduction’ section) would combine into a CNV. First vertical bar (from the
left) and first sample: the I/NI call indicates variation across samples (‘I/NI call +’). However, too few adjacent segments show high I/NI calls.
Second bar and third sample: the I/NI call indicates variation across samples (‘I/NI call+’) and sufficiently many adjacent segments show high I/NI
calls, which leads to a CNV call (red box). Third bar: the read counts drop consistently and would thus be detected by a segmentation algorithm of
class (a) methods (blue boxes). However, the read counts of the samples do not vary, which does not lead to an I/NI call (‘I/NI call �’). A CNV is
not detected, which is correct as the copy number does not vary across samples. Fourth bar and samples numbers 2 and 4: I/NI call indicates
variation across samples (‘I/NI call +’). As in the first bar, too few adjacent segments show high I/NI calls. Fifth bar and second sample: a
segmentation algorithm of class (a) methods would combine adjacent read counts that are consistently small (blue box) into a CNV. However,
the read counts are within the variation of the constant copy number at this location. Therefore, the I/NI call does not indicate variation across
samples (‘I/NI call �’).
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pðx j iÞ ¼ Pðx; i
2�Þ. Then Bayes’ formula can be used to

compute the posterior p(i | x), that is, the probability
that read count x is caused by the i-th component corres-
ponding to copy number i. Consequently, a read count is
assigned the integer copy number with the largest poster-
ior probability.

Model Selection by an EM Algorithm and Dirichlet
Prior. Suppose that read counts {x1, . . . , xN} have been
observed for N samples in a given segment. Model selec-
tion is concerned with fitting a model that best explains
the training data {x1, . . . , xN}. In a Bayesian framework, a
and � are considered as random variables; thus, p(x) in
Equation (1) becomes a conditional probability p(x | a, �),
i.e. the likelihood that read count x has been produced by
the model with parameters a and �. If we assume that, for
the prior distribution, the parameters a and � are
independent [p(a,�)= p(a)p(�)], then the parameter pos-
terior is

pða; � j xÞ ¼
pðx j a; �Þ pðaÞ pð�ÞR

pðx j a; �Þ pðaÞ pð�Þ da d�
: ð3Þ

We introduce a Dirichlet prior p(a) on a=(a0, a1, . . . ,
a n) to include the prior knowledge that almost all loca-
tions have copy number 2 for all samples, which is the null
hypothesis of constant copy number 2. The Dirichlet prior

pð�Þ ¼
1

Bð�Þ

Yn
i¼0

��i�1i ð4Þ

with parameter vector c=(g0, g1, . . . , gn) is well suited to
express our prior assumptions about a. By setting
g2� gi� 1 (for i 6¼ 2), we ensure that vectors a with a
large value for a2—the percentage of samples having
copy number 2—are the most likely to be drawn. Each
component i of the Dirichlet distribution p(a) is
distributed according to a beta distribution with the
mode (gi� 1)/(gs� n), where �s ¼

Pn
i¼0 �i.

For the prior on �, we simply choose a uniform distri-
bution on a sufficiently large interval with left endpoint 0.
An EM algorithm minimizes an upper bound on the

negative log-posterior of the parameters a and � by fol-
lowing update rules (for details see Supplementary Section
S2.2):

�̂ik ¼
�oldi Pðxk;

i
2 �

oldÞ

pðxk j aold; �oldÞ
; ð5Þ

�newi ¼

1
N

PN
k¼1 �̂ik þ

1
N ð�i � 1Þ

1 þ 1
N ð�s � nÞ

; ð6Þ

�new ¼
1
N

PN
k¼1 xkPn

i¼0
1
N

i
2

PN
k¼1 �̂ik

� � : ð7Þ

Here, �̂ik is an estimate (the E-step of the EM algorithm)
of the posterior aik= p(i | xk, a, �) using current estima-
tions aold and �old of the parameters. We simplify the
hyperparameter vector c to one intuitively interpretable
hyperparameter G by setting gi=1 for i 6¼ 2 and
g2=1+G. This setting ensures that a2>G/(G+N) in

the ai update Equation (6). Thus, a minimum percentage
of individuals that have copy number 2 can be ensured by
the hyperparameter G (for details see Supplementary
Section S2.2).

I/NI Call: Information Gain of Posterior over Prior. Based
on the Bayesian framework, we define an informative/
non-informative (I/NI) call analogous to that of the
FARMS algorithm, which excelled at summarization
and gene filtering of microarray data (29–31). In
contrast to �, which captures noise variation, a captures
variation arising from CNVs; therefore, its posterior indi-
cates CNVs in the data. The I/NI call measures the infor-
mation gain of the posterior compared to its prior
distribution p(a), which represents the null hypothesis
that all samples have copy number 2. Therefore, the
I/NI call measures the tendency to reject the null hypoth-
esis based on the observed data.

We define the I/NI call as a weighted distance between
the posterior’s mode and the prior’s mode (0, 0, 1, 0, . . . ,
0), which results in the expected absolute log fold change
relative to copy number 2 (for details see Supplementary
Section S2.3):

I=NIð�Þ ¼
Xn
i¼0

�i j logði=2Þj ¼
Xn
i¼0

1

N

XN

k¼1

�ik j logði=2Þj; ð8Þ

with �i ¼
1
N

PN
k¼1 �ik [this equation is derived in

Supplementary Equation (S25)]. For notational conveni-
ence, we did not distinguish between i=0 and i� 1 in
the above formula. ‘log(0/2)’ must be understood as
log(e/2)—in accordance with the fact that read counts
for copy number 0 are Poisson distributed with parameter
e�/2 (see ‘The Model’ section). For a=(0, 0, 1, 0, . . . , 0),
the I/NI call is zero, whereas any other a gives a positive
I/NI call. The more copy numbers differ from 2, the higher
is the I/NI call, where gains and losses are treated on the
same level by the absolute value of the logarithm. The
rightmost term in Equation (8) makes clear that the I/NI
call can be understood as the sum of individual I/NI calls,
I/NI(ak) , that is, the contribution of the k-th sample to
the I/NI call:

I=NIðaÞ ¼
1

N

XN

k¼1

Xn
i¼0

�ikj logði=2Þj ¼
1

N

XN

k¼1

I=NIðakÞ; ð9Þ

where ak=(a0k, a1k, . . . , a nk) is the vector of posteriors
for the read count xk.

Segmentation and CNV call

Segmentation is an important step in CNV detection as it
determines the length and position of a CNV (Figure 1).
Class (a) methods perform segmentation on the
GC-corrected (log) read counts, while ratio-based
methods perform segmentation on the (log) ratios. Some
methods, such as JointSLM, apply an HMM for segmen-
tation and CNV detection.

In the cn.MOPS pipeline, segmentation is based on the
results of the modeling step. More specifically, cn.MOPS
detects CNVs by segmenting the chromosomes of
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individuals based on their individual I/NI calls, joining
genomically adjacent I/NI calls that show the same copy
numbers. Note, however, that the I/NI call defined in
Equation (9) does not distinguish between losses and
gains with the same fold change. To avoid joining losses
and gains, we define the signed individual I/NI call as the
expected log fold change:

sI=NIðakÞ ¼
Xn
i¼0

�ik logði=2Þ : ð10Þ

The absolute value of the signed I/NI call jsI/NI(ak)j is not
exactly the I/NI call I/NI(ak), but the two values are
always very close (see Supplementary Section S2.4, for
detailed mathematical analysis and experimental
evaluations).

cn.MOPS applies either its own algorithm ‘fastseg’ or,
alternatively, the circular binary segmentation algorithm
[DNAcopy (32)] to sI/NI(ak) along the chromosome. The
segmentation algorithm joins consecutive segments with
large or small expected fold changes to make a candidate
segment. It then supplies candidate segments that show
variations along the chromosome and also across
samples indicated by the signed individual I/NI calls.

All CNV detection methods except those based on
HMMs decide on the basis of a threshold on the
average/median (log) read count or (log) ratio over the
segments whether the candidate segments are CNVs. In
the cn.MOPS pipeline, a candidate segment is called a
CNV segment if the median of the signed individual
I/NI call sI/NI(ak) over the segment is at least
0.6& log2(3/2) for gains or at most �1= log2(1/2) for
losses. This CNV call incorporates two calls: (i) an I/NI
call across samples and (ii) a segment call along the
chromosome. Only if consecutive segments obtain an
I/NI call, they are joined by the segmentation algorithm
(see second bar and third sample in Figure 2). This idea of
calling a CNV by detecting both variation across samples
and variation along a chromosome has already led to im-
provements in CNV detection based on DNA microarray
data using the cn.FARMS method (24).

Integer copy number estimation

The final step is concerned with estimating the integer copy
numbers of the CNVs (Figure 1). Methods based on

HMMs, such as JointSLM, automatically obtain integer
copy numbers by means of their hidden states. However,
most existing methods do not estimate the integer copy
numbers of the CNVs.
cn.MOPS automatically supplies posterior estimates of

the integer copy numbers for each segment (Figure 1). The
estimated copy number of a CNV is the most probable
posterior copy number, where the segment posteriors
within the CNV are assumed to be independent.

RESULTS

In order to compare methods that detect copy number
variations in NGS data, we first specify the evaluation
procedure. Subsequently, we provide an overview of the
methods compared and finally we present results on four
benchmark data sets.

Evaluation of CNV detection results

We assume that the true CNVs are known and to be
rediscovered. Each chromosome is split into equally
large evaluation segments the size of which is chosen to
accommodate the shortest known CNV. An evaluation
segment is called a true positive (TP) if it is entirely con-
tained both in a true CNV and in a detected CNV
segment. It is called a false negative (FN) if it is entirely
contained in a true CNV but does not overlap with any
predicted CNV segment. An evaluation segment is called a
false positive (FP) if it is entirely detected as a CNV
segment but does not overlap with any true CNV.
Finally, it is called a true negative (TN) if it overlaps
neither with a true CNV nor with a detected CNV
segment. These definitions imply that all evaluation
segments that partly overlap with true CNVs or detected
CNV segments remain ignored, as the copy numbers in
these segments are ambiguous. Figure 3 illustrates the def-
initions of the four categories of evaluation segments. The
two measures we employ hereafter are recall
[#TP/(#TP+#FN)] and precision [#TP/(#TP+#FP)].
Note that precision is 1-FDR, in which we are especially
interested. A CNV calling threshold governs the trade-off
between recall and precision or, in other words, the
trade-off between FNs and FPs, because more detected
CNVs lead to more FPs but fewer FNs, and vice versa.
To assess the performance of methods at different CNV
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Figure 3. Definitions for the evaluation of copy number detection methods. A genome is split into equally sized evaluation segments of a length
shorter than the shortest CNV. Top panel: Knowing the true CNV regions (green), the evaluation segments are labeled as class 1 (CNV segment) or
class �1 (non-CNV segment). Middle panel: A CNV detection method classifies each evaluation segment into CNV segments (blue, class 1) and
non-CNV segments (class �1). Bottom panel: In the first line, positives (known CNV regions) are divided into true positives (TP, green) and false
negatives (FN, red). In the second line, negatives (no overlap with known CNV regions) are divided into true negatives (TN, green) and false
positives (FP, red). Segments partly overlapping with known or predicted CNV regions are not considered (‘na’).
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calling thresholds, we use precision-recall curves.
Precision-recall curves are independent of the number of
TNs, which makes them an ideal tool for our evaluation,
as the majority of samples are negatives (non-CNVs).

Methods compared

We compared the following methods (see the
‘Introduction’ section for an overview):

(1) cn.MOPS: our new model and pipeline,
(2) MOFDOC: according to the variant of Alkan et al.

(6),
(3) EWT: Yoon et al. (15),
(4) JointSLM: Magi et al. (16),
(5) CNV-Seq: Xie and Tammi (20),
(6) FREEC: Boeva et al. (21).

In this subsection, we provide an overview of the par-
ameter settings, initializations and how these methods
were employed.
cn.MOPS: we initialized the parameter � with the

median read count ��. We set e=0.05 and assumed nine
possible copy numbers 0� i� n=8, which covers previ-
ously observed copy numbers in the HapMap individuals
(17). The parameter a should be initialized close to the
location of the prior’s mode (0, 0, 1, 0, . . . , 0), which are
the optimal parameters if all samples have copy number 2.
However, initializing a with this vector would clamp all �̂ik
and �newi to zero according to Equation (6) and Equation
(7). Therefore, we initialized a with (0.05, 0.05, 0.6,
0.05, . . . , 0.05).
MOFDOC: we implemented MOFDOC using the CNV

calling criterion of Alkan et al. (6). A CNV region is called
if a out of b consecutive segments show a read count with
a z-score below or above thresholds specified to call a loss
or gain segment (default values a=6 and b=7). We
generalized this ‘a-b-smoother’ to a smoothing algorithm
that is not only able to smooth logical, but also real values
arising from CNV calls, which improved MOFDOC’s
results.
EWT: we reimplemented event-wise testing as described

by Yoon et al. (15), but improved the GC correction by
using all samples to estimate the GC effect. Further, we
restricted the minimum ‘event size’, a parameter that
prevents EWT from testing for CNVs that are too short.
We generalized EWT to a variety of segment sizes that are
also apt for low coverage CNV detection. Our modifica-
tions to EWT improved its results.
JointSLM: we applied version 0.1 of the R package

JointSLM adjusting the package to GC content correc-
tion for a variety of segment sizes.
CNV-Seq: we used the authors’ implementation (http://

tiger.dbs.nus.edu.sg/cnv-seq/), taking the median of the
samples’ read counts as reference read count.
FREEC: we used version 3.2 (http://bioinfo-out.curie

.fr/projects/freec/), taking, analogously to CNV-Seq, the
median of the samples’ read counts as reference. Although
FREEC can perform the analysis without a reference, we
used it in ‘reference mode’ because of the improved
performance.

We did not include SeqSeg (7) because we were not able
to find suitable parameters, not even after an extensive
search. The problem was that SeqSeg either did not
detect any breakpoints or the thresholds for the P-values
were not determined. However, the performance of
SeqSeg can be estimated via CNV-Seq that is very
similar. We also omitted CNAseg (19) from the compari-
son as its developers state that this method is specifically
tailored to CNA detection in tumor samples.

To ensure a fair comparison, the parameters of the
methods were optimized on simulated data sets similar
to the one we used in our first experiment. More details,
for instance, on the parameters that were used and com-
putation time, can be found in the ‘Discussion’ section.

Simulated data with constructed CNVs

We constructed 100 artificial benchmark data sets,
assuming an artificial genome to consist of a single
chromosome of 125Mb length, divided into 5000
segments of length 25 kb. We created 40 samples by
sampling read counts for all segments and samples accord-
ing to a Poisson process. The overall number of evaluation
segments was therefore 40� 5000=200 000.

The Poisson parameters � of the Poisson process for
simulating the read counts in the evaluation segments
were drawn from a distribution of � values that was
estimated using median GC-corrected read counts of
HapMap individuals from the 1000 Genomes Project.
Therefore, the simulated Poisson distributions are
similar to those found in real sequencing experiments.
We scaled these � values by a random number between
0.3 and 1 in order to simulate different coverages. This
read count simulation yielded 290 000–770 000 reads, cor-
responding to a coverage of 0.18–0.46 and 0.08–0.22 for
75 and 36 bp reads, respectively.

Note that we consider low-coverage sequencing data
here, because methods for analyzing SNPs and CNVs in
low-coverage data will continue to be relevant in the
future. Le and Durbin (33) showed that low-coverage
data will remain important in the context of single nucleo-
tide polymorphism (SNP) data analysis: in terms of a
study’s discovery power, where a fixed number of reads
should rather be used for sequencing more samples with
lower coverage than for sequencing fewer samples with
higher coverage. The relationship between discovery
power and coverage is similar for CNV data. In the
‘High Coverage Data Sets’ section below, we also
simulate high coverage data sets.

On the basis of HapMap data (17), we determined CNV
region characteristics and how copy numbers are
distributed. We implanted 20 CNV regions into each of
the benchmark chromosomes. The lengths of the CNV
regions were chosen randomly from the interval
75–200 kb, which, according to Xie and Tammi (20), is
the range of accurate detection for the given coverage.
The 20 starting points of the CNV regions were chosen
randomly along the chromosome. After having
determined the 20 CNV regions, we had to decide how
CNVs are implanted into the single samples. To this
end, we first had to take into account that CNVs of

e69 Nucleic Acids Research, 2012, Vol. 40, No. 9 PAGE 8 OF 14

http://tiger.dbs.nus.edu.sg/cnv-seq/
http://tiger.dbs.nus.edu.sg/cnv-seq/
http://bioinfo-out.curie.fr/projects/freec/
http://bioinfo-out.curie.fr/projects/freec/


different individuals cluster at specific regions of the DNA
called ‘CNV regions’, of which many contain only losses
or only gains. Based on characteristics of HapMap indi-
viduals, we assigned CNV region types such that 80% are
of type ‘loss region’ (containing only losses), 15% of type
‘gain region’ (containing only gains), and 5% of type
‘mixed region’ (containing both losses and gains). Then
the actual copy number for each sample was drawn
according to the copy numbers observed for HapMap
individuals (17): For a CNV region of type ‘loss region’,
a sample has probabilities of 0.8, 0.15 and 0.05 of having
copy numbers 2, 1 and 0, respectively. For a CNV region
of type ‘gain region’, a sample has probabilities of 0.85,
0.08, 0.06 and 0.01 of having copy numbers 2, 3, 4 and 5,
respectively. For a CNV region of type ‘mixed region’, a
sample has probabilities 0.04, 0.16, 0.67, 0.11 and 0.02 of
having copy numbers 0, 1, 2, 3 and 4, respectively. Of the
200 000 evaluation segments, on average 101 (±56) are
gains and 612 (±104) are losses. The CNV lengths
range from 75 006 bp to 199 848 bp with an average of
136 921 bp.

Table 1 reports the performance of the compared copy
number detection methods separately for gains and losses.
As evaluation measures, we use the area under the
precision-recall curve and the recall for a fixed FDR of
0.05. All methods perform better at detecting losses
because it is more likely for gains than for losses to have
read counts in the range of copy number 2. This is due to
the fact that an average copy number 2 read count is more
likely to be produced by copy number 3 than by copy
number 1 (see Supplementary Section S3.3). JointSLM
performs worse than other methods because of the low
percentage of samples showing an abnormal copy
number (the rare events). cn.MOPS yielded the largest
average area under the precision-recall curve. The

improvement over the other methods is highly significant,
as shown by a Wilcoxon signed-rank test. cn.MOPS
achieved the highest recall (for FDR fixed at 0.05),
which, according to a Wilcoxon test, was also significantly
higher than those of the other methods. In summary,
cn.MOPS significantly outperformed its competitors on
the 100 simulated data sets.

Real sequencing data with implanted CNVs from the
X chromosome

In contrast to simulated read counts, we next considered
real reads obtained from the sequencing of a single male
HapMap individual (NA20755). This man’s genome was
sequenced 17 times by the Solexa Genome Analyzer II at
the Wellcome Trust Sanger Institute [(26) see
Supplementary Table S5]. These 17 samples ensure a
constant copy number, as they stem from the same indi-
vidual. We mapped the reads with Bowtie (25) for paired
reads, allowing two mismatches. The numbers of reads
range from 12 069 758 to 18 810 212, of which between
10 419 510 and 16 041 464 could be mapped, which corres-
ponds to coverages between 0.13 and 0.21 (see
Supplementary Section S3.3, for details on read mapping
and the number of reads).
We created 110 benchmark data sets by choosing each

of human chromosomes 1–22 five times, implanting 20
random CNV regions in each chromosome data set. The
lengths of these implanted CNV regions were chosen to be
75, 100, 150, and 200 kb (5 each), and, for each of the
regions, a random segment on the X chromosome which
supplied reads for the region was selected. CNV region
types and individual copy numbers were determined ac-
cording to the procedure and distributions described in the
first experiment except that we only considered CNV copy
numbers 1 and 3 since they are the most difficult to dis-
tinguish from copy number 2. We assigned CNV region
types such that 80% are of ‘loss region’ type, 15% of ‘gain
region’ type, and 5% of ‘mixed region’ type. For a CNV
region of ‘loss region’ type, a sample has probabilities 0.8
and 0.2 of having copy number 2 and 1, respectively, for a
CNV region of ‘gain region’ type, 0.85 and 0.15 of having
copy numbers 2 and 3, respectively, and for a CNV region
of ‘mixed region’ type, 0.2, 0.67 and 0.13 of having copy
numbers 1, 2 and 3, respectively. Finally, the read counts
of the 17 samples were computed in the following way:
outside CNVs the original reads counts were used; within
CNVs, we added as many read counts as there are copies
from the corresponding segment on the X chromosome,
taking independent read counts from the considered
sample and other random samples.
The CNV detection results were evaluated as described

in the ‘Evaluation of CNV Detection Results’ section. The
number of evaluation segments ranges from around 32 000
for chromosome 21 to around 168 000 for chromosome 1.
On average, 0.1% of the evaluation segments are gains
and 0.4% are losses.
Table 2 reports the performance of the compared copy

number detection methods separately for gains and losses.
As before, we use the area under the precision-recall curve
and the recall for the FDR fixed at 0.05. Again, all

Table 1. Performance of the compared copy number detection

methods on the artificial benchmark data set

PR AUC P-value Recall P-value

Gains
cn.MOPS 0.94 – 0.88 –
MOFDOC 0.81 1.14e-13 0.76 9.75e-12
EWT 0.79 5.95e-14 0.74 1.34e-12
JointSLM 0.25 4.23e-18 0.22 2.80e-17
CNV-Seq 0.35 4.23e-18 0.35 3.98e-17
FREEC 0.65 1.95e-17 0.53 3.42e-14

Losses
cn.MOPS 0.96 – 0.96 –
MOFDOC 0.92 3.50e-17 0.90 9.22e-17
EWT 0.91 3.20e-18 0.90 8.44e-17
JointSLM 0.34 1.98e-18 0.28 1.98e-18
CNV-Seq 0.81 1.98e-18 0.81 3.84e-17
FREEC 0.73 1.98e-18 0.72 3.32e-17

‘PR AUC’ gives the average area under the precision-recall curve of
100 experiments. The second column, ‘P-value’, reports the P-value of a
Wilcoxon signed-rank test (over the 100 experiments) with the null
hypothesis that cn.MOPS (in bold) and another method have the
same area under the curve. ‘Recall’ reports the recall at a precision
of 0.95, that is, an FDR of 0.05. The last column, ‘P-value’, gives
the P-value of an analogous Wilcoxon test for the recall with an
FDR of 0.05. cn.MOPS performed significantly better than all other
methods.
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methods performed better at detecting losses. If we adhere
to the Poisson assumption, the reasons for this perform-
ance difference are the same as those stated in the first
experiment. cn.MOPS significantly outperformed all
other methods with respect to both the area under the
precision-recall curve (PR AUC) and the recall for FDR
at 0.05. No method considers the variation of the read
counts across samples, except cn.MOPS, which estimates
this variation via its Poisson parameter, thus achieving
superior performance.

Rediscovery of known CNVs in HapMap sequencing data

Next, we compared how well the methods are able to
rediscover known CNVs of HapMap individuals whose
DNA was sequenced by the Solexa Genome Analyzer II
at the Wellcome Trust Sanger Institute (26). We focused
on 18 individuals for each of whom the reads were
produced on one lane (one sequencing run contains
seven lanes). The reads were mapped by Bowtie (25) for
paired reads, allowing three mismatches. The numbers of
reads range from 12 442 124 to 31 977 690, of which
7 498 420–22 217 020 could be mapped, which lead to a
coverage between 0.20 and 0.60 (see Supplementary
Section S3.4, for details on individuals, read mapping
and the number of reads). We considered the CNVs of
these 18 individuals, determined previously by means of
microarrays (17), to be the true CNVs. They were detected
by the Affymetrix Human SNP array 6.0 and reconfirmed
with the Illumina Human1M-single BeadChip. After fil-
tering for CNVs larger than 75 kb, we obtained 170 CNVs,
of which 66 are gains and 104 are losses, with lengths
ranging from 76 kb to 457 kb. Though some of these
CNVs might still be false positives, the double

confirmation and considering only CNVs of vast lengths
approaches a golden standard. The CNV detection results
were evaluated as described in the ‘Evaluation of CNV
Detection Results’ section with evaluation segments of
length 25 kb. In total, we have 2 064 906 evaluation
segments, of which 450 are labeled as losses, as they lie
within one of the 104 loss CNVs, and 469 are labeled as
gains, as they lie within one of the 66 gain CNVs.

Table 3 shows the performance of the six compared
methods at rediscovering known CNVs for the 18
HapMap individuals, where the average area under the
precision-recall curve is used as evaluation criterion. As
found in previous experiments, all methods perform better
at detecting losses. cn.MOPS performs significantly better
than its competitors in terms of both the PR AUC and the
recall for an FDR of 0.05, although FREEC performs
equally well for gains.

So far we have considered CNV detection as a classifi-
cation task whose goal was to detect CNVs in individual
samples. In order to assess the quality of the CNV calling
across HapMap samples, we also investigated the per-
formance of each method at a different task—detecting
segments in which at least one CNV occurs in one
sample. For this task, we did not obtain segments from
a segmentation algorithm, but we computed a CNV call
for each evaluation segment. The CNV calls must be
defined depending on the method. For cn.MOPS, we
utilized the I/NI call. For z-score based methods, namely
MOFDOC, EWT and JointSLM, we used the mean of the
z-score on the evaluation segment. For the ratio-based
methods, CNV-Seq and FREEC, we took the mean
log-ratios of the evaluation segments. The area under
precision-recall curve was 0.18 for the I/NI call, 0.02 for
the mean z-score, and 0.14 for the mean log-ratio. The
area under curve values are lower than in the other experi-
ments because outliers were not filtered out by a segmen-
tation algorithm. Alternative CNV calls such as variance
and maximum-based values are reported in
Supplementary Section S3.5.

Figure 4 visualizes the results of this comparison in the
form of whole-genome CNV calling plots along all evalu-
ation segments. cn.MOPS separates true CNVs (indicated
by red dots) from non-CNV segments (blue dots) more
successfully than the other methods. Furthermore,
cn.MOPS has lower FDRs for different calling thresholds,
as can be seen from the lower variance of the blue dots at
the bottom. The superior performance of cn.MOPS at
CNV calling across samples is the reason why cn.MOPS
outperformed the other methods in previous experiments.

High coverage data sets

Finally, we compared the performance of CNV detection
methods on two high coverage data sets. The first data set
is simulated analogously to our previous simulated data
but now with high coverage. On this data set we first show
that, if we fix the resolution, higher coverage leads to
better performance in terms of precision and recall. Next
we show that, if we fix the performance in terms of preci-
sion and recall, higher coverage allows for higher reso-
lution. The second data set consists of six high coverage

Table 2. Performance of the compared copy number detection

methods on real sequencing data with implanted CNVs from

the X chromosome

PR AUC P-value Recall P-value

Gains
cn.MOPS 0.70 – 0.65 –
MOFDOC 0.20 1.12e-17 0.10 2.31e-17
EWT 0.22 1.95e-16 0.13 8.70e-17
JointSLM 0.06 1.94e-19 0.03 7.00e-18
CNV-Seq 0.13 1.74e-19 0.13 5.75e-18
FREEC 0.49 1.22e-12 0.30 4.41e-15

Losses
cn.MOPS 0.89 – 0.88 –
MOFDOC 0.57 3.78e-15 0.21 2.48e-18
EWT 0.62 1.77e-12 0.34 2.02e-17
JointSLM 0.17 4.43e-20 0.08 4.43e-20
CNV-Seq 0.50 4.43e-20 0.50 4.43e-20
FREEC 0.52 7.05e-17 0.36 4.56e-20

‘PR AUC’ gives the average area under the precision-recall curve of
100 experiments. The second column, ‘P-value’, reports the P-value of a
Wilcoxon signed-rank test (over the 100 experiments) with the null
hypothesis that cn.MOPS (in bold) and another method have the
same area under the curve. ‘Recall’ reports the recall at a precision
of 0.95, that is, an FDR of 0.05. The last column, ‘P-value’, gives
the P-value of an analogous Wilcoxon test for the recall with an
FDR of 0.05. cn.MOPS outperformed all other methods significantly.
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samples from the 1000 Genomes Project on which we
show that cn.MOPS is well suited for high coverage data
sets (for details see Supplementary Section S3.6).

Simulated Data: Coverage versus Performance and
Resolution. The first data set was simulated as described
in the ‘Simulated Data with Constructed CNVs’ section,
but now with different depths of coverage including high
coverage. These data allow for investigating the impact of
increasing coverage on the performance and on the reso-
lution of CNV detection methods. In order to evaluate the
methods as realistically as possible, we drew small blocks
of consecutive � values from data of the 1000 Genomes
Project to include mutual dependencies between adjacent
segments like in real data.

First, in order to analyze the dependencies between
coverage and performance, we implanted short CNVs
with lengths 1–5 kb in a 25Mb chromosome. To be able
to detect CNVs of these lengths, we chose a segment
length of 250 bp for all compared methods. For each of
the coverages 1�, 5�, 10�, 25� and 50�, we generated 10
data sets and determined the recall of each method at a
fixed FDR of 0.05. Figure 5 shows that the average per-
formance of all methods increases with the depth of
coverage. Again, cn.MOPS outperforms the other
methods at all coverages.

Second, we analyzed the dependencies between coverage
and resolution for cn.MOPS. We implanted CNVs of dif-
ferent ranges of lengths 1–5 kb, 5–25 kb, 25–75 kb and
100–125 kb into chromosomes of lengths 25, 125, 250
and 250 Mb, respectively. For each of the coverages 1�,
5�, 10�, 25� or 50� and each range of CNV lengths,
cn.MOPS is evaluated on 10 simulated data sets. In each

run, we chose the segment size as a fifth of the minimal
CNV length. Table 4 shows the recall of cn.MOPS for
different coverages, again at a fixed FDR of 0.05.
Obviously, for a given performance threshold of 0.95,
higher coverage allows for higher resolution.

High Coverage Real World Data: Performance
Comparison. On the second high coverage data set from
the 1000 Genomes Project we compare the performance of
CNV detection methods. The data consist of alignment
files of chromosome 1 of two trios that were sequenced
at a coverage of 20–60�. A segment length of 500 bp led
to 498 502 segments. The International HapMap 3
Consortium (17) found 68 CNVs of ‘loss’ type and 4 of
‘gain’ type, which we considered as true CNVs. Using
these true CNVs, out of 2 991 012 evaluation segments,
192 were gains and 2016 losses.
Again, the performance of the CNV detection methods

was evaluated by the area under the precision-recall curve
and the recall at a fixed FDR. For this experiment,
however, we report the recall value at an FDR of 0.9,
since all methods detect a large number of new CNVs
thus resulting in indistinguishable small recalls at an
FDR of 0.05. Table 5 shows the results. cn.MOPS
performs best, where EWT performs equally well for
losses in terms of the area under the precision-recall curve.
In Supplementary Section S3.7, we additionally provide

experiments on a 58 sample data set of medium
sequencing coverage from the 1000 Genomes Project.
cn.MOPS performs well on this data set with considerable
more samples than the current data set, too.
We have shown that cn.MOPS is also well suited for

high coverage data sets on which it outperformed its
competitors.

DISCUSSION

Data Access. The data of the second, third and fourth
experiment are part of the 1000 Genomes Project. For
the second experiment we used one chromosome from a
Tuscany sample (NA20755), for the third experiment 18
samples from Pilot Phase 1, and for the fourth experiment
chromosome 1 of 6 high coverage samples in order to
comply with the Ft. Lauderdale principle for use of
unpublished data for method development.

Limitations. cn.MOPS cannot be applied to a single
sample because it decomposes variations along samples
into those stemming from copy numbers and those from
noise. The quality of this decomposition increases
with the number of samples. We recommend to use at
least 6 samples for proper parameter estimation (see
Supplementary Section S3.9). If the majority of samples
has a copy number different from 2, then the cn.MOPS
model regards this copy number as copy number 2.
However, this incorrect assignment of components to
copy numbers can readily be corrected by comparing the
expected read counts (the parameter �) along the
chromosome.

Table 3. Performance of the compared copy number detection

methods on HapMap individuals, where known CNVs should

be rediscovered

PR AUC P-value Recall P-value

Gains
cn.MOPS 0.35 – 0.24 –
MOFDOC 0.13 1.17e-03 0.06 1.95e-03
EWT 0.16 5.34e-04 0.10 1.86e-02
JointSLM 0.08 3.81e-05 0.05 7.81e-03
CNV-Seq 0.22 1.74e-02 0.21 3.61e-01
FREEC 0.35 8.68e-01 0.17 2.38e-01

Losses
cn.MOPS 0.53 – 0.45 –
MOFDOC 0.40 2.67e-04 0.33 3.42e-03
EWT 0.36 7.63e-06 0.23 6.10e-05
JointSLM 0.15 3.81e-06 0.06 1.53e-05
CNV-Seq 0.32 7.63e-05 0.27 3.66e-04
FREEC 0.42 2.37e-03 0.26 1.01e-03

‘PR AUC’ gives the average area under the precision-recall curve of 18
samples. The second column, ‘P-value’, reports the P-value of a
Wilcoxon signed-rank test (over the 18 samples) with the null hypoth-
esis that cn.MOPS (in bold) and another method have the same area
under the curve. ‘Recall’ reports the recall at a precision of 0.95, that is,
an FDR of 0.05. The last column, ‘P-value’, gives the P-value of an
analogous Wilcoxon test for the recall with an FDR of 0.05. cn.MOPS
rediscovered known CNVs most reliably. Only for gains the perform-
ance of FREEC is similar to that of cn.MOPS, whereas cn.MOPS
performs significantly better than all its competitors at losses.
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Computational Costs. With massively growing amounts of
NGS data, computation time is becoming an increasingly
important, and possibly limiting, factor in CNV analysis.
To create an impression of the computational cost of
cn.MOPS, we report the computation times for a
medium coverage data set (see Supplementary Section

S3.7 and Supplementary Table S17). The data set
consists of chromosome 20 of 58 samples from the 1000
Genomes Project with coverages ranging from 2.5� to 8�.
Not surprisingly, the model-free approaches MOFDOC
(110s), EWT (239s) and CNV-Seq (96s) were faster than
the model-based approaches cn.MOPS (250s), JointSLM

Figure 4. Whole-genome CNV calling plots that visualize the performance of cn.MOPS, MOFDOC, EWT, JointSLM , CNV-Seq, and FREEC at
rediscovering known CNVs of HapMap individuals. The plots visualize CNV calling values (vertical axis) along chromosomes 1–22 of the human
genome without segmentation. The first panel shows the I/NI call used for cn.MOPS. The second panel provides mean z-scores used by EWT,
JointSLM, while the last panel depicts mean log-ratios used by CNV-Seq and FREEC. We called the largest 0.5% of the CNV calling values (blue
dots) and scaled them to maximum one. Darker shades of blue indicate a high density of calling values. True CNV regions are displayed as light red
bars, and the corresponding CNV calls are indicated by red dots. Segments without calling values (white segments) correspond to assembly gaps in
the reference genome. A perfect calling method would call all segments in true CNV regions (red dots) at maximum 1 and would call others (blue
dots) at minimum 0. Arrows indicate segments in true CNV regions that are called by one method group but not by the other method groups.
A threshold of 0.6 for log-ratios-based methods, namely CNV-Seq and FREEC, and a threshold of 0.8 for cn.MOPS would lead to the same true
positive rate, while cn.MOPS yields fewer false discoveries (lower FDR). cn.MOPS is better at separating segments of true CNV regions from
non-CNV segments than the other methods, as indicated by the lower variance of I/NI values (see blue area at the bottom of the first panel).
The better separation by cn.MOPS results in FDRs lower than those of other methods, regardless of the calling thresholds.
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Figure 5. CNV detection performance for different levels of coverage. Each curve in the two panels corresponds to the recall of one method
at detecting short CNVs of lengths 1–5 kb (left panel: gains; right panel: losses). The FDR was fixed at 0.05.
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(1001s), and FREEC (693s), where cn.MOPS was the
fastest among the model-based methods. All comput-
ations were done on a Linux server with Intel� Xeon�

CPU with 2.27GHz. In order to facilitate a fair
comparison, all computations were performed on single
processors only. Note, however, that cn.MOPS can be
parallelized easily since it models each genomic location
independently. The parallelization is already implemented
in the R package cn.mops (but was not used in the above
comparison).

NGS-based versus array-based CNV detection. For the
HapMap data set, microarray-based techniques missed
CNVs that are clearly identified by sequencing techniques.
This entails that CNV detection in NGS data will be
important in the future to complement and confirm
CNVs previously detected by microarray techniques.
In contrast to microarrays, NGS allows estimation of
allele-specific copy numbers without a priori allele
selection, which, in the context of diseases, is especially
relevant for determining whether an allele is fully
functional.

Exon sequencing. We are currently adapting cn.MOPS to
analyze data from exon sequencing (ExonSeq), where

DNA fragments are first captured by hybridization to
probes attached to baits and then sequenced. For exon
sequencing, the read counts show higher variation along
the chromosome because hybridization and cross-
hybridization effects are introduced via the baits. Thus,
cn.MOPS is even better suited to this task than other
methods. First results are very promising.

CONCLUSION

We have introduced cn.MOPS—a novel method and
pipeline for the detection of copy number variations in
NGS data. cn.MOPS incorporates a probabilistic model
that decomposes read variations across samples into
integer copy numbers and noise by means of its mixture
components and its Poisson distributions, respectively.
cn.MOPS is able to control the FDR for CNV detection
via a Dirichlet prior on the model’s mixture components.
The Dirichlet prior prefers a constant copy number of 2
for all samples, which corresponds to the null hypothesis.
The more the data drag the posterior away from the
Dirichlet prior, the more likely a CNV is present in the
data.
We compared cn.MOPS with the five most

popular CNV detection methods using four benchmark
data sets. For all benchmarks, cn.MOPS outperformed
its competitors, especially in terms of FDR.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables S1–S17, Supplementary Figures
S1–S14 and Supplementary Sections S1–S4.
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