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Abstract

Processing of unattended threat-related stimuli, such as fearful faces, has been previously examined using group functional
magnetic resonance (fMRI) approaches. However, the identification of features of brain activity containing sufficient
information to decode, or ‘‘brain-read’’, unattended (implicit) fear perception remains an active research goal. Here we test
the hypothesis that patterns of large-scale functional connectivity (FC) decode the emotional expression of implicitly
perceived faces within single individuals using training data from separate subjects. fMRI and a blocked design were used to
acquire BOLD signals during implicit (task-unrelated) presentation of fearful and neutral faces. A pattern classifier (linear
kernel Support Vector Machine, or SVM) with linear filter feature selection used pair-wise FC as features to predict the
emotional expression of implicitly presented faces. We plotted classification accuracy vs. number of top N selected features
and observed that significantly higher than chance accuracies (between 90–100%) were achieved with 15–40 features.
During fearful face presentation, the most informative and positively modulated FC was between angular gyrus and
hippocampus, while the greatest overall contributing region was the thalamus, with positively modulated connections to
bilateral middle temporal gyrus and insula. Other FCs that predicted fear included superior-occipital and parietal regions,
cerebellum and prefrontal cortex. By comparison, patterns of spatial activity (as opposed to interactivity) were relatively
uninformative in decoding implicit fear. These findings indicate that whole-brain patterns of interactivity are a sensitive and
informative signature of unattended fearful emotion processing. At the same time, we demonstrate and propose a sensitive
and exploratory approach for the identification of large-scale, condition-dependent FC. In contrast to model-based, group
approaches, the current approach does not discount the multivariate, joint responses of multiple functional connections
and is not hampered by signal loss and the need for multiple comparisons correction.
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Introduction

Faces with a fearful expression are thought to signal the

presence of a significant, yet undetermined source of danger within

the environment, or ‘ambiguous threat’ [1]. Evidence from fMRI

and evoked potentials (ERPs) suggest that fearful face processing

can strongly affect brain systems responsible for face recognition

and memory during implicit (consciously perceived but unattend-

ed) presentation of these stimuli [2,3]. Group-based fMRI studies

have shown that the perception and processing of facial emotional

expression engages multiple brain regions including the fusiform

gyrus, superior temporal sulcus, thalamus, as well as affect-

processing regions such as amygdala, insula, anterior cingulate

cortex among others [4–7]. However, to the authors’ knowledge,

no study to date has identified features of brain activity that

contain sufficient information to reliably decode, or ‘‘brain-read’’,

the threat-related emotional expression of unattended (implicitly

perceived) faces within individual subjects. The identification of

such features, though less well quantified as in group model-based

studies, would have a greater capacity for representing distinctions

between different cognitive-emotional perceptual states [8], and

hence could contribute in advancing our understanding of the

neural mechanisms that underlie threat detection and facial

emotion processing.

Most group fMRI approaches that have studied the neural

correlates of emotional face perception have relied on univariate

approaches [9–11] which identify regions correlated with a

regressor-of-interest, but ignores any interactions with other

regions. Bivariate approaches have been applied, but assess the

interactivity (functional connectivity) of only one seed region
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(usually amygdala) with the rest of the brain [12,13]. Even though

several notable studies have taken a multivariate approach in

assessing the effective connectivity among multiple brain regions

during emotional face processing [14–16], a limited number of

nodes were included in the networks and they were selected based

on a priori anatomical knowledge or on their activation in

conventional, General Linear Model (GLM)-based mass univar-

iate analyses. However, univariate GLM approaches make strong

assumptions about the hemodynamic response (i.e. sustained

periods of activation or deactivation relative to baseline), while

functional connectivity offers a complementary and more data-

driven and exploratory measure that makes use of temporal

correlations to estimate functional connectivity [17].

There has been a recent surge of interest in examining the large-

scale (i.e. pair-wise connectivity throughout the whole-brain)

functional network architecture of the brain as a function of

various cognitive processes or individual variation [18]. This is

often done by first defining a set of functional ‘‘nodes’’ based on

spatial ROIs and then conducting a connectivity analysis between

the nodes based on their FMRI timeseries. Large-scale functional

connectivity patterns have been successful in predicting age [19] as

well as subject-driven mental states such as memory retrieval,

silent-singing vs. mental arithmetic [20] and watching movies vs.

rest [21]. It remains to be determined however, whether whole-

brain connectivity can be used to decode very similar stimuli that

differ by only one or a few subtle characteristics, such as the

emotional expression of an unattended face. If so, then functional

connections that discriminate between the two conditions can be

interpreted as being uniquely related to the parameter of interest

that varies across both conditions.

Although multivariate pattern analyses are more sensitive than

group, model-based approaches, one disadvantage is decreased

interpretability and quantification of the precise relationship

among features related to a certain condition [8]. However, since

this approach exploits the information inherent in the joint

responses of many functional connections, an advantage is that

pattern classification of similar conditions coupled with feature

selection and identification can be used as a means to identify

condition-dependent, large-scale functional connectivity, without

the need to correct for tens of thousands of multiple comparisons.

This approach can be used for hypothesis generation to identify

groups of functional connections associated with a condition,

which can then serve as connections and regions of interest for

more rigorous and mechanistically revealing approaches such as

effective connectivity [22].

Here we estimate the large-scale functional networks of implicit

fear processing using a blocked design and Blood Oxygen Level

Dependent (BOLD) image acquisition, during which subjects were

instructed to identify the color of pseudo-colored fearful and

neutral faces (Figure 1). We applied atlas-based parcellation to

derive several hundred nodes throughout the whole-brain and

computed thousands of pair-wise correlations (40 total time points,

or 80 s worth of fMRI data) during each of two conditions:

implicit processing of fearful and neutral faces. We then employed

multivariate pattern analyses in conjunction with linear filter

feature selection to identify functional connections whose pattern

could distinguish between implicit processing of fearful and neutral

faces within individual subjects, using training data from separate

subjects. We plotted classification accuracy vs. number of included

features to approximate the minimum number of informative

features, and then identified these features (functional connections)

on a neuroanatomical display. See Figure 2 for an outline of the

analysis scheme.

Figure 1. Experimental paradigm for the interaction of
attention and affect (adapted from Etkin, et. al. 2004). Stimuli
were either fearful (F) or neutral (N) expression faces, pseudocolored in
red, yellow,or blue. Each event was comprised of a face which was
either masked (33 ms for a fearful or neutral face, followed by 167 ms of
a neutral face mask of the same gender and color, but different
individual; MF or MN, respectively), or unmasked (200 ms for each face;
F or N) or masked. Ten events of the same type, spaced 2 seconds
apart, were presented within each 20 second block, followed by
15 seconds of crosshair with black background. There were four blocks
per condition, giving 40 time points in the correlation estimates
per condition per subject. In view of our specific hypotheses, only
the unmasked conditions are discussed in the main text, while results
for unmasked conditions are presented elsewhere (manuscript in
preparation).
doi:10.1371/journal.pcbi.1002441.g001

Author Summary

Brain activity is increasingly characterized by patterns of
pair-wise correlations (large-scale functional connectivity)
across the whole brain obtained from Blood Oxygen Level
Dependent (BOLD) functional magnetic resonance imag-
ing (fMRI). Typically this is done during resting states (i.e.
no presented stimulus) to differentiate subjects based on
individual variation or diagnosis. In the current work, we
identify such patterns that are a sensitive signature of
unattended processing of threat-related stimuli, allowing
one to ‘‘brain-read’’ whether an individual was presented
with a neutral or fearful face while they attended to non-
expression-related stimulus features. These results further
the understanding of the neural mechanisms sub-serving
threat-detection and facial affect processing in healthy
subjects, and may also help further our understanding of
various disorders, such as anxiety and autism, which
exhibit anomalies in these processes. At the same time, we
propose an exploratory and sensitive approach for the
identification of condition-dependent, large-scale func-
tional connectivity. This approach is not based on
statistical inference on functional connections averaged
across subjects and contrasted between two conditions,
but rather based on the informative contribution of each
functional connection when attempting to predict be-
tween two conditions, using machine-learning based
multivariate pattern analysis on training data from
separate subjects.

Functional Connectivity Decodes Emotion Perception
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Our primary objective was to test the hypothesis that condition-

specific, functional connectivity over the whole-brain (here Pearson

correlation using 40 time points of fMRI data per example) contain

enough information to discriminate between implicitly presented

fearful and neutral faces, and to identify the functional connections

that are most informative in this decoding task. A secondary

objective was to compare the decoding accuracies achieved when

using interactivity (pair-wise correlations) vs. activity (i.e. beta estimates

from SPM maps). We show that a small subset of connections

estimated across the whole-brain can predict, or ‘‘brain-read’’,

implicitly presented fearful faces with high peak accuracies using

training and testing data from separate subjects. We propose that

this is a valuable, exploratory approach to estimate condition-

dependent, large-scale functional connectivity and demonstrate that

whole-brain patterns of interactivity are a sensitive and informative

signature of cognitive-emotional perceptual states.

Materials and Methods

Ethics statement
All procedures and tasks were reviewed for ethical concerns and

protection of human subjects by appropriate local IRB boards

prior to subject recruitment and data collection. The procedures

described in this study of healthy adults have been approved by the

Columbia University Morningside IRB (#IRB-AAAA3690, PI:

Joy Hirsch) and IRB (#IRB5290, PI: Myrna M. Weissman)

Subjects
A total of 38 (19 female) healthy volunteers (mean age = 29,

SD = 6.9) with emmetropic or corrected-to-emmetropic vision

participated in the study in accordance with institutional

guidelines for research with human subjects. All subjects were

screened to be free of severe psychopathology including Bipolar

Disorder and Psychotic Disorders.

Stimulus presentation paradigm
Subjects performed a previously described task (Etkin,

Klemenhagen et al. 2004) which consists of color identification

of fearful and neutral faces (F and N respectively). Although

backwardly masked (subliminal) fearful and neutral faces were also

presented, here we discuss results based on the unmasked

(supraliminal) conditions. Results based on comparisons of masked

conditions are presented elsewhere (manuscript in preparation).

Stimuli: Black and white pictures of male and female faces showing

fearful and neutral facial expressions were chosen from a

standardized series developed by Ekman and Friesen [23]. Faces

were cropped into an elliptical shape that eliminated background,

hair, and jewelry cues and were oriented to maximize inter-

stimulus alignment of eyes and mouths. Faces were then artificially

colorized (red, yellow, or blue) and equalized for luminosity. For

the training task, only neutral expression faces were used from an

unrelated set available in the lab. These faces were also cropped

and colorized as above.

Behavioral task
Each stimulus presentation involves a rapid (200 ms) fixation to

cue subjects to fixate at the center of the screen, followed by a

400 ms blank screen and 200 ms of face presentation. Subjects

have 1200 ms to respond with a key press indicating the color of

the face. Behavioral responses and reaction times were recorded.

Unmasked stimuli consist of 200 ms of a fearful or neutral

expression face, while backwardly masked stimuli consist of 33 ms

of a fearful or neutral face, followed by 167 ms of a neutral face

mask belonging to a different individual, but of the same color and

gender (see Figure 1). Each epoch consists of ten trials of the same

stimulus type, but randomized with respect to gender and color.

The functional run has 16 epochs (four for each stimulus type) that

are randomized for stimulus type. To avoid stimulus order effects,

we used two different counterbalanced run orders. Stimuli were

presented using Presentation software (Neurobehavioral Systems,

http://www.neurobs.com), and were triggered by the first radio

frequency pulse for the functional run. The stimuli were displayed

on VisuaStim XGA LCD screen goggles (Resonance Technology,

Northridge, CA). The screen resolution was 8006600, with a

refresh rate of 60 Hz. Prior to the functional run, subjects were

trained in the color identification task using unrelated neutral face

stimuli that were cropped, colorized, and presented in the same

manner as the nonmasked neutral faces described above in order

to avoid any learning effects during the functional run. After the

functional run, subjects were shown all of the stimuli again, alerted

to the presence of fearful faces, and asked to indicate whether they

had seen fearful faces on masked epochs.

fMRI acquisition
Functional data were acquired on a 1.5 Tesla GE Signa MRI

scanner, using a gradient-echo, T2*-weighted echoplanar imaging

(EPI) with blood oxygen level-dependent (BOLD) contrast pulse

sequence. Twenty-four contiguous axial slices were acquired along

the AC-PC plane, with a 64664 matrix and 20 cm field of view

(voxel size 3.12563.12564 mm, TR = 2000, TE = 40, flip an-

gle = 60). Structural data were acquired using a 3D T1-weighted

spoiled gradient recalled (SPGR) pulse sequence with isomorphic

voxels (1616mm) in a 24 cm field of view (2566256 matrix,

,186 slices, TR 34 ms, TE 3 ms).

GLM analysis
Functional data were preprocessed and processed in SPM8

(Wellcome Department of Imaging Neuroscience, London, UK).

For preprocessing, the realigned T2*-weighted volumes were slice-

time corrected, spatially transformed and resampled to a

standardized brain (Montreal Neurologic Institute, 26262 mm3

cube resolution) and smoothed with a 8-mm full-width half-

Figure 2. Node definitions and anatomical locations. Cortical
and subcortical regions (ROIs) were parcellated according to bilater-
alized versions of the Harvard-Oxford Cortical and subcortical-atlases,
and the cerebellum was parcellated according to AAL (left panel). ROIs
were trimmed to ensure there was no overlap between them and that
they contained voxels present in each subject. The top two
eigenvariates from each ROI was extracted, resulting in 270 total nodes
throughout the brain (right panel). For display purposes, node locations
(black spheres) correspond to the peak loading value from each time-
course’s associated eigenmap averaged over all subjects.
doi:10.1371/journal.pcbi.1002441.g002

Functional Connectivity Decodes Emotion Perception
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maximum Gaussian kernel. 1st-level regressors were created by

convolving the onset of each block (MF, MN, F and N) with the

canonical HRF with duration of 20 seconds. Additional nuisance

regressors included 6 motion parameters, white matter and csf

signal, which were removed prior to time-series extraction. For the

current work, the same GLM analysis served three purposes: 1)

facilitate removal of nuisance effects from time series prior to FC

estimation using structurally (atlas-based) and functionally defined

ROIs, 2) produce beta-estimates of each condition for classifica-

tion analysis of spatial activity patterns and 3) functionally define

ROIs (nodes) prior to FC calculation (used for comparing results of

structural vs. functional definition of nodes).

Node definitions
Brain regions were parcellated according to bilateral versions of

the Harvard-Oxford Cortical and sub-cortical atlases and the AAL

atlas (cerebellum) and were trimmed to ensure no overlap with

each other and to ensure inclusion of only voxels shared by all

subjects (Figure 3, left panel). For each subject, time-series across

the whole run (283 TRs) were extracted using Singular Value

Decomposition (SVD) and custom modifications to the Volumes-

of-Interest (VOI) code within SPM8 to retain the top 2

eigenvariates from each atlas-based region. Briefly, the data

matrix for each atlas-based region is defined as A, an n6p matrix,

in which the n rows represent the time points, and each p column

represents a voxel within an atlas-based region. The SVD theorem

states:

Anxp~Unxn Snxp VT
pxp,

where UTU = Inxn and VTV = Ipxp (i.e. U and V are orthogonal).

The columns of U are the left singular vectors (eigenvariates, or

summary time courses of the region), S (the same dimensions as A)

has singular values, arranged in descending order, that are

proportional to total variance of data matrix explained by its

corresponding eigenvariate, and is diagonal, and VT has rows that

are the right singular vectors (spatial eigenmaps, representing the

loading of each voxel onto its corresponding eigenvariate). Here

we retain the top two eigenvariates (nodes) from each region.

For each atlas-based region, we opted to apply SVD over the

entire time-series from each subject and then segment and

concatenate the eigenvariates according to the conditions/

comparisons of interest (rather than segment and concatenate all

the masks’ voxels first and then apply SVD) in order to maximize

the total number of observations (time points) per region and also

to avoid potentially introducing any artifact and unnatural

variation caused by the splicing together of signal from disparate

time points, which could possibly bias the SVD results. However, a

potential disadvantage of this approach is that important sub-

regions and associated eigenvariates within a particular atlas-based

region could be missed due to variation in other conditions/blocks

within the run that are not considered in the current work. This is

an additional motivation to retain the top two eigenvariates from

each atlas-based region, as opposed to just one.

The above step resulted in a total of 270 nodes with an

associated time course (i.e. eigenvariates) and spatial eigenmaps

from the 135 initial atlas-based regions. Thus, each atlas-based

region was comprised of two nodes. Interestingly, when extracting

only one eigenvariates per region, maximum accuracy did not

surpass 46% (data not shown). This is possibly due to the fact that

larger, atlas-based regions encompassed other functional sub-

regions which were not included in the analysis. Another possible

reason is that for many regions, the 1st eigenvariate may reflect

artifact global or mean grey matter signal (while white matter and

csf signal were regressed out from nodes’ time-series, global and

mean grey matter signals were not), or it may reflect variation

caused by other conditions/blocks within the run that were not

considered in the current classification analyses (see paradigm task

description above), or a combination of all the above. Therefore

we extracted two eigenvariates from each region. We note that this

means it is likely that node 2 of a particular region shows

functional connectivity that differentiates between conditions and

node 1 of the same region has no differential connectivity. For

clarity we therefore label each node using its Harvard-Oxford atlas

label appended by either ‘‘_PC1’’ for the first eigenvariate and

‘‘_PC2’’ for the second. For display purposes, we calculated the

MNI coordinates of the peak loading weight (locations averaged

across subjects) for each eigenvariate from its associated eigenmap

(Figure 3, right panel). Table S1 lists these average MNI

coordinates for each node.

Functional connectivity networks for implicit fearful and
neutral face processing

For each subject, functional connectivity matrices (i.e. where cell

i,j contains the Pearson correlation between region i and region j)

were generated for implicit fearful (F) and neutral (N) conditions.

The above time-series were segmented and concatenated accord-

ing to conditions of interest (40 total time points per condition,

incorporating a lag of 2 or 3 s from the start of each block) before

generating the correlation matrices. Fisher’s R to Z transform was

Figure 3. Data analysis scheme. Time series from each condition
(unmasked fearful and unmasked neutral, F and N) and for N regions
(R1 though RN) were segmented from each subject’s whole run and
concatenated (concatenation of two blocks for each condition shown in
figure). There were four 20 second (10 TR) blocks of each condition;
hence each example was comprised of 40 time points per condition per
subject. For each of example, correlation matrices were estimated, in
which each off-diagonal element contains Pearson’s correlation
coefficient between region i and region j. The lower triangular region
of each of these matrices were used as input features in subsequent
classifiers that learned to predict the example (i.e. F or N) based on their
observed patterns of the correlations. Here, we used a filter feature
selection based on t-scores in the training sets during each iteration of
leave-two-out cross validation. The difference map consists of the set of
most informative features (those that are included in the most rounds
of cross-validation and have the highest SVM weights.)
doi:10.1371/journal.pcbi.1002441.g003

Functional Connectivity Decodes Emotion Perception
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then applied to each correlation matrix. Finally for the binary

classification of interest (i.e. F vs. N), correlation matrices were

demeaned with respect to the average between the two conditions

in order to remove the effects of inter-subject variability. The

lower diagonal of the above preprocessed correlation matrices

(38 subjects62 conditions total) were then used as input features

to predict viewed stimuli in subsequent pattern recognition

experiments.

Differences in functional connectivity between implicit
fearful and neutral face processing

We first tested for significant differences between the primary

conditions of interest (i.e. F.N) while correcting for multiple

comparisons (False Discovery Rate, FDR). This yielded no

significant results when multiple comparison correction was

applied (FDR, p,0.05 and 0.1). This was not surprising, as

multiple comparison correction was expected to be too conserva-

tive given the exceedingly high number of independent compar-

isons (36,315).

Pattern analysis of large-scale functional connectivity to
predict implicit fear perception

Support vector machines are pattern recognition methods that

find functions of the data that facilitate classification [24]. During

the training phase, an SVM finds the hyperplane that separates the

examples in the input space according to a class label. The SVM

classifier is trained by providing examples of the form ,x,c.,

where x represents a spatial pattern and c is the class label. In

particular, x represents the fMRI data (pattern of correlation

strengths) and c is the condition or group label (i.e. c = 1 for F and

c = 21 for N). Once the decision function is determined from the

training data, it can be used to predict the class label of new test

examples.

For all binary classification tasks, we applied a linear kernel

support vector machine (SVM) with a filtering feature selection

based on t-test and leave-two-out cross validation (LTOCV).

There were 38 examples for each condition (2 from each subject,

76 total). During each iteration of 38 rounds of LTOCV, both

examples (1 from each class) from one subject were withheld from

the dataset and 1) a 2-sample t-test was performed over the

remaining training data (N = 37 in each group) 2) the features were

ranked by absolute t-score and the top N were selected 3) these

selected features were then used to predict the class of the withheld

test examples during the classification stage. The full feature set for

each example consisted of 36,315 correlations.

If the classifier predicted all trials as positive or negative, the

resulting accuracy would be 50% since the number of examples

are equal for each class. We therefore report classification

accuracy (number of true positives and negatives over all trials)

vs. number of included features that have been ranked by their t-

score. We assessed the significance of decoding results by

computing the frequency in which actual values surpassed those

from null distributions derived by randomly permuting class labels

based on the method proposed by [25], with the a slight

modification to account for the dependence between pairs of

examples from each subject. Briefly, to derive this null distribution,

class labels within each pair conditions from each subject were

randomly flipped with a probability of 0.5 over 2000 iterations for

each number of included features. P-values for the peak decoding

accuracies (F vs. N: 100%, top 25 features) were also calculated

with respect to classification results when shuffling labels 10,000

times, and then subjected to Bonferroni correction for the number

of total Top N comparisons (in this case 20).

For SVM learning and classification we used the Spider v1.71

Matlab toolbox (http://people.kyb.tuebingen.mpg.de/spider/) us-

ing all default parameters (i.e. linear kernel SVM, regularization

parameter C = 1. Graphical neuro-anatomical connectivity maps

of the top N features were displayed using Caret v5.61 software

(http://brainvis.wustl.edu/wiki/index.php/Caret:About). We

note that different features could be selected during the feature

selection phase of each round of cross-validation. Therefore in

ranking the top 25 features, we first rank by total number of times

that feature was included in each round of cross-validation, and

then among these features, we sort by absolute value of the

average SVM weight.

Our intent is not to estimate the true accuracy of prediction

given a completely new data set, but rather to test whether there

exists information in the pattern of functional connections relevant

to unattended emotion perception, and to approximate the

optimal number of features that containing this information. We

note that our approach (plotting accuracy vs. number of top N

features) is not biased, since for each number of top N features,

and for each round of leave-two-out cross validation, the top N

features were selected from a training set that was completely

independent from the testing set. If there is a true signal present in

the data, we expect, and in the current data in general observe,

that there is an initial rise in accuracy as more informative features

are added to the feature set, and a dip in accuracy as less

informative features (i.e. noise) are added to the feature set.

Therefore in reporting classification results, we report the range of

features at which accuracies first reach maximum accuracy-10%

(positive slope) to which they reach maximum accuracy-10%

(negative slope), and also correct for multiple comparisons (i.e.

number of top N features tested) using Bonferroni when reporting

the p-value for the maximum accuracy achieved.

For assessing the significance of the differences between

decoding results (i.e. FC as features vs. beta estimates) we used

the Accurate Confidence Intervals MATLAB toolbox for assessing

whether the parameter p (probability of correct prediction) from

two independent binomial distributions was significantly different

(http://www.mathworks.com/matlabcentral/fileexchange/3031-

accurate-confidence-intervals). Briefly, these methods search for

confidence intervals using an integration of the Bayesian posterior

with diffuse priors to measure the confidence level of the difference

between two proportions [26]. We used the code prop–

diff(x1,n1,x2,n2,delta), (available from the above website) returning

Pr(p12p2.d), where x1, n1, x2, n2, are number of correct responses

and total predictions in two distributions being compared, and

delta (zero in our case) is the null hypothesis difference between the

probabilities.

Results

Behavioral results
The average response rate in the color discrimination task was

98% (s= 4.6%), mean accuracy was 97% (s= 3.5%), and mean

reaction time was 0.65 s (s= 0.12), indicating that subjects

performed the color discrimination task as instructed.

Discriminating between implicit processing of fearful and
neutral faces with patterns of functional connectivity

We applied atlas-based parcellation (see Figure 2) and computed

pair-wise correlations between 270 nodes (derived from 135 atlas-

based brain regions) using 40 total time points of fMRI data

that were segmented and concatenated from two conditions;

unattended and nonmasked (i.e. implicit) fearful (F) and neutral (N)

faces (Figure 1). This resulted in 36,315 total functional

Functional Connectivity Decodes Emotion Perception
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connections (z-transformed Pearson correlations) for each condi-

tion of interest (F and N).

We quantified the extent to which a subset of these functional

connections could decode, or predict, the conditions from which

they were derived by submitting them as features into a pattern

classifier. We used a linear kernel Support Vector Machine (SVM)

with a filter feature selection based on the t-score of each feature

(functional connectivity) in each training set. Decoding accuracies

for implicit fearful vs. neutral classifications (F vs. N) were plotted

against the number of included features (ranked in descending

order by t-score) in order to approximate the number of

informative features relevant to the emotional expression of the

facial stimulus.

For implicit fearful vs. neutral (F vs. N) classification, accuracy

reached 90% when learning was based on the top 15 features in

each training set, a maximum of 100% (p,0.002, corrected) at 25

features, and dipped back down to 90% at about 35 features

(Figure 4A). Anatomical display of the top 25 overall features that

differed between F and N conditions revealed functional

connections among occipital regions, middle and superior

temporal gyrus, lateral and medial prefrontal regions, thalamus,

cerebellum and insula (Figure 4B–D, Table 1). The connection

that carried the most weight in the linear SVM classifier was

between right angular gyrus and left hippocampus, which

exhibited a greater correlation in the F vs. N condition (Table 1,

F# 1). To identify regions whose overall functional connectivity

was greater during fear, the size of each node was made

proportional to the sum of SVM weights of each of its connections.

The node with the most positive functional connectivity during

fear was the thalamus (Figure 4B–D, large red sphere in center),

which exhibited positively modulated functional connections with

bilateral middle temporal gyrus and right insula.

In addition to parcelating the brain and defined nodes based on an

atlas, we also functionally defined nodes using two approaches 1)

using the same 160 MNI coordinates as used in Dosenbach et. al.,

2010 [19] which were selected and defined based on separate meta-

analyses of the fMRI literature, and 2) a biased approach based on

92 nodes (2 eigenvariates from each of 49 ROIs defined as 6 mm

radius spheres centered at peak coordinates) that were based on the

GLM results from the same, whole dataset (for F contrast F.N

thresholded at p = 0.05, k = 30). For 1) achieved accuracies were 63–

73% when using 75 to 130 features, and for 2) accuracies between

76–86% were obtained when using 80 to 140 features (data not

shown). Approach 2) is biased in that we defined our nodes based on

the GLM results of the whole data set, and as such provides an upper

bound on the expected accuracies when functionally defining nodes

based on the GLM results in separate training sets during each

iteration of LTOCV. Therefore we conclude that the above whole-

brain, atlas-based approach, which achieved 90–100% accuracy

with 15–35 features when using unbiased feature selection, is optimal

to using functionally defined nodes.

Discriminating between F and N faces using spatial
patterns of activation

To compare the information content of patterns of interactivity

(i.e. functional connections used above) vs. patterns of activity we

also attempted F vs. N classifications using beta estimates, which

are considered summary measures of activation in response to

each condition. In order to make feature-selection/LTOCV and

SVM learning more computationally tractable, preprocessed

functional data were resized from 26262 mm voxel resolution

to 46464 mm resolution, and subject-specific GLM models were

re-estimated, resulting in a reduction of total feature space per

example from ,189,500 betas to ,23,500. Feature selection,

LTOCV and SVM learning proceeded exactly as above for FC

data. We observed accuracies of 66%–76% with ,500 to 2600

features, with peak accuracy at 76% (p = 0.0044, uncorrected) at

,1900 features (Figure 5A). The most informative voxels

encompassed many distributed regions that included dorsolateral

prefrontal/opercular cortex, fusiform gyrus, lateral occipital

cortex, superior temporal gyrus, anterior cingulate, amygdala,

parahippocampal gyrus, ventrolateral prefrontal cortex, pulvinar,

precuneus, cerebellum, inferior parietal lobe and insula (Figure 5B).

Although significantly above chance, and despite the involvement

of many more regions, maximum accuracy using betas was

significantly less than the maximum accuracy achieved with FC

(76%,100%, p = 5.3761027).

We performed additional classifications using betas derived

from the original, smaller voxel-sizes and with the addition of an

initial (positively biased) feature selection step over the whole-

dataset for the same issues of technicality stated above. This also

served to estimate an upper bound on the expected accuracy when

using beta-values: if maximum accuracy achieved was still less

than when using functional connectivity with unbiased feature

selection, then we can more readily conclude that functional

connectivity features are more ‘‘informative’’ than beta estimates

(when using the Canonical Hemodynamic Response Function

Figure 4. Large-scale functional connectivity discriminates
between unattended, conscious processing of fearful and
neutral faces. (A) Decoding accuracy when classifying F vs. N as a
function of the number of features (1 to 40) included ranked in
descending order by their absolute t-score. Maximum accuracy for F vs.
N classification (100%, p,0.002, corrected) was achieved when learning
was based on the top 25 features in each training set. Mean accuracy
scores for shuffled data are plotted along the bottom, with error bars
representing standard deviation about the mean. Posterior (B), ventral
(C) and right lateralized (D) anatomical representation of the top 25
features when classifying supraliminal fearful vs. supraliminal neutral
face conditions (F vs. N). The thalamus (large red sphere in the center of
each view) is the largest contributor of connections the differentiate the
F from N. Red indicates correlations that are greater in F, and blue
represents correlations that are greater in N. For display purposes, the
size of each sphere is scaled according to the sum of the SVM weights
of each node’s connections, while the color of each sphere is set
according to the sign of this value; positive sign, red, F.N and negative
sign, blue, N.F. In addition, the thickness of each connection was made
proportional to its SVM weight.
doi:10.1371/journal.pcbi.1002441.g004
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(HRF) to model activation). For this analysis, the initial (biased)

feature selection employed an F-test of the contrast F.N

thresholded at p,0.01, cluster threshold = 20, resulting in 4,226

total initial features. Feature selection/LTOCV and classification

again proceeded as above across the range of 1 to 4000 features. In

spite of initially biased feature selection, F vs. N classification

reached 92% maximum accuracy (data not shown).

In addition to using beta maps throughout the whole-brain, we

derived beta weights using the same summary time courses

(eigenvariates) that were extracted and used to compute pair-wise

FC (270 total betas per condition per subject). For this, the GLM

analysis was kept the same as above except that previously

included nuisance regressors (6 motion, mean white and mean csf)

and a low-pass filter were not included, since they were already

removed from the time courses during extraction. Resulting

estimated beta weights were then used as features to predict fearful

vs. neutral faces using the exact same procedure when using

whole-brain FC. Accuracies of between 69–79% were achieved

with between 40 to 150 features (data not shown).

Discussion

Here we demonstrate that pattern analysis of large-scale

functional connectivity can reliably decode the emotional

expression of implicitly perceived faces, and that pair-wise

functional connections are modulated by implicit fear perception.

This work also demonstrates a whole-brain, large-scale and

exploratory approach for the identification of condition-specific,

functional connectivity that avoids correcting for multiple

comparisons among thousands of connections (discussed more

below).

The most significantly modulated functional connection during

implicit presentation of fearful faces was between left hippocampus

and right angular gyrus. The left hippocampus is a key region for

memory (i.e. autobiographical memory retrieval) and the right

angular gyrus has been implicated in mentalizing, or inferring the

thoughts and feelings of others [27]. Interestingly, during resting

states, these two regions were found not to correlate with each

other, but instead correlated with other regions that substantially

overlapped, such as superior temporal sulcus (STS), anterior

temporal lobe, posterior cingulate cortex, dorsomedial and ventral

prefrontal cortex, inferior frontal gyrus, and the amygdala. It has

been proposed that this functional overlap facilitates the

integration of personal and interpersonal information and provides

a means for personal experiences to become social conceptual

knowledge [27]. Here, we observed the left hippocampus and right

angular gyrus were correlated during implicit emotion (fear)

Table 1. F vs. N, Top 25 features (consensus features are in bold).

F# Edge label
Mean R
(F)

Mean R
(N) T-value

SVM
weight FSets

1 Right_Angular_Gyrus_PC1 - Left_Hippocampus_PC2 0.101 20.027 4.3419 1.1347 38

2 Right_Superior_Temporal_Gyrus_anterior_division_PC2 - Left_Ventral_Frontal_Pole_PC1 20.08 0.066 24.301 20.9976 38

3 Right_Dorsal_Frontal_Pole_PC2 - Cerebelum_6_L_PC2 0.07 20.092 4.3555 0.97075 38

4 Vermis_7_PC2 - Midbrain_PC1 0.127 7E-04 4.2176 0.88976 38

5 Right_Temporal_Occipital_Fusiform_Cortex_PC2 - Pons_PC2 20.07 0.082 24.4395 20.8891 38

6 Right_Putamen_PC2 - Cerebelum_Crus1_R_PC2 20.07 0.094 25.5049 20.8803 38

7 Left_Frontal_Orbital_Cortex_PC2 - Left_Cuneal_Cortex_PC2 0.052 20.082 4.4034 0.84121 38

8 Right_Frontal_Operculum_Cortex_PC2 -
Right_Dorsal_Lateral_Occipital_Cortex_superior_division_PC2

0.118 20.027 5.5009 0.81892 38

9 Right_Frontal_Medial_Cortex_PC1 - Right_Cingulate_Gyrus_posterior_division_PC2 0.003 0.133 23.943 20.8083 19

10 Right_Amygdala_PC2 - Left_Putamen_PC1 0.009 0.131 24.1008 20.7664 34

11 Right_Lingual_Gyrus_PC1 - Left_Dorsal_Lateral_Occipital_Cortex_superior_division_PC2 0.088 20.068 4.1602 0.7472 38

12 Left_Thalamus_PC2 - Left_Planum_Polare_PC1 0.091 20.076 4.7585 0.65859 38

13 Left_Temporal_Occipital_Fusiform_Cortex_PC2 - Cerebelum_8_L_PC1 0.043 20.102 4.3388 0.62211 38

14 Right_Central_Opercular_Cortex_PC2 - Left_Lingual_Gyrus_PC2 0.061 20.077 4.3741 0.61316 38

15 Vermis_8_PC1 - Left_Planum_Polare_PC2 0.085 20.042 3.9352 0.59068 19

16 Right_Insular_Cortex_PC2 - Left_Caudate_PC2 0.028 20.089 3.873 0.57516 11

17 Right_Parahippocampal_Gyrus_anterior_division_PC1 -
Left_Middle_Temporal_Gyrus_anterior_division_PC2

20.02 20.151 4.1911 0.55492 38

18 Right_Ventral_Lateral_Occipital_Cortex_superior_division_PC2 -
Right_Middle_Temporal_Gyrus_posterior_division_PC2

0.011 20.074 3.8763 0.55272 15

19 Right_Central_Opercular_Cortex_PC1 - Left_Planum_Polare_PC1 0.077 0.219 24.2479 20.5409 38

20 Left_Juxtapositional_Lobule_Cortex_Supp_Motor_cortex_PC2 -
Left_Inferior_Frontal_Gyrus_pars_triangularis_PC2

0.041 20.073 3.9504 0.48896 20

21 Right_Precuneous_Cortex_PC1 - Left_Middle_Temporal_Gyrus_anterior_division_PC1 20.01 20.12 3.8799 0.43938 15

22 Left_Thalamus_PC2 - Left_Insular_Cortex_PC1 0.085 20.057 4.2959 0.42672 38

23 Right_Planum_Polare_PC2 - Cerebelum_Crus2_L_PC2 0.043 20.083 3.8435 0.41322 12

24 Right_Planum_Polare_PC1 - Left_Thalamus_PC2 0.068 20.093 4.1779 0.39581 38

25 Left_Cingulate_Gyrus_anterior_division_PC1 - Hypothalamus_PC2 0.049 20.059 3.8567 0.38869 13

doi:10.1371/journal.pcbi.1002441.t001
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perception, suggesting the integration of autobiographical memory

with mentalizing during implicit perception of emotional faces.

Other connections that discriminated between implicitly

presented fearful and neutral faces included thalamus, superior

occipital, frontal operculum, dorsal-lateral prefrontal cortex,

cerebellum, parietal and posterior and anterior temporal regions

(in the vicinity of the superior temporal sulcus, STS). This latter

observation is consistent with previous models and group studies

that identify the STS and middle temporal gyrus as a primary

neural substrate for processing the emotional expression of faces

[28–30], and recent work demonstrating that multivariate pattern

analyses applied to these regions could decode explicit emotional

face recognition [31–33]. Importantly, the current findings suggest

that interactions of temporal regions and STS with areas such

ventral frontal pole, thamalus, parahippocampal gyrus and central

opercular cortex (Table 1 F# 2, 12, 24 and 17) are also critically

involved in implicit emotion perception.

Contrary to our expectations, other than a connection between

amygdala and putamen (Table 1, F# 10), the top 25 features that

discriminated between the implicit fear and neutral conditions did

not include any connections with the amygdala. This is not

inconsistent with the observation in a recent meta-analysis that

amygdala activity was significantly greater for explicit (attended)

fear perception vs. implicit fear perception [34]. In addition, the

finding that amygdala demonstrates a distinct temporal profile

from other structures during emotional face processing could also

explain why more functional connections with amygdala were not

observed in the current analysis [10]. Instead, the structure which

contributed the most in discriminating between the fear and

neutral conditions was thalamus (Fig. 4C and D, largest red sphere

in center), which exhibited greater correlations with bilateral

middle temporal gyrus (STS) and left insula during the fear

condition (Table 1 rows 12, 22 and 24). This observation is

consistent with its purported role as a hub integrating cortical

networks during the evaluation of the biological significance of

affective visual stimuli [35], and with the observation of direct

structural connectivity between several sub-regions of the thalamus

with the STS [36]. The current results suggest that functional

connectivity between thalamus and STS and insula play a

prominent role during implicit fear perception.

Interestingly, functional connections of the cerebellum were also

significantly modulated during the fear condition. In particular,

functional connections of the cerebellum with dorsal frontal pole

(Table 1 F# 3) and fusiform gyrus (F# 13) were increased during

fear, while connections with putamen (F# 6) were decreased.

Although cerebellum has been frequently reported to be activated

or involved during emotion processing [34,37,38], the specific

roles the various subregions play during affective processing

remain to be elucidated [39].

Previous studies have shown that emotional faces modulate

amygdala-fusiform (FG) interactions [14,40,41]. Although

amygdala-FG interactions did not appear among the top

features for discriminating between implicit fearful and neutral

faces, we did observe increased amygdala-FG connectivity

during implicit fear relative to implicit neutral when we

isolated that connection (Right_Temporal_Occipital_Fusiform_

Cortex_PC1, MNI = [26,248,218] and Right_Amygdala_PC1,

MNI = [18,0,220], t = 2.6, p,0.01), which is consistent with

the above works.

Large-scale functional network of fear processing
It is clear that fearful emotion processing and its behavioral

consequences involve the complex interactions among many

distributed regions [42–44]. Among these, the amygdala and its

interactions with the frontal and visual cortex are critically

involved in attended and pre-attentive threat and emotion

processing [9,13,45,46]. Numerous previous studies have exam-

ined functional interactions between amygdala and several other

regions in the fear and facial emotion processing pathway. Usually

these have used Psycho-Physiological Interaction (PPI) analysis to

study the functional connectivity of a seed region, often the

amygdala, with the rest of the brain during a fearful relative to

non-fear perceptual or cognitive state [12,46]. Other studies

employed effective connectivity measures such as structural

equation modeling (SEM) and dynamic casual modeling (DCM)

to examine multiple interactions among a more limited set of a

priori defined regions [14,16].

In contrast to the above-mentioned studies, the current

approach is relatively model-free in that we estimate functional

connectivity throughout the whole-brain without a priori

restrictions based on anatomically defined areas or seed regions.

We estimate network connections using simple correlation

measures, similar to a previous study that demonstrated condition

dependent modulations in large-scale (41 nodes) functional

connectivity across various syntactical language production tasks

[47], but on a much larger scale (270 nodes in the current

analysis). We then identified a subset of functional connections

whose pattern could discriminate between implicit fearful and

neutral face processing.

An approach to estimate condition specific large-scale
functional connectivity

There is considerable interest in examining the large-scale

functional network architecture of the brain as a function of

various cognitive processes or individual variation [18]. This is

Figure 5. Classification results using beta estimates as features.
(A) Feature selection, cross-validation and SVM learning were per-
formed exactly the same as for FC, but over the range of 1 to 4000
ranked features (voxels). Accuracies for F vs. N classification reached 66–
76% with ,500–2500 features, with maximum accuracy (76%,
p = 0.0044, uncorrected) at ,1,900 features. (B) The most informative
voxels with positive SVM weights (F.N, yellow) included fusiform gyrus
(228,220,212), cerebellum (228, 220), amygdala (220), insula (212),
orbital and ventrolateral prefrontal cortex (220, 212, 24), midbrain
(212), parahippocampal gyrus (212), middle temporal gyrus and
superior temporal sulcus (212,24,4), thalamus/pulvinar (4), dorsolateral
prefrontal/opercular cortex (12,20,28), dorsomedial prefrontal cortex
(20,28), and superior occipital cortex (20,28) and inferior parietal lobe
(36). Informative voxels with negative SVM weights (N.F, blue)
included temporal-occipital cortex (220), subgenual anterior cingulate
(212,24), striatum (24,4), lingual gyrus (4,12), precuneus (20) and
dorsolateral prefrontal cortex (28,36). (B). Brain images are displayed
using Neurological convention (i.e. L = R), and top left number in each
panel represents the MNI coordinate (z) of depicted axial slice.
doi:10.1371/journal.pcbi.1002441.g005
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often done by first defining a set of functional ‘‘nodes’’ based on

spatial ROIs and then conducting a connectivity analysis between

the nodes based on their FMRI timeseries. Group-based statistical

parametric mapping can then be applied to resulting connections

[48]. However, as the number of nodes (N) increases, the number

of connections increases exponentially (# connections =

(N*(N21))/2) resulting in a multiple comparisons problem, and

hindering the exploration-based query of condition-specific whole-

brain functional connectivity on a large-scale. The equivalent of

cluster-extent thresholding for graphs has been proposed, such as

the Network Based Statistic [49], which estimates the probability

of observing groups of linked, suprathreshold edges based on

chance. However, inferences can only be made on groups of

interconnected edges, not individual ones. In addition, there is a

substantial loss of information in model-based approaches when

conducting statistical inference on signals (functional connections)

averaged over a group of subjects, and discounting the joint

responses among many functional connections.

Here, we present a novel alternative to identify functional

connections of interest based on their information content in

machine-learning based multivariate pattern analyses that attempt

to discriminate between two conditions that differ based on a

parameter of interest (in this case the emotion expression of a

presented face). For this we used linear filter feature selection and

plotted classification accuracy vs. number of included features in

order to determine the number of features required to distinguish

between conditions, and then identified the top N features on

neuroanatomical display.

‘‘Information content’’ of neural activity vs. neural
interactivity

Large-scale functional connectivity and network analysis has

been increasingly used as the tool of choice for extracting

meaningful and understanding complex brain organization

[17,18]. In the current work we applied simple Pearson correlation

to estimate the large-scale functional connectivity of implicit

threat-related emotion and ambiguous facial processing using a

block-design. Previous work based on simulations has indicated

that correlation-based methods, including Pearson correlation, are

in general quite successful in capturing true network connections

[18]. Here we ‘‘validated’’ the estimated connections by testing

whether a subset of features could be used to decode (‘‘brain-

read’’) the emotional expression of the facial stimulus that was

presented during each block. For this we applied Multivariate

Pattern Analyses (MVPA) techniques similar to those used

previously to decode categories of viewed stimuli [50–54],

orientation [55,56], and the decisions made during a near-

threshold fearful face discrimination task [57].

In contrast to the above-mentioned studies, which applied

MVPA to the activity of spatially distributed regions and/or

voxels, in the current work we applied pattern analysis to the

correlations, or interactivity, between regions distributed throughout

the whole-brain. We compared the decoding accuracy when using

correlations as features versus beta estimates, (i.e. summary

measures of activation amplitudes for each condition for each

voxel). We observed that the peak classification rate when using

betas (76%, ,1900 features) was significantly lower than that

achieved using FC (100%, ,25 features). Even with an additional,

initial feature-selection based on the entire data set which

positively biased results, peak decoding accuracies when using

,4,000 beta values (92%) were lower than those reached when

using only ,25 correlations as features and unbiased feature

selection (100%). This suggests that there is substantially more

information, relevant to cognitive-emotional neural processing,

that is contained in the interactions between regions than is

typically realized through standard univariate approaches. How-

ever, it should be noted that this requires enough TRs (time-

points) to compute meaningful correlations between brain regions

for a particular condition, and would thus in general be

impractical for decoding single-trial or event-related data.

We observed that using whole-brain, anatomically defined

ROIs to define nodes for whole-brain FC estimation yielded much

higher classification rates than using nodes that were functionally

defined (either from other meta-analyses or coordinates defined

from GLM analysis of these same data). This was not too

surprising, as these functionally defined ROIs were smaller (6 mm

radius spheres centered around peak F-value coordinates from the

contrast of F.N obtained from the GLM vs. atlas-based masks),

and hence provided considerably less coverage of the brain. In

addition, the GLM framework relies on multiple assumptions (i.e.

model/shape of hemodynamic response function, effects add

linearly, etc.) [58] and regions that show activation to a stimulus

(i.e. sustained increase in signal amplitude during the duration of a

block) may not necessarily exhibit differential functional connec-

tivity and vice versa. These observations further the notion that

there exists substantial information in whole-brain large-scale

functional connectivity patterns, the nodes of which may not be

captured or revealed adequately through standard GLM

approaches.

Limitations
Previous simulations have raised concerns regarding the use of

atlas-based approaches for parcellating the brain [18]. Because the

spatial ROIs used to extract average time-series for a brain region

do not likely match well the actual functional boundaries, BOLD

time-series from neighboring nodes are likely mixed with each

other. While this hampers the ability to detect true functional

connections between neighboring regions, it has minimal effect on

estimating functional connectivity between distant regions. This

perhaps explains why in this study most of the functional

connections that discriminated between fearful and neutral faces

are long-distance. Future experiments using non-atlas based

approaches would likely lead to better estimates of shorter-range

functional connections. We also note that the current atlas-based

approach may have under-sampled the prefrontal cortex, and that

possible future improvements could break up the prefrontal

regions into smaller pieces in order to sample more nodes from this

area.

Using Pearson correlation, it is possible that any association

between two brain regions is the result of a spurious association

with a third brain region. Another limitation of the current study is

the required amount of data used to extract quality features of

brain activity. Our use of correlations as features required a

substantial number of time points (i.e. 40 scans per condition per

subject) relative to previous studies of decoding emotion

perception. Given this, it was not feasible to sample enough

examples within a single or few subjects as is typical in multivariate

pattern analysis studies, and we instead pooled examples across

multiple subjects. On the other hand, the fact that reliable

classifiers could be learned using examples from separate subjects

speaks to the generalizability of our obtained results.
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