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A B S T R A C T

Background: Osteoporosis is a common metabolic bone disease, which always leads to osteoporotic fractures.
Biomarkers of bone mineral density (BMD) are helpful for prevention and early diagnosis of osteoporosis.
This study aims to identify metabolomic biomarkers of low BMD.
Methods: We included 701 participants who had BMD measures by dual-energy X-ray absorptiometry scans
and donated fasting plasma samples from three clinical centres as a discovery set and another 278 partici-
pants from the fourth centre as an independent replication set. We used a liquid chromatography-mass spec-
trometry-based metabolomics approach to profile the global metabolites of fasting plasma.
Findings: Among the 265 named metabolites identified in our study, six were associated with low BMD (FDR-
adjusted P<0.05) in the discovery set and were successfully validated in the independent replication set. The circulat-
ing levels of five metabolites, i.e., inosine, hypoxanthine, PC (O-18:0/22:6), SM (d18:1/21:0) and isoleucyl-proline
were associatedwith decreased odds of low BMD, and PC (16:0/18:3) level was associatedwith increased odds of low
BMD. Per 1-SD increase in a composite metabolite score of these six metabolites was associated with about half
decreased odds of low BMD (odds ratio 0.59, 95% confidence interval: 0.52-0.68). Furthermore, introduction of a panel
of metabolites selected by elastic net regression to a predictionmodel of classical risk factors and plasma biomarker of
bone resorption substantially improved the prediction performance for low BMD (AUCs: 0.782 vs. 0.698, P=0.002).
Interpretation: Metabolomics profiling may help identify novel biomarkers of low BMD and be helpful for
early diagnosis of osteoporosis beyond the current clinical index.
Funding: This study was supported by the National Key R&D Program of China [2018YFC2001500 to J.S.],
Shanghai Municipal Science and Technology Major Project [2017SHZDZX01], the National Natural Science
Foundation of China [Key Program, 91749204 to J.S.], the National Natural Science Foundation of China [Gen-
eral Program, 81771491 to J.S.], the Project of Shanghai Subject Chief Scientist [2017BR011 to J.S.], Grants
from the TCM Supported Project [18431902300 to J.S.] from the Science and Technology Commission of
Shanghai Municipality, and the National Natural Science Foundation of China [General Program, 81972089 to
Z.X.]. Y.Z. was supported by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai
Institutions of Higher Learning, and the National Natural Science Foundation of China [81973032].
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Research in context

Evidence before this study

Biomarkers of bone mineral density (BMD) are helpful for pre-
vention and early diagnosis of osteoporosis. Large-scale metab-
olomics studies may provide novel predictive biomarkers.

Added value of this study

Using a comprehensive liquid chromatography-mass spectrom-
etry-based metabolomics profiling approach, we examined the
associations of circulating metabolites with low BMD in a large
Chinese population, and replicated such associations in an inde-
pendent population. We found several plasma metabolites
were associated with low BMD, and a panel of selected metabo-
lites significantly improved the performance of the model of
classical risk factors and a bone resorption marker at distin-
guishing low BMD group from normal BMD group.

Implications of all the available evidence

Our results, taken together with prior evidence, highlighted
that circulating metabolites may provide novel biomarkers for
the early diagnosis of low BMD.
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1. Introduction

Osteoporosis, a chronic condition characterized by a decrease in
bone mineral density (BMD), structural deterioration of microarchi-
tecture, and skeletal fragility,[1] is emerging as a global epidemic as
people have a longer lifespan. More than 200 million people globally
are suffering from osteoporosis.[2] Low BMD was a strong risk factor
for fracture, and each lower standard deviation (SD) in BMD was
associated with a doubled risk in fracture.[3] Among 1 in 3 women
and 1 in 5 men who are over 50 years of age will experience osteopo-
rotic fractures,[2] which usually results in a dependent living situa-
tion and premature death.[3] Low BMD and osteoporosis are silence,
and the benefit-to-risk ratio for treatment is highly promising.[3]
Therefore, BMD measurement was recommended at or around
65 years of age.[3] The current gold standard for BMD measure is the
dual-energy X-ray absorptiometry (DXA) scan. However, a more
comprehensive assessment of clinical risk factors and novel bio-
markers is in need to evaluate risk and early prevention.[3]

Circulating biomarkers are clinically used to reflect different pro-
cesses of bone metabolism. For example, C-terminal telopeptide of
type I collagen (CTX-I) indicates the resorption of old bone, and N-
terminal propeptide of type I procollagen (PINP) indicates the forma-
tion of new bone,[4] and they could be used to monitor bone
response to therapy.[5,6] However, these available biomarkers are
unreliable and do not improve prediction of bone loss or fracture,
and thus are not recommended for diagnosis.[6] The systematic met-
abolic state of the human body is a determinant of skeletal health,
and the identification of novel circulating biomarkers is urgently
needed for early diagnosis of osteoporosis and prevention of osteopo-
rotic fractures. Metabolomics has provided the potential to discover
novel biomarkers for common metabolic diseases, e.g., diabetes and
cardiovascular disease.[7,8] Nevertheless, large-scale metabolomics
studies are highly needed to provide reliable and predictive bio-
markers of osteoporosis.

Here, by utilizing a comprehensive liquid chromatography-mass
spectrometry (LC-MS) based metabolomics profiling approach, we
aimed to examine the association of plasma metabolites with BMD
and osteoporosis among 701 Chinese participants and replicate our
findings in an independent group of 278 participants. Furthermore,
we assessed the predictive ability of the selected metabolites for
bone loss and examined the extent of enhanced predictive ability
from these metabolites beyond conventional clinical factors.

2. Methods

2.1. Study design and population

FromMarch 2015 to November 2018, participants who visited our
four clinical centres in southeast China were invited to participate in
our study. The exclusion criteria included: 1) participants younger
than 18 years; 2) those had diseases affecting bone metabolism or
calcium absorption, such as fractures, endocrine system disease
including diabetes and thyroid disorders, haematological diseases
including leukaemia and myeloma, systemic lupus erythematosus, or
renal disease; 3) those who received medications or therapy that
may affect BMD, such as glucocorticoids and immunosuppressive
agents, within three months before the study. In total, 979 partici-
pants who had spine or hip BMD measurements by DXA scans and
donated blood samples within two days of DXA scans were included.
In our analysis, these participants were divided according to their
recruitment dates into a discovery set (n=701, those recruited during
March 2015 and October 2015 from all the four centres) and a repli-
cation set (n=278, those recruited during June 2018 and November
2018 and all of them were from Hangzhou centre only) (Fig. 1).

The demographic data were collected by trained nurses. Body-
weight and height were measured with light clothes. Body mass
index (BMI) was calculated as weight (in kilograms) divided by
height (in meters) squared. The BMD at the lumbar spine (L1 to L4) or
hip regions were measured by DXA scans (GE Lunar, Madison, WI,
USA) at each centre. All BMD measurements were performed by
trained technicians using a standardized protocol. Daily quality-con-
trol scans were performed using the spine phantom. The T-scores for
BMD at the spine and hip were calculated by comparing with the
BMD of healthy young people of the same sex. Based onWorld Health
Organization criteria on osteoporosis,[9] a T-score of -1 and above is
defined as normal BMD, a T-score of -2.5 to -1 indicates osteopenia,
and a T-score of -2.5 and below indicates osteoporosis.

2.2. Ethics statement

All participants provided informed consent, and the study was
approved by the ethics committee at each centre (the Taizhou Hospi-
tal Affiliated to Wenzhou Medical University, the Second Affiliated
Hospital of Shantou University Medical College, the Sir Run Run
Shaw Hospital, and the Shaoxing People's Hospital; Reference num-
ber, 2017053).

2.3. Metabolomic profiling

Overnight fasting blood samples were collected into a vacuum
tube and kept in a portable Styrofoam box with ice packs (0�4 °C)
and were centrifugated within two hours. Immediately after centrifu-
gation, plasma samples were stored at �80 °C. Untargeted metabolite
detection and quantification were conducted by an LC-MS-based
metabolomics platform in both the discovery and replication sets
separately. All plasma samples, including the quality control samples,
were mixed with 200 ml prepared internal standard methanol solu-
tion containing 4 mg/ml L-Phenylalanine (D8) (Cambridge Isotope
Laboratories) by vortexing for 1 min. The coefficients of variation of
the internal standard in all quality control samples were less than
0.2. Then the mixtures were under 4 °C for 5 min and centrifuged at
13,000 rpm for 15 min at 4 °C to precipitate the protein and extract
the metabolites.

Plasma samples and QC samples were analyzed on Agilent 1290
Infinity IIUHPLC system and Agilent 6545 UHD and Accurate-Mass Q-
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Fig. 1. Study design.
FDR, false discovery rate.
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TOF mass spectrometer with a Waters XBridge BEH Amide Column
(2.5 mm, 100 £ 2.1 mm). A 13 min gradient using mobile phase A
(0.1% Formic acid and 10mM Ammonium formate in water) and
mobile phase B (0.1% Formic acid in Acetonitrile) were applied. HPLC
grade of acetonitrile and formic acid were obtained from Merck, and
the ammonium formate was obtained from Sigma-Aldrich. An opti-
mized elution gradient was as follows: 0�1 min, 95%B; 1�3 min,
95%-85%B; 3�13 min, 85%-60%B. The flow rate was set at 0.4 ml/min;
the column temperature was set at 25 °C; the injection volume was
2 ml. The system was immediately returned to initial conditions
within 5 min for column re-equilibration after a run. The mass data
were acquired both in ESI+ and ESI- mode using a mass range from
50 to 1100. In ESI+ mode, the Capillary voltage was 4 KV, with Nozzle
Voltage of 250 V, Gas Temp of 325 °C, Fragmentor Voltage of 120 V.
In ESI- mode, the Capillary voltage was 3.5 KV, with Nozzle Voltage of
1500 V, Gas Temp of 325 °C, Fragmentor Voltage of 120 V. Reference
ions, used to monitor the accuracy of the mass axis, were 121.0507,
922.0098 in ESI+ mode and 112.9856, 1033.9881in ESI- mode. In the
sequence, QC samples and blank samples were analyzed at intervals
of 10 study samples.

The Agilent Masshunter Qualitative Analysis B.07.00 was used to
convert the raw mass data to the mzData format. The extraction,
alignment, and integration of the peaks were performed using the
open-source R software package XCMS. The nearest QC normalization
was performed after the IS normalization. The IS normalized values
were calculated using the ratio of all the features’ values in plasma
samples and QC samples over the IS quasi-molecular ion ([M+H] + in
ESI+ mode and [M-H] - in ESI- mode) multiplied by the mean values
of IS ion in all plasma samples and QC samples. Then the standardized
values were calculated using the ratio of the IS normalized values in
each plasma sample over the value of the same feature in the nearest
QC sample multiplied by the median value measured across the QC
samples.

We identified the features based on matching the accurate m/z
value obtained from the metabolomics analysis and the MS/MS frag-
ments obtained from the QC sample with those of entries in the
Metlin and HMDB database. After combining the ESI+ and ESI- modes,
some metabolites will have multiple adductions. The value of ion
with the lowest variance for the QC samples was preferred as the
value of the metabolite. Eventually, 403 metabolites were detected
with known identification, including 61 in amino acids pathway, 17
carbohydrates, 4 cofactors and vitamins, 28 in energy metabolism
pathway, 231 lipids, 12 nucleotides, 21 peptides, and 29 others.
Plasma CTX-I levels were measured using an ELISA kit (Serum Cross-
Laps� (CTX-I), IDS, Shanghai, China).

2.4. Statistical analysis

In the analysis of clinical characteristics, participants were divided
into three groups, i.e., the reference group (both the spine and hip T-
scores were over -1), osteoporosis group (the T-score for spine or hip
was below -2.5), and the others as osteopenia group. Clinical charac-
teristics across groups were compared using analysis of variance for
continuous variables and chi-square tests for categorical variables.

Metabolites with >20% of missing values (n=118) or a large coeffi-
cient of variation (>2.5, n=20) were removed before analysis, and for
the remaining metabolites, their missing values were imputed with
the half detectable minimum value of the metabolite in the study
populations. A rank-based inverse normal transformation was
applied to the metabolomics data in order to approximate the normal
distribution of metabolite levels for the remaining 265 metabolites in
the discovery and replication set, respectively.[10] In clinical practice,
the BMD status may have more important and straightforward impli-
cations than a quantitative trait. For the primary analyses, we com-
bined participants from the osteopenia and the osteoporosis groups
as the low BMD group and compared the metabolite levels in the low
BMD group to that in the reference group. Multivariable logistic
regression models with adjustment of age, sex, BMI, and centres
were used to examine the relationship of each metabolite with BMD
status in the discovery and replication sets, separately. The Benja-
mini-Hochberg false discovery rate (FDR) method was used for multi-
ple testing adjustment in the discovery set accounting for 265 named
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metabolites. For the successfully replicated metabolites, their levels
were further analyzed as quartiles (using cut-points defined in the
reference group). The odds ratio (OR) and 95% confidence intervals
(CIs) were calculated separately in each set and then were pooled by
using an inverse variance-weighted meta-analysis with the fixed-
effects model. To test the linear trend across quartiles, metabolites
were analyzed as a continuous variable. In order to assess the com-
posite association of these metabolites, a protective metabolite score
of low BMD was calculated as the weighted sum of the levels of these
metabolites. The weight for each metabolite was the regression coef-
ficient for a 1-SD increment in the plasma levels of metabolite esti-
mated from the multivariable logistic regression model.
Multivariable linear regression models with adjustment of the
above-mentioned factors were used to examine the relationship of
selected metabolites with the quantitative spine BMD in the discov-
ery and replication sets. A sensitivity analysis was conducted by fur-
ther adjusting for menopausal status, a risk factor of osteoporosis in
elderly women, to evaluate whether it affected the association of the
metabolites with low BMD.

Multivariate data analysis was performed by using SIMCA-P+
(v12.0, Umetrics, Sweden). Partial least squared discriminant analysis
(PLS-DA), a commonly-used multivariate analysis method in metabo-
lomics studies,[11,12] was conducted with 7-fold cross-validation
(CV) and Pareto variance scaling to assess the ability of the global
metabolites in classifying the BMD status. The statistical significance
of the PLS-DA model was tested with CV-ANOVA (P < 0.05).[13]

We assessed the ability of the global metabolomic profile for clas-
sification of low BMD group from the reference group using logistic
regression with elastic net penalty implemented in the R package
“glmnet” (a = 0.5)[14]. This analysis was limited in the discovery set,
because the metabolites from discovery set and replication set were
profiled in separate batches and there is a large batch effect of untar-
geted metabolome profiling.[15] As a combination of the Lasso and
Ridge penalties, the elastic regression model is a regularized regres-
sion to avoid overfitting and improve predictive performance. 10-
fold cross-validation (nfolds=10 in cv.glmnet function of the
“glmnet”) was performed to identify the optimal value of the tuning
parameter (λ), which yielded the minimum mean-squared error
(minMSE).[14] The prediction accuracy based on lambda.1se (more
conservative) and lambda.min (optimal output from the model)
parameters were both assessed. Because the results using these two
parameters were similar, only the results for lambda.min were pre-
sented. The predictive model scores were calculated as the weighted
sum of all covariates with weights equal to the regression coefficients
from the predictive models. The OR of low BMD per 1-SD increase of
predictive model score were calculated by logistic regression models.
The OR attributed to metabolites selected by the model was calcu-
lated by taking the metabolite score as the weighted sum of selected
Table 1
Baseline characteristics of study participants

Discovery set (n=701)
Normal BMD
(n=413)

Osteopenia
(n=205)

Osteop
(n=83

Age, years 52.9 § 12.0 59.0 § 10.8 63.0 §
Women, n (%) 193 (46.7) 117 (57.1) 59 (71
Menopause, n (%) 88 (45.6) 103 (88.0) 59 (10
BMI, kg/m2 24.7 § 3.2 24.2 § 3.3 22.8 §
CTX-I, ng/ml 0.3 § 0.2 0.3 § 0.3 0.4 § 0
Spine BMD, g/cm2 1.2 § 0.1 0.9 § 0.1 0.8 § 0
Hip BMD, g/cm2 1.1 § 0.1 1.1 § 0.2 1.1 § 0

Values are means § SDs unless otherwise indicated. Menopaus
set and 1 in the replication set. CTX-I missing in 46 participants
in the discovery set. Hip BMDmissing in 606 participants in the
P values were from analysis of variance for continuous variable
except for hip BMDwere <0.05.
BMI, body mass index; CTX-I, C-terminal telopeptide of type I co
metabolite, with weights equal to the coefficients from the model,
and then estimate the OR due to the metabolite score. 10-fold cross-
validation was used to obtain an unbiased estimate of prediction
accuracy. The area under the receiver operator characteristic (ROC)
curves (AUCs) was computed using the predicted probability and the
true status of low BMD for each sample. The DeLong test was used to
compare the AUCs of different models.[16]

Because sex hormones exert an important influence on bone
metabolism,[17] a stratified analysis by sex was further performed as
a secondary analysis. A two-sided P < 0.05 was considered as statisti-
cal significance unless otherwise indicated. All the statistical analyses
except for the PLS-DA were performed using R version 3.5.1 (https://
www.r-project.org/).

2.5. Role of funding source

None of the funders has played any role in data collection, analy-
sis, interpretation, or writing the report.

3. Results

3.1. Characteristics of the study population

Table 1 shows the characteristics of the study population across
groups of normal BMD, osteopenia, and osteoporosis in the discovery
and replication sets. In both sets, the participants in the osteoporosis
and osteopenia groups were more likely to be older, women, meno-
pausal, and lower BMI and higher spine BMD. The plasma CTX-I levels
were higher in the osteopenia and osteoporosis groups compared to
those in the normal BMD group in the discovery set.

3.2. Metabolites associated with low BMD

Through the analysis of individual metabolites as the continuous
variables, 47 metabolites (13 amino acids, 2 carboxylic acids, 14 glyc-
erophospholipids, 3 purines and purine derivatives, 7 sphingolipids,
and 8 others) were significantly associated with low BMD status
(FDR-adjusted P < 0.05 [multivariable logistic regression model]) in
the discovery set and associated with low BMD in the same direction
in the replication set (Fig. 2 and Supplementary Table 1). Among
these metabolites, the levels of 5 metabolites were associated with a
higher prevalence of low BMD status (OR per 1-SD ranged from 1.26
to 1.34), while most metabolites were associated with a decreased
prevalence of low BMD status (ORs per 1-SD ranged from 0.61 to
0.80). In addition, six of these metabolites (i.e., inosine, hypoxanthine,
PC (O-18:0/22:6), SM (d18:1/21:0), isoleucyl-proline, and PC (16:0/
18:3)) retained their significant associations with low BMD in the
replication set (Table 2). Among these six metabolites, the Spearman
Replication set (n=278)
orosis
)

Normal BMD
(n=103)

Osteopenia
(n=68)

Osteoporosis
(n=107)

9.1 62.6 § 12.7 66.5 § 13.9 70.3 § 9.5
.1) 45 (43.7) 53 (77.9) 92 (86.0)
0.0) 32 (71.1) 49 (92.5) 90 (97.8)
2.9 24.3 § 3.7 23.2 § 3.2 22.4 § 3.7
.3 - - -
.1 1.2 § 0.2 0.9 § 0.1 0.7 § 0.1
.1 - - -

e information missing in 24 participants in the discovery
in the discovery set. Spine BMDmissing in 72 participants
discovery set.
s and chi-square test for categorical variables. All P values

llagen; BMD, bone mineral density.

https://www.r-project.org/
https://www.r-project.org/


Fig. 2. Metabolites demonstrating significant association with low BMD in the discovery set and maintaining the same change trend in the replication set. ORs (95% CIs) per 1-SD
were obtained from the logistic regressions after adjusted for age, sex, and body mass index, further adjusted for centres in the discovery set. Metabolites in red indicate positive
associations with low BMD, while in blue indicate inverse associations.

CMPF, 3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid; BMD, bone mineral density; OR, odds ratio; and CI, confidence interval.
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correlation coefficients of their levels ranged from -0.26 (between PC
(O-18:0/22:6) and PC (16:0/18:3)) to 0.81 (between hypoxanthine and
inosine), and none was in a close correlation with CTX-I (Fig. 3). PC
(16:0/18:3) was associated with a higher prevalence for low BMD (OR
[95% confidence interval (CI)]: 1.34 [1.09�1.66] in the discovery set and
1.36 [1.01�1.85] in the replication set). The other five metabolites were
associated with a lower prevalence for low BMD (OR ranging from 0.61
to 0.74 per SD). Participants in the top quartile of plasma PC (16:0/18:3)
levels had a more than doubled odds of low BMD compared to those in
Table 2
The associations between selected metabolites and low BMD in discovery and replication

Inosine Hypoxanthine PC (O-18:0/22:6)

Discovery set (n=701)
Per 1-SD Increment 0.61 (0.50-0.76) 0.61 (0.49-0.76) 0.66 (0.54-0.79)
First quartile 1.00 (referent) 1.00 (referent) 1.00 (referent)
Second quartile 1.13 (0.71-1.81) 0.67 (0.42-1.06) 0.70 (0.44-1.11)
Third quartile 0.72 (0.44-1.18) 0.57 (0.34-0.92) 0.33 (0.19-0.54)
Fourth quartile 0.39 (0.22-0.70) 0.36 (0.20-0.64) 0.37 (0.22-0.62)
P for trend 5.98 £ 10�6 5.96 £ 10�6 9.25 £ 10�6

Replication set (n=278)
Per 1-SD Increment 0.73 (0.54-0.98) 0.74 (0.55-0.98) 0.69 (0.50-0.92)
First quartile 1.00 (referent) 1.00 (referent) 1.00 (referent)
Second quartile 0.54 (0.23-1.24) 0.57 (0.25-1.31) 0.46 (0.21-1.00)
Third quartile 1.03 (0.47-2.24) 1.11 (0.51-2.42) 0.39 (0.17-0.87)
Fourth quartile 0.38 (0.17-0.85) 0.38 (0.17-0.84) 0.33 (0.14-0.77)
P for trend 0.04 0.04 0.02
Combined set (meta)
Per 1-SD Increment 0.65 (0.55-0.77) 0.65 (0.55-0.78) 0.66 (0.57-0.78)
First quartile 1.00 (referent) 1.00 (referent) 1.00 (referent)
Second quartile 0.95 (0.63-1.43) 0.65 (0.43-0.97) 0.63 (0.42-0.94)
Third quartile 0.80 (0.52-1.21) 0.69 (0.45-1.04) 0.34 (0.22-0.53)
Fourth quartile 0.39 (0.24-0.62) 0.37 (0.23-0.59) 0.36 (0.23-0.56)
P for trend 1.00 £ 10�6 1.07 £ 10�6 4.44 £ 10�7

Inverse normal transformation was applied to raw values of metabolites. The metabolite
are odds ratio (95% confidence intervals) for low BMD from logistic regressions. All mod
the discovery set. BMD, bone mineral density; SD, standard deviation.
the bottom quartile in both the discovery (OR: 2.57, 95% CI: 1.42�4.70)
and replication (OR: 2.30, 95% CI: 0.98�5.47) sets. While for the rest five
metabolites, the participants in the top quartile of individual plasma
metabolites had 47% to 67% reduced odds of low BMD, and the largest
effect size was seen for PC (O-18:0/22:6). In the meta-analysis combin-
ing the discovery and replication sets together, the adjusted OR (95%CIs)
of low BMD associated with a 1-SD increase of the metabolites were for
inosine 0.65 (0.55�0.77), for hypoxanthine 0.65 (0.55�0.78), for PC (O-
18:0/22:6) 0.66 (0.57�0.78), for SM (d18:1/21:0) 0.72 (0.61�0.84), for
sets

SM (d18:1/21:0) Isoleucyl-proline PC (16:0/18:3) Metabolite score

0.72 (0.59-0.87) 0.73 (0.57-0.92) 1.34 (1.09-1.66) 0.57 (0.49-0.67)
1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent)
0.50 (0.30-0.82) 1.47 (0.91-2.37) 1.38 (0.86-2.24) 0.36 (0.22-0.59)
0.53 (0.32-0.87) 0.75 (0.45-1.27) 1.24 (0.72-2.14) 0.46 (0.28-0.76)
0.42 (0.25-0.70) 0.46 (0.23-0.90) 2.57 (1.42-4.70) 0.16 (0.09-0.30)
7.95 £ 10�4 0.007 0.007 2.89 £ 10�11

0.72 (0.53-0.96) 0.74 (0.55-0.99) 1.36 (1.01-1.85) 0.63 (0.49-0.80)
1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent)
0.46 (0.20-1.03) 1.08 (0.52-2.25) 1.92 (0.83-4.49) 0.99 (0.45-2.20)
0.68 (0.30-1.53) 0.50 (0.21-1.17) 1.86 (0.78-4.48) 0.62 (0.28-1.36)
0.53 (0.24-1.14) 0.49 (0.21-1.12) 2.30 (0.98-5.47) 0.30 (0.13-0.69)
0.03 0.05 0.04 1.71 £ 10�4

0.72 (0.61-0.84) 0.73 (0.61-0.88) 1.35 (1.13-1.60) 0.59 (0.52-0.68)
1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent)
0.49 (0.32-0.74) 1.34 (0.90-2.00) 1.50 (0.99-2.28) 0.48 (0.31-0.73)
0.57 (0.37-0.87) 0.67 (0.43-1.05) 1.39 (0.88-2.20) 0.51 (0.33-0.77)
0.45 (0.29-0.69) 0.47 (0.28-0.80) 2.48 (1.52-4.04) 0.20 (0.12-0.33)
6.14 £ 10�5 8.31 £ 10�4 7.66 £ 10�4 2.69 £ 10�14

score was calculated by a weighted sum of concentrations of 5 metabolites. Values
els were adjusted for age, sex, and body mass index, further adjusted for centres in



Fig. 3. Spearman correlation heatmap of six selected metabolites, L1L4 BMD, and CTX-I in the discovery set.
CTX-I, C-terminal telopeptide of type I collagen.
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isoleucyl-proline 0.73 (0.61�0.88), and for PC (16:0/18:3) 1.35
(1.13�1.60) (Table 2).

We also examined the association of the 6 successfully replicated
metabolites with the quantitative spine BMD among the subgroup of
participants with available data. The fully-adjusted associations of
quantitative spine BMD in the combined samples were consistent
with our main results of BMD status, although in separate set a few
metabolites failed to reach statistical significance which was partially
due to a smaller sample size (Supplementary Table 2). A sensitivity
analysis further adjusted for menopausal status showed that the
associations between selected 6 metabolites and low BMD did not
change materially (Supplementary Table 3).

The metabolite score calculated from the six selected metabolites
was significantly associated with decreased odds of low BMD. In the
meta-analysis, individuals in the top quartile of the metabolite score
Fig. 4. Partial least square discriminant analysis model to classify the low and normal BMD g
P = 1.68 £ 10�32 estimated from CV-ANOVA.
BMD, bone mineral density.
had 80% reduced odds of low BMD compared with those in the bot-
tom quartile (OR, 0.20, 95%CI: 0.12�0.33; P for trend <0.001 [multi-
variable logistic regression model]), and the OR of low BMD
associated with a 1-SD increment of the metabolite score was 0.59
(95%CI: 0.52�0.68) (Table 2). Among men, DG (31:2) was associated
with decreased odds of low BMD, the ORs (95%CIs) were 0.68
(0.49�0.92) and 0.51 (0.28�0.87) in discovery and replication sets,
respectively. While among women, SM (d18:1/24:1) was associated
with decreased odds of low BMD with ORs (95%CIs) 0.71 (0.53�0.95)
and 0.66 (0.44�0.98) in discovery and replication sets, respectively.

3.3. Performance of metabolites for low BMD classification

The metabolic profiles of the low BMD were significantly different
from those of normal BMD (Fig. 4). To assess the performance of the
roups.



Fig. 5. ROC curves for the distinguish of low BMD from normal BMD.
Model 1 was the basic model including age, sex, and BMI, AUC = 0.693 (95% CI: 0.651�0.734); model 2 including age, sex, BMI, and CTX-I, AUC = 0.698 (95% CI: 0.657�0.739);

model 3 including age, sex, BMI, and selected metabolites, AUC = 0.776 (95% CI: 0.741�0.812); and model 4 including age, sex, BMI, CTX-I, and selected metabolites, AUC = 0.782
(95% CI: 0.748�0.817).

BMD, bone mineral density; BMI, body mass index; CTX-I, C-terminal telopeptide of type I collagen; ROC, receiver operating curve; AUC, area under the receiver operating
curve; and CI, confidence interval.
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selected metabolites from the elastic model for low BMD status, the
AUCs were calculated in 4 hierarchical models containing the tradi-
tional risk factors (age, sex, and BMI), one clinical biomarker, i.e.,
CTX-I, and those selected metabolites. The coefficients of full models
after running the elastic net model 10 times were shown in Supple-
mentary Table 4. Model 1, i.e., the basic model, included age, sex,
and BMI, with an AUC1 of 0.693 (95% CI: 0.651�0.734). CTX-I did not
improve the predictability (AUC2, 0.698; 95% CI: 0.657�0.739 in
model 2, and P=0.43 comparing AUC2 with AUC1 [DeLong test]).
Introduction of selected metabolites to both model 1 (model 3: AUC3,
0.776; 95% CI: 0.741�0.812; P=0.003 comparing AUC3 with AUC1
[DeLong test]) and to model 2 (model 4: AUC4, 0.782; 95% CI:
0.748�0.817; P=0.002 comparing AUC4 with AUC2 [DeLong test]) sig-
nificantly improved the predictability. CTX-I alone did not improve
the predictability in the model consisting of traditional risk factors
and selected metabolites (P=0.18 comparing AUC4 with AUC3
[DeLong test]) (Fig. 5). We also calculated the ORs of low BMD per 1-
SD increase of predictive model score. The ORs were 1.17 (95% CI:
1.01�1.38) for the traditional model (aforementioned model 2: tradi-
tional risk factors + CTX-I), and 5.94 (95% CI: 4.54�7.95) for the full
model (aforementioned model 4: traditional risk factors + CTX-
I + selected metabolites), with OR=4.45 (95% CI: 3.50�5.77) attributed
to the selected metabolites (Table 3).
Table 3
Selected models and odds of low BMD

Variables in model OR (95% CI)

Traditional model Age, sex, BMI, centres, and CTX-I 1.17 (1.01-1
Full model Age, sex, BMI, centres, CTX-I, and selected metabolites 5.94 (4.54-7

metabolite

The predictive model scores were calculated as the weighted sum of all covariates with weig
regression model or the elastic net regression models.
BMD, bone mineral density; BMI, body mass index; CTX-I, C-terminal telopeptide of type I co
4. Discussion

Using a mass spectrometry-based metabolite profiling platform,
we identified and validated a panel of six metabolites (i.e., inosine,
hypoxanthine, PC (O-18:0/22:6), SM (d18:1/21:0), isoleucyl-proline,
and PC (16:0/18:3)) associated with the BMD status in two indepen-
dent Chinese populations. The composite score of these six metabo-
lites was associated with 80% lower odds of low BMD status across
populations with extreme score quartiles. Furthermore, selected
metabolites significantly improved the prediction performance for
low BMD status beyond traditional risk factors and clinical bio-
markers such as CTX-I.

In our study, we identified and validated the associations of 6
potential metabolite biomarkers from the globally profiled circulating
metabolites with BMD status, in a total of 979 Chinese participants.
Though a few recent studies have used metabolomics profiling as a
discovery tool for osteoporosis biomarkers, most used a relatively
less-resolution technique or in a smaller population.[18�23] You and
colleagues measured plasma metabolome using proton nuclear mag-
netic resonance spectroscopy (1H NMR) among 601 healthy Taiwa-
nese women, and found circulating metabolome data could
differentiate the BMD status.[21] Miyamoto and colleagues detected
57 serum metabolites utilizing capillary electrophoresis-MS among
per 1-SD increase of predictive model score P

.38) 0.04

.95), among which 4.45 (3.50-5.77) was attributed to the selected
s

<0.001

hts equal to the regression coefficients from the predictive models built by the logistic

llagen; OR, odds ratio; CI, confidence interval; and SD, standard deviation.
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57 postmenopausal women, and found that the levels of hydroxy-
proline, Gly-Gly, and cystine were associated with BMD status.
[19] Most recently, the TwinsUK study found 15 metabolites
were associated with BMD in a large population primarily com-
prised of women, and replicated four causally associated metabo-
lites in a Chinese Hong Kong population.[23] Of note, the
differences in metabolomics platforms (LC-MS vs. NMR vs. capil-
lary electrophoresis-MS), statistical analyses, and differences in
lifestyle factors and genetic architecture could also account for
the discrepancy between our study and the others, at least to a
certain degree.

To the best of our knowledge, the current study is the first
showing that circulating global metabolomic profiling could
effectively improve the classification performance of BMD status
beyond a clinical risk factor as well as an established biomarker.
The panel of selected metabolites from elastic net regression
model, which provided good performance in both predictive
accuracy and sparsity for the high-dimensional datasets,[24] sig-
nificantly improved the classification performance of BMD status
in our population, while the clinical bone turnover biomarker,
i.e., CTX-I, failed the mission. In addition, the odds ratio of low
BMD yield from the predictive model was largely attributed to
the selected metabolites. Our findings are in line with those
from a recent study, which indicated selected metabolites
improved the performance of a classification model using bone
turnover markers for osteoporosis,[20] though the model missed
important demographic factors for osteoporosis such as age and
weight.[25] Our findings provided the potential that a simple
blood test of circulating metabolites may provide biomarker pan-
els for mass screening in a clinic for easy detection of low BMD,
independent of radiology resources.

Among the potential metabolite biomarkers from our study,
both hypoxanthine and inosine are metabolites in the purine
metabolic pathway and precursors of uric acid.[26] Their inverse
associations with low BMD status in our populations are in line
with the association of higher serum uric acid levels with lower
risks of osteoporosis and fractures in previous studies.[27-31] In
our discovery set, plasma uric acid levels were inversely associ-
ated with low BMD status (OR per SD: 0.81, 95% CI: 0.66�0.98),
although not significant in the replication population (OR per
SD: 0.92, 95% CI: 0.68�1.24). Uric acids are antioxidants capable
of scavenging superoxide, and they block the formation of perox-
ynitrite,[32] which may help to prevent osteoporosis. However,
whether the associations of uric acids with BMD are causal or
independent of body fat is unclear yet.[27,33-35] To our best
knowledge, our study is the first to report the associations of
uric acid precursors, hypoxanthine, and inosine with BMD status,
[18-23] highlighting the importance of the purine metabolic
pathway in bone metabolism.

Both PC (16:0/18:3) and PC (O-18:0/22:6) are phosphatidyl-
cholines, and they were associated with BMD in opposite direc-
tions. Similar to our results, a previous study also found
phosphatidylcholines were associated with BMD in various direc-
tions among Chinese postmenopausal women.[20] PC (16:0/18:3)
consists of one chain of palmitic acid which induced osteoclasto-
genesis[36] and impaired osteoblast activity,[37] and another
chain of g-linolenic acid, which is related to higher odds of low
BMD status.[22] In our study, palmitic acid levels were associ-
ated with increased odds of low BMD in women, but not in
men. Recent studies suggested linoleic acid was correlated with
lower BMD levels[22,38] and associated with increased odds of
hip fracture.[38] PC (O-18:0/22:6) consists of one chain of stearyl
alcohol and one chain of an omega-3 polyunsaturated fatty acid,
i.e., docosahexaenoic acid (DHA), which inhibited osteoclastogen-
esis from in vitro studies.[39,40] Observational evidence sug-
gested that both higher consumption levels and blood levels of
DHA were associated with BMD levels in women and men,
[41,42] however interventional studies did not provide positive
evidence.[43]

SM (d18:1/21:0) is a type of sphingolipids which are com-
posing biological membranes. Sphingolipids play a role in signal
transduction and may regulate bone remodelling.[44] Our find-
ing of SM (d18:1/21:0) was consistent with a recent smaller
study, demonstrating that two sphingolipids were associated
with BMD status in men only.[20] Of note, in our sex-specific
analysis, another sphingolipid SM (d18:1/24:1) was suggestively
associated with BMD status in our female participants only
(P=0.03 and 0.04 in discovery and replication set, respectively).
Circulating isoleucyl-proline may exert antioxidant effects,[45]
and it may explain its association with BMD in our study to
some extent. Lactic acid, which was associated with BMD in
our discovery set only, has been previously reported to be asso-
ciated with a decreased risk of low BMD in Taiwanese women.
[21] Lactate may regulate the collagen biosynthesis in osteogen-
esis and thus increase bone formation.[21,46] Besides, threonine
levels were inversely associated with low BMD in our discovery
set, and this is in line with the findings from two recent
metabolomic studies in U.S. Caucasian and Chinese.[18,20]

Gender disparities exist in osteoporosis and bone loss. Women
tend to have a younger onset of bone loss and lose bone at a faster
rate compared to men.[47] Deficiency of sex hormones, especially
estrogen, plays an important role in the bone loss for both genders,
and compared to men its influence is more pronounced for women at
younger ages.[47] In the current study, the level of DG (31:2) was
negatively associated with low BMD in men but not in women, and
the level of SM (d18:1/24:1) was associated with low BMD in women
but not in men. DG (31:2), a member of the family of diacylglycerols,
and its beneficial effect on bone mass might be from the increased
differentiation of bone marrow cells into an osteogenic instead of adi-
pogenic lineage.[48]

Several limitations in our study warrant mention. First, we
did not collect the dietary habits, nutritional supplements, and
other lifestyle information of the participants, which would influ-
ence the circulating metabolites as well as the BMD level. Sec-
ond, with a cross-sectional design, our study could not infer the
causal relationship between the plasma metabolites and BMD.
Third, as the untargeted metabolomic profiling was conducted in
the discovery and replication sets separately without duplicate
reference samples, it was challenging to combine the two sets or
validate the prediction model from the discovery set in the repli-
cation set.

In conclusion, our findings demonstrated that six plasma metabo-
lites were associated with BMD status, providing clues to relevant
mechanisms in osteoporosis. In addition, a panel of plasma metabo-
lites provided the potential for early diagnosis of low BMD beyond
the clinical index in the current practice. Our study highlights the
value of metabolomic profiling in the biomarker discovery for osteo-
porosis prevention and diagnosis.
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[2] S€ozen T, €Ozışık L, Başaran N. An overview and management of osteoporosis. Eu J
Rheumatol 2017;4(1):46–56.

[3] Black DM, Rosen CJ. Postmenopausal osteoporosis.. New England J Med 2016;374
(3):254–62.

[4] Garnero P. The Utility of biomarkers in osteoporosis management. Mol Diagn Ther
2017;21(4):401–18.

[5] Szulc P, Naylor K, Hoyle NR, Eastell R, Leary ET, National Bone Health Alliance
Bone Turnover Marker P. Use of CTX-I and PINP as bone turnover markers:
national bone health alliance recommendations to standardize sample handling
and patient preparation to reduce pre-analytical variability. Osteoporos Int
2017;28(9):2541–56.

[6] Eastell R, Szulc P. Use of bone turnover markers in postmenopausal osteoporosis.
The lancet Diabetes & endocrinology 2017;5(11):908–23.

[7] Fan Y, Li Y, Chen Y, Zhao YJ, Liu LW, Li J, et al. Comprehensive metabolomic char-
acterization of coronary artery diseases. J Am Coll Cardiol 2016;68(12):1281–93.

[8] Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite pro-
files and the risk of developing diabetes. Nature Med 2011;17(4):448–53.

[9] Group WS. Assessment of fracture risk and its application to screening for post-
menopausal osteoporosis. Report of a WHO study group.. World Health Organ
Tech Rep Ser. 1994;843:1–129.

[10] Yang J, Loos RJF, Powell JE, Medland SE, Speliotes EK, Chasman DI, et al. FTO geno-
type is associated with phenotypic variability of body mass index. Nature
2012;490(7419):267.

[11] Palermo G, Piraino P, Zucht H-D. Performance of PLS regression coefficients in
selecting variables for each response of a multivariate PLS for omics-type data.
Adv Appl Bioinform Chem 2009;2:57.

[12] Gromski PS, Muhamadali H, Ellis DI, Xu Y, Correa E, Turner ML, et al. A tutorial
review: Metabolomics and partial least squares-discriminant analysis�a marriage
of convenience or a shotgun wedding. Anal Chimica Acta 2015;879:10–23.

[13] Eriksson L, Trygg J, Wold S. CV�ANOVA for significance testing of PLS and OPLS�

models. J Chemometrics 2008;22(11�12):594–600.
[14] Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear

models via coordinate descent. J Stat Soft 2010;33(1):1.
[15] Goh WWB, Wang W,Wong L. Why batch effects matter in omics data, and how to

avoid them. Trends Biotechnol 2017;35(6):498–507.
[16] DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or
more correlated receiver operating characteristic curves: a nonparametric
approach. Biometrics 1988:837–45.

[17] Almeida M, Laurent MR, Dubois V, Claessens F, O'Brien CA, Bouillon R, et al. Estro-
gens and androgens in skeletal physiology and pathophysiology. Physiological
reviews 2017;97(1):135–87.

[18] Zhao Q, Shen H, Su KJ, Zhang JG, Tian Q, Zhao LJ, et al. Metabolomic profiles associ-
ated with bone mineral density in US caucasian women. Nutr Metab (Lond)
2018;15(1):57.

[19] Miyamoto T, Hirayama A, Sato Y, Koboyashi T, Katsuyama E, Kanagawa H, et al. A
serum metabolomics-based profile in low bone mineral density postmenopausal
women. Bone 2017;95:1–4.

[20] Wang J, Yan D, Zhao A, Hou X, Zheng X, Chen P, et al. Discovery of potential bio-
markers for osteoporosis using LC-MS/MS metabolomic methods. Osteoporosis
Int 2019:1–9.

[21] You YS, Lin CY, Liang HJ, Lee SH, Tsai KS, Chiou JM, et al. Association between the
metabolome and low bone mineral density in Taiwanese women determined by
1H NMR spectroscopy. J Bone Mineral Res 2014;29(1):212–22.

[22] Qi HH, Bao J, An GH, Ouyang G, Zhang PL, Wang C, et al. Association between the
metabolome and bone mineral density in pre- and post-menopausal Chinese
women using GC-MS. Molecular Biosyst 2016;12(7):2265–75.

[23] Moayyeri A, Cheung CL, Tan KC, Morris JA, Cerani A, Mohney RP, et al. Metabolo-
mic pathways to osteoporosis in middle-aged women: a genome-metabolome-
wide mendelian randomization study. J Bone Mineral Res 2018;33(4):643–50.

[24] Zou H, Hastie T. Regularization and variable selection via the elastic net. J Royal
Stat Soc 2005;67(2):301–20.

[25] Koh L, Sedrine WB, Torralba T, Kung A, Fujiwara S, Chan S, et al. A simple tool to
identify Asian women at increased risk of osteoporosis. Osteoporosis Int 2001;12
(8):699–705.

[26] Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Regulation of uric acid
metabolism and excretion. Int J Cardiol 2016;213:8–14.

[27] Makovey J, Macara M, Chen JS, Hayward CS, March L, Seibel MJ, et al. Serum uric
acid plays a protective role for bone loss in peri- and postmenopausal women: a
longitudinal study. Bone 2013;52(1):400–6.

[28] Yan DD, Wang J, Hou XH, Bao YQ, Zhang ZL, Hu C, et al. Association of serum uric
acid levels with osteoporosis and bone turnover markers in a Chinese population.
Acta Pharmacol Sin 2018;39(4):626–32.

[29] Xiao J, Chen WJ, Feng XH, Liu WY, Zhang ZX, He L, et al. Serum uric acid is associ-
ated with lumbar spine bone mineral density in healthy Chinese males older than
50 years. Clin Interven Aging 2017;12:445–52.

[30] Hwang J, Hwang JH, Ryu S, Ahn JK. Higher serum uric acid is associated with
higher lumbar spine bone mineral density in male health-screening examinees: a
cross-sectional study. J Bone Mineral Metabolism 2019;37(1):142–51.

[31] Nabipour I, Sambrook PN, Blyth FM, Janu MR, Waite LM, Naganathan V, et al.
Serum uric acid is associated with bone health in older men: a cross�sectional
population�based study. J Bone Mineral Res 2011;26(5):955–64.

[32] Keizman D, Ish-Shalom M, Berliner S, Maimon N, Vered Y, Artamonov I, et al. Low
uric acid levels in serum of patients with ALS: further evidence for oxidative
stress? J Neurolog Sci 2009;285(1-2):95–9.

[33] Pirro M, Mannarino MR, Bianconi V, De Vuono S, Sahebkar A, Bagaglia F, et al. Uric
acid and bone mineral density in postmenopausal osteoporotic women: the link
lies within the fat. Osteoporosis Int 2017;28(3):973–81.

[34] Xiong A, Yao Q, He J, Fu W, Yu J, Zhang Z. No causal effect of serum urate on bone-
related outcomes among a population of postmenopausal women and elderly
men of Chinese han ethnicity—a mendelian randomization study. Osteoporosis
Int 2016;27(3):1031–9.

[35] Dalbeth N, Topless R, Flynn T, Cadzow M, Bolland MJ, Merriman TR. Mendelian
randomization analysis to examine for a causal effect of urate on bone mineral
density. J Bone and Mineral Res 2015;30(6):985–91.

[36] Drosatos�Tampakaki Z, Drosatos K, Siegelin Y, Gong S, Khan S, Van Dyke T, et al.
Palmitic acid and DGAT1 deficiency enhance osteoclastogenesis, while oleic acid-
�induced triglyceride formation prevents it. J Bone Mineral Res 2014;29
(5):1183–95.

[37] Alsahli A, Kiefhaber K, Gold T, Muluke M, Jiang H, Cremers S, et al. Palmitic acid
reduces circulating bone formation markers in obese animals and impairs osteo-
blast activity via C16-ceramide accumulation. Calcif Tissue Int 2016;98(5):511–9.

[38] Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL. Plasma phos-
phatidylcholine concentrations of polyunsaturated fatty acids are differentially
associated with hip bone mineral density and hip fracture in older adults: the Fra-
mingham Osteoporosis Study. J Bone Mineral Res 2012;27(5):1222–30.

[39] Yuan J, Akiyama M, Nakahama K, Sato T, Uematsu H, Morita I. The effects of poly-
unsaturated fatty acids and their metabolites on osteoclastogenesis in vitro. Pros-
taglandins Other Lipid Mediat 2010;92(1-4):85–90.

[40] Akiyama M, K-i Nakahama, Morita I. Impact of docosahexaenoic acid on gene
expression during osteoclastogenesis in vitro—a comprehensive analysis.
Nutrients 2013;5(8):3151–62.

[41] Hogstrom M, Nordstrom P, Nordstrom A. n-3 Fatty acids are positively associated
with peak bone mineral density and bone accrual in healthy men: the NO2 Study.
Am J Clin Nutr 2007;85(3):803–7.

[42] Lavado-García J, Roncero-Martin R, Moran JM, Pedrera-Canal M, Aliaga I, Leal-
Hernandez O, et al. Long-chain omega-3 polyunsaturated fatty acid dietary intake
is positively associated with bone mineral density in normal and osteopenic
Spanish women. PloS one 2018;13(1):e0190539.

[43] Damsgaard CT, Molgaard C, Matthiessen J, Gyldenlove SN, Lauritzen L. The effects
of n-3 long-chain polyunsaturated fatty acids on bone formation and growth fac-
tors in adolescent boys. Pediatr Res 2012;71(6):713–9.

https://doi.org/10.1016/j.ebiom.2020.103111
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0001
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0001
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0001
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0002
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0002
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0002
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0002
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0002
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0002
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0003
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0003
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0004
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0004
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0005
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0005
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0005
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0005
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0005
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0006
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0006
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0007
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0007
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0008
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0008
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0009
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0009
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0009
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0010
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0010
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0010
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0011
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0011
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0011
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0012
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0012
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0012
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0012
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0013
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0013
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0013
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0013
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0014
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0014
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0015
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0015
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0016
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0016
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0016
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0017
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0017
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0017
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0018
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0018
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0018
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0019
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0019
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0019
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0020
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0020
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0020
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0021
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0021
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0021
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0022
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0022
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0022
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0023
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0023
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0023
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0024
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0024
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0025
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0025
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0025
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0026
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0026
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0027
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0027
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0027
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0028
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0028
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0028
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0029
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0029
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0029
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0030
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0030
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0030
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0031
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0031
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0031
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0031
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0031
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0032
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0032
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0032
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0033
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0033
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0033
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0034
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0034
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0034
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0034
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0035
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0035
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0035
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0036
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0036
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0036
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0036
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0036
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0037
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0037
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0037
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0038
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0038
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0038
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0038
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0039
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0039
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0039
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0040
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0040
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0040
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0041
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0041
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0041
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0042
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0042
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0042
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0042
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0043
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0043
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0043


10 Z. Mei et al. / EBioMedicine 62 (2020) 103111
[44] Meshcheryakova A, Mechtcheriakova D, Pietschmann P. Sphingosine 1-phos-
phate signaling in bone remodeling: multifaceted roles and therapeutic potential.
Expert Opinion Ther Targets 2017;21(7):725–37.

[45] Shigemura Y, Iwasaki Y, Tateno M, Suzuki A, Kurokawa M, Sato Y, et al. A pilot
study for the detection of cyclic prolyl-hydroxyproline (Pro-Hyp) in human blood
after ingestion of collagen hydrolysate. Nutrients 2018;10(10):1356.
[46] Sengupta S, Park S-H, Patel A, Carn J, Lee K, Kaplan DL. Hypoxia and amino acid
supplementation synergistically promote the osteogenesis of human mesenchy-
mal stem cells on silk protein scaffolds. Tissue Eng Part A 2010;16(12):3623–34.

[47] Alswat KA. Gender disparities in osteoporosis. J Clin Med Res 2017;9(5):382.
[48] Choi HS, Park SJ, Lee ZH, Lim SK. The effects of a high fat diet containing diacylgly-

cerol on bone in C57BL/6J mice. Yonsei Med J 2015;56(4):951–60.

http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0044
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0044
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0044
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0045
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0045
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0045
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0046
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0046
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0046
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0047
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0048
http://refhub.elsevier.com/S2352-3964(20)30487-4/sbref0048

	Association between the metabolome and bone mineral density in a Chinese population
	1. Introduction
	2. Methods
	2.1. Study design and population
	2.2. Ethics statement
	2.3. Metabolomic profiling
	2.4. Statistical analysis
	2.5. Role of funding source

	3. Results
	3.1. Characteristics of the study population
	3.2. Metabolites associated with low BMD
	3.3. Performance of metabolites for low BMD classification

	4. Discussion
	Contributors
	Declaration of Competing Interests
	Acknowledgements
	Data sharing statement

	Supplementary materials
	References



