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Abstract

Overfitting is one of the critical problems in developing models by machine learning. With

machine learning becoming an essential technology in computational biology, we must

include training about overfitting in all courses that introduce this technology to students and

practitioners. We here propose a hands-on training for overfitting that is suitable for introduc-

tory level courses and can be carried out on its own or embedded within any data science

course. We use workflow-based design of machine learning pipelines, experimentation-

based teaching, and hands-on approach that focuses on concepts rather than underlying

mathematics. We here detail the data analysis workflows we use in training and motivate

them from the viewpoint of teaching goals. Our proposed approach relies on Orange, an

open-source data science toolbox that combines data visualization and machine learning,

and that is tailored for education in machine learning and explorative data analysis.

Author summary

Every teacher strives for an a-ha moment, a sudden revelation by the student who gained

a fundamental insight she will always remember. In the past years, authors of this paper

have been tailoring their courses in machine learning to include material that could lead

students to such discoveries. We aim to expose machine learning to practitioners–not

only computer scientists but also molecular biologists and students of biomedicine, that

is, the end-users of bioinformatics’ computational approaches. In this article, we lay out a

course that aims to teach about overfitting, one of the key concepts in machine learning

that needs to be understood, mastered, and avoided in data science applications. We pro-

pose a hands-on approach that uses an open-source workflow-based data science

toolbox that combines data visualization and machine learning. In the proposed training

about overfitting, we first deceive the students, then expose the problem, and finally chal-

lenge them to find the solution. In the paper, we present three lessons in overfitting and

associated data analysis workflows and motivate the use of introduced computation meth-

ods by relating them to concepts conveyed by instructors.
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Introduction

Machine learning is one of the critical bioinformatics technologies [1]. Applications of

machine learning span across the entire spectra of molecular biology research, from genomics,

proteomics and gene expression analysis to development of predictive models through large-

scale integration [2]. The advantage of machine learning methods is that they can automati-

cally formulate hypotheses based on data, with occasional guidance from the researcher. In its

flexibility lies the machine learning’s strength–and its greatest weakness. Machine learning

approaches can easily overfit the training data [3], expose relations and interactions that do

not generalize to new data, and lead to erroneous conclusions.

Overfitting is perhaps the most serious mistake one can make in machine learning. In his

excellent review, Simon et al. [4] points out that a substantial number of the most prominent

early publications on gene expression analysis overfitted the data when reporting predictive or

clustering models. Mistakes of these kinds are today rare, yet the problem with overfitting per-

sists [3,5]. It is thus essential to convey the intricacies and facets of overfitting to students that

are taught about data science, and we should include lectures on overfitting already within

introductory courses of machine learning.

Our aim here is to show that one can effectively explain overfitting during a short hands-on

workshop. Our primary audience are students of molecular biology and biomedicine, not stu-

dents of computer science or math. Essential to such teaching is a tool that supports the seam-

less design of data analysis pipelines that encourages experimentation and explorative data

analysis. Since 2005, we have been designing such a data science toolbox. Orange (http://

orange.biolab.si) [6] is a visual programming environment that combines data visualization

and machine learning. In the past years, we have been tailoring Orange towards a tool for edu-

cation (e.g., [7,8]). We have used it to design short, practical hands-on workshops. To boost

motivation and interest, we use problem-based teaching. There, we first expose students to

data and problems, rather than to theory and mathematical background of machine learning,

a type of training that would be more appropriate to computer science majors.

In the following, we introduce a teaching approach for hands-on training and exploration

of overfitting. We lay out pedagogical methods and the training approach first and then con-

tinue with a presentation of the short course that includes three different cases of overfitting.

We conclude with a discussion about further details on the engagement of tutoring staff and

placement of this course within computational biology curricula.

Approach

The lecture we propose here was designed to comply with a structured pedagogical approach,

requires a specific data science platform, and uses hands-on training. We briefly explain each

of these items below.

Didactic methods

When discussing overfitting, we use the following didactic approach.

• Introduce a seemingly reasonable analytic procedure for fitting and testing the model.

• Demonstrate that the procedure gives overly optimistic results, which is most efficiently

done by showing that it allows modeling randomized data.

• Analyze why and how this happens.

• Show the correct approach.
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• Emphasize the take-home message.

The most crucial step is the third because it leads students to a deeper understanding of the

problem and lets them apply similar reasoning to other situations they may encounter.

Software platform

For training in machine learning, we use the data science toolbox called Orange (http://

orange.biolab.si) [6,8,9]. Orange is an open-source, cross-platform data mining and machine

learning suite. It features visual programming as an intuitive means of combining data analysis

and interactive visualization methods into powerful workflows (Fig 1). Visual programming

enables users who are not programmers to manage, preprocess, explore, and model data. With

many functionalities aboard, this software can make data mining and machine learning easier

for novice and expert users.

Fig 1. Orange data science toolbox. Orange provides data analysis components, also called widgets, assembled into a data analysis workflows

through visual programming. The components typically encapsulate some data processing or modeling methods; they receive the input and

submit the results to the output. Widgets in Orange are represented with icons with an input slot on the left and the output slot on the right. Users

place widgets on the canvas and connect the inputs and outputs of the widgets. In this way, they define the data and information processing

pipeline. The system processes the workflow on-the-fly: as soon as the widget receives the information, it would handle it and send out the results.

In the workflow shown on the figure, the data pipeline starts with reading the data (File widget) and passes it to cross-validation (Test and Score),

which also receives a learning algorithm on its input. Double-clicking the widget exposes its content. For instance, we pass cross-validation results

to the Confusion Matrix, which shows that logistic regression misclassified only two data instances. We use the Scatter Plot to show the entire data

set and also display selected data from the Confusion Matrix. Any change in selection in the Confusion Matrix would change its output. This

would trigger the change in the Scatter Plot. With this composition of components, we turn this workflow into a visual explorative environment

for examining cross-validation results.

https://doi.org/10.1371/journal.pcbi.1008671.g001
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Teaching approach

The teaching approach we propose is hands-on training. Students follow the lecture by working

on their computer or laptop. The lecturer uses the projector and explains the concepts from the

lectures by performing data exploration and analysis. There are no slides. For additional explana-

tions, the lecturers are encouraged, where possible, to provide the students with data exploration

examples, using the same data science software. For larger classes, the lecturer is accompanied by

assistants who help the students who are stuck or have any questions about their workflows.

Three cases of overfitting

We here present three ways to overfit the model to the data. We assume that at this point stu-

dents already know at least some machine learning and visualization-related algorithms. In

this article, we use classification trees, logistic regression, and t-SNE, though we could substi-

tute them with other alternatives. We also refer to classification accuracy and information

gain. If the students are not familiar with these scoring techniques, a brief introduction will

suffice during the workshop.

Testing on training data

Any hypothesis formulated from some data, and that fits that data well, will seem correct when

verified on this same data. While this looks obvious, researchers from fields other than artifi-

cial intelligence, like biology, often forget that the essence of AI is precisely an automated gen-

eration of hypotheses based on data. Furthermore, though students may have heard the

mantra never to test the model on the data from which it was derived, they may consider it

merely a recommendation whose violation is wrong in principle, but will not have any signifi-

cant consequences.

Analytic procedure

For this demonstration, we use the yeast data with 186 genes (data instances) whose expression

was observed at 79 different conditions (features). The data also includes a class variable,

which for each gene reports on one of the three gene functions. This data set comes from

Brown et al. [10], the first work that used supervised machine learning for gene function pre-

diction. The data set used in their paper includes more genes, from which we have retained

only those from the three most frequent classes (c.f. [11]).

For this example, the number of features in the data set must be comparable to the number

of data instances, which should allow simple models to overfit the training data. Here, we

choose classification trees because they are sufficiently prone to overfitting.

We load the data and feed it to a tree inducer, which outputs a tree model (Fig 2). The Pre-

dictions widget takes the data, uses the tree to predict the target variable, and outputs a data

table augmented with a column that stores predictions. We feed this data to Distributions,

which we use to visually assess the model’s correctness. We set up the widget’s parameters to

show tree predictions and split them by genes’ actual function and stack columns. (Column

stacking will become important later.) We visually confirm that most genes indeed belong to

the groups into which they are classified. Using such visualization may be better than showing

just numbers like classification accuracy because it is more intuitive. Students can, however,

still check the classification accuracy and other scores in the Predictions widget. Quantitative

information of what we see in Distributions is available by connecting the Confusion Matrix

widget to Predictions. However, we do not recommend overwhelming the students with too

many concepts at this moment.
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Demonstration of incorrectness

To convincingly demonstrate that our procedure is wrong, we randomize the data through

Randomize widget that we add after the File widget (Fig 3). Randomize widget permutes the

class labels. We accompany this with a story about a lousy technician who mislabeled genes,

thus ruining the data. At students’ request, we can also permute the values of independent vari-

ables, or, time allowing, we use the opportunity to discuss how this would change the data

more fundamentally, destroying any structure in it, yet the effect we want to show does not

require this.

Students agree that no algorithm should be able to learn from random data. Yet the Distri-

butions widget shows that the tree’s predictions are still well-aligned with actual groups, and

the classification accuracy remains high.

Exploration of causes

When asked why this happened, students will typically reply that it is because we are testing

the model on training data. They will seldom offer the explanation of the exact mechanism.

We instruct them to inspect the induced tree in a Tree Viewer (Fig 4). Observing the size of

the tree, they realize that it effectively memorized the data. Typically, the discussion that fol-

lows is about the nature of modeling, namely, that modeling is about generalizing from the

data. However, if the model remembers the data, it does not generalize and will not be useful

on new, hitherto unseen data.

Fig 2. Incorrect evaluation of models. The tree is tested on the data from which it was induced. The Distribution widget shows perfect correspondence

between the predicted and actual gene functions.

https://doi.org/10.1371/journal.pcbi.1008671.g002
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Correct approach

This discussion leads directly to discovering of the proper way to test a model: using new data.

We can do this by splitting the data into two subsets. This is done with the Data Sampler wid-

get, where, for a better effect, we have to make sure that samples are stratified. We use sampled

data for model fitting and out-of-sample data for testing (Fig 5). We now show two Distribu-

tions widgets: one that displays the class distribution in the training data and the other that

shows predictions, as before. By comparing the two (which is why it is better to see stacked col-

umns) we see that the distribution of predictions matches the distribution of target values in

the training data–yet predictions have no relation with the actual class. Hence, using separate

training and testing data can reveal overfitting.

Note how using a visual programming tool like Orange helps the educator: the workflow

itself illustrated the procedure by graphically showing which data goes where.

Students may complain that this procedure depends on a single run of random sampling and

thus on our luck. If they do not, we can raise the point ourselves to continue with an introduction

of cross-validation. This leads to the workflow in Fig 6, which includes an element that has proven

to be difficult, but conceptually essential to understand–the signal from Tree to Test and Score.

Where does the Tree widget get the data? We need to explain that the model scoring widget, Test

and Score, implements the entire cross-validation procedure. A k-fold cross-validation will fit k
different models to k different (overlapping) data subsets. For this, it needs a learning algorithm,

not a fitted model. While computer scientists see this as passing a function to a function, to non-

Fig 3. Modeling from permuted data. Permutation of class labels should prevent successful modeling, yet the Distribution widget and the scores at the

bottom of the Prediction widget show that the tree almost perfectly fits the data.

https://doi.org/10.1371/journal.pcbi.1008671.g003
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computer scientists we explain that the Tree widget in the previous workflow outputs a model,
while in this one, it has no data but can still output a recipe for building a model.

Stressing the difference between the trained model and the algorithm for model inference is

important. It reminds students that cross-validation does not evaluate a model but the model-

ing procedure. The reported average score is not a score of any particular model.

Take-home message

The mantra to always test models on separate test data has to be taken seriously. By violating

it, we do not test model quality, but its ability to (over)fit the given data. This can lead to much

larger performance over-estimates than most students realize.

Limited perception of modeling

The former is a school example of overfitting that is unlikely to appear in respectable journals.

In our next case, we show students a much more common problem. When taking care not to

use the same data for modeling and testing, the modeling is often understood in a limited

sense, for instance fitting the coefficients of logistic regression, and excludes any procedures

like data preparation.

Fig 4. A tree induced from random data. Observing the tree reveals that it is too large for the given data set, and hence does not generalize well.

https://doi.org/10.1371/journal.pcbi.1008671.g004
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For this demonstration, we require a data set in which the number of variables largely

exceeds the number of data instances. We will here use a dataset on breast cancer and doce-

taxel treatment [12] from Gene Expression Omnibus (dataset GDS360), which includes 9,485

genes (features) whose expression was observed in 24 tissue samples (data instances). This data

set is indeed small; students need to be warned that smaller data sets of this kind often appear

in medical research and that inference of reliable models would require more data or

approaches that can additionally incorporate prior domain knowledge. Data instances are

labeled with a binary class indicating weather the tumor was sensitive to treatment. Instead of

(the already discredited) classifications trees, we use logistic regression, which, as a linear

model, should be less prone to overfitting, making the example more convincing.

Fig 5. Testing a model on a separate data set. The Random Sample widget splits the data into two subsets, one for

fitting and one for testing. Distribution of predictions by the model (right-hand histogram) roughly match the

distribution of actual classes (left-hand side), but the actual class no longer matches the predicted.

https://doi.org/10.1371/journal.pcbi.1008671.g005
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Analytic procedure

We show the data and students easily agree that the model probably should not need to use all

9,485 variables. Selecting only a few should simplify the model, making it more robust, and

speed-up its training. Based on experiences from the previous case, students also know that

with fewer variables, models are less likely to overfit. We thus add Preprocess and use Select

Relevant Features to choose ten variables with the highest information gain, that is, ten features

that are most correlated with the binary class. We test the performance of logistic regression

on this data in Test and Score (Fig 7).

To further (miss)lead the students down the sadly common path, we can invite them to dis-

cover the optimal number of variables. Depending upon random sampling, the best results on

this data are usually achieved with around five variables.

Fig 6. Testing with cross-validation. The Tree widget receives no data and does not output a tree but only an algorithm (ä

recipe") for building one. The Randomize widget, which shuffles the data, is here only to demonstrate that cross validation

discovers overfitting by showing a small accuracy. In practice, we would use the actual, non-randomized data.

https://doi.org/10.1371/journal.pcbi.1008671.g006
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Demonstration of incorrectness

We use the same trick as before: we insert Randomize between File and Preprocess (Fig 8). This

decreases the accuracy of logistic regression to around 80%, which is still better than the propor-

tion of majority class (60%), thus the model performs quite well although the data is random.

Exploration of causes

To hint at the problem, we ask the students to run cross-validation on randomized data with

all features (Fig 9): the accuracy of logistic regression there is similar to the proportion of the

majority class. With this, it is obvious that the source of the problem is the selection of infor-

mative variables. But–informative about what? The Preprocess widget selects variables corre-

lated with the class: although the class has been randomized, we will encounter some

randomly correlated variables just because there are so many to choose from. These correla-

tions hold over the entire data set, so when the cross-validation splits the data set into training

and testing samples, the correlation holds on both parts.

Correct approach

The necessary fix is obvious: we should perform feature selection on the training data only.

Given that k-fold cross validation uses k training subsets, each of them would have a different

Fig 7. Improper way to select features. The Dataset widget loads the data from our curated repository of data sets. The Preprocess widget selects ten

most informative features. This data is used to cross-validate logistic regression, which achieves a 96% classification accuracy.

https://doi.org/10.1371/journal.pcbi.1008671.g007
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selection of features–which would only be "informative" for the training, but supposedly not

for the testing data. To verify this idea in Orange, we provide the preprocessor as an input to

the Cross Validation widget (Fig 10).

Take-home message

Modeling is not limited to fitting the parameters of the model but includes all other procedures

like data preprocessing, model selection, and hyper-parameter tuning, which we do before

feeding the data into a learning algorithm. Data preprocessing may include feature selection,

imputation of missing data based on statistics computed from the available data, binning, and

normalization, which may all have substantial effects if we leak information from testing sam-

ples. Concerning model selection, the researcher may test a number of different learning algo-

rithms using cross-validation and then report the best one. By doing so, (s)he fits the model

selection to the data; on another random sample from the same data, this algorithm might be

Fig 8. Selection of features on randomized data. Performance of logistic regression remains excellent even on randomized

data: the classification accuracy is 80%, compared to the 60% majority class.

https://doi.org/10.1371/journal.pcbi.1008671.g008
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less successful, and another algorithm could be better. As before, we need another data set to

assess the quality of the chosen model. Finally, simpler models may have only a few parame-

ters, mostly found through model regularization. In contrast, for artificial neural networks, for

instance, we have to construct its entire architecture, decide the number and types of layers,

set the optimization-related parameters, and so forth. Those can also be overfitted–at least in

principle–thus the chosen hyper-parameters need to be validated on a separate test set.

Making nice visualizations

The above cases demonstrate how predictive models can find non-existing relations, and

improper testing can mislead us to believe they are real. One could naively assume that visuali-

zations cannot overfit because they do not model anything but merely show the data.

To challenge this assumption, we could use the same breast cancer data set as above, though

the effect will be better with a somewhat larger data set. We will instead show a new useful wid-

get: we will construct a data set using Random Data from Orange’s Educational add-on.

Analytic procedure

We create 10,000 normally distributed random variables and one Bernoulli variable with

p = 0.5. The sample size will be 100. We then use Select Columns to designate the Bernoulli

variable as the target, that is, the class variable. As before, we use Preprocess to select ten most

informative variables. In other words, from a collection of 10,000 variables, we choose ten that

are most correlated with the class variable. We then visualize this data using t-SNE. We get a

cloud of randomly distributed points, as expected (Fig 11).

Fig 9. Comparison of models on all and on selected features from random data. Classification accuracy of logistic regression on all

features is 62%, which is about the same as proportion of majority class. The model is thus no better the random guessing, as expected. This

proves that feature selection is responsible for the overly optimistic result.

https://doi.org/10.1371/journal.pcbi.1008671.g009
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Demonstration of incorrectness

The problem with this approach is more subtle. Data visualization by t-SNE did not

show any groups and hence worked correctly (Fig 11). To show that something is wrong,

we color the points according to the assigned target value (Fig 12). We can see that t-
SNE’s projection separates the two groups (though the separation is not perfect and

depends upon random sample), which it should not be able to because the labels are

random.

Exploration of causes

The cause is similar to above: we again select features that are randomly related to the label.

Yet the consequences differ: here we do not overfit a model, but we find order in chaos.

Correct approach

The solution is similar to before: we split the data, use one part to select features, and then visu-

alize the remaining data using only the selected features (Fig 13). Results on random data are

then as bad as expected.

Fig 10. The proper workflow for cross-validation that includes data preprocessing. In this workflow preprocessing is not done prior to splitting the

data. The preprocessing recipe, provided by the Preprocess widget, enters the cross-validation procedure and is applied to each training data subset

separately, without being informed by the data that is used in testing.

https://doi.org/10.1371/journal.pcbi.1008671.g010
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Take-home message

While we cannot talk about overfitting visualizations for some particular performance score,

their construction requires the same amount of caution as induction of models. Choosing a

few features that are, albeit by chance, highly correlated with the class will always result in visu-

alizations that expose class structure, even in the cases of random data.

Discussion

Practical course on machine learning can be rewarding both to instructors and the audience.

With the right tool, we can cover substantial ground and introduce new concepts in a hands-

on workshop that can take only a few hours. Rewards for students come in the form of a pleth-

ora of new topics covered, and a-ha moments stemming from practical revelations on real data

sets. Rewards for instructors come from students’ raised interest, and questions sparked from

their engagement and interest in data exploration. Student engagement is rooted in the type of

teaching that encourages them to do the data analysis while they learn, instead of just listening

about it, as would be the case in a standard frontal, slides-based lecture.

We have introduced the hands-on lessons on overfitting that can be self-contained or a part

of a longer machine learning course. For the latter, students would already know about data

exploration, visualizations, and individual classifiers, like logistic regression, classification

Fig 11. t-SNE visualisation of a random data. We generate 10,000 normally distributed random variables and one Bernoulli

variable, which we designate as the target variable. In Preprocess, we choose ten variables that are most correlated with the

target. This data is then used in the t-SNE visualisation. In this particular visualisation, the value of the target variable is not

shown, and the dots in the t-SNE visualisation representing the data set items seem to placed randomly, as expected, and do not

expose any clustering structure.

https://doi.org/10.1371/journal.pcbi.1008671.g011
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trees, and random forests. The required prerequisite of the course is also some understanding

of the need for model evaluation. Prior knowledge about metrics to express model accuracy,

such as precision, recall, and area under the ROC curve, would help the audience, but is not

mandatory and could also be introduced during the proposed course. While we recommend

that this course is a part of a series on machine learning, for a stand-alone workshop on over-

fitting, students could be encouraged to learn about Orange beforehand by watching a few

selected introductory videos on Orange’s YouTube channel (http://youtube.com/

orangedatamining).

The lessons would usually take two to three teaching hours, depending on the prior knowl-

edge of the audience and the course placement. Standalone course could take three hours and

further experiment with different data sets and classifiers.

Especially for the audience who has just started exploring data science, the execution of the

lectures could be slower and use additional explanations. For instance, students would often

ask about the result of data randomization. How do we know that the data is indeed random-

ized? We can look at the data table. Still better, in the initial introduction of data set we can

show that the yeast gene expression data has some structure and that for a specific combina-

tion of features, genes with different functions are well separated in the scatterplot (see Leban

Fig 12. Colored t-SNE on random data. Data preprocessed by feature selection is visualized in a t-SNE plot that separates the data instances

of different class, denoted by blue and red color. Density of blue data points is higher in the top part of the visualisation, and green points are

denser at the lower half of the plot. This separation of instances of different class is seemingly surprising as the class value assignment is

random, and is a by-product of preprocessing and choosing of ten features that are, albeit arbitrarily, most correlated with the class variable.

https://doi.org/10.1371/journal.pcbi.1008671.g012
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et al. [11] for automatic retrieval of such combinations). Shuffling of class labels will retain the

position of points in the plot, but show the mixed classes (Fig 14).

Hands-on courses are different from ex-cathedra teaching. While the lead teacher is still on

the podium, and uses, in our case, Orange to walk the students through the practical exercises,

s(he) also frequently interacts with the students. Interactions can make sure that students go

along, helping those who are stuck and solve any problems that arise. Students would often

explore unplanned paths; these are often interesting and grant replicating on the projector to

discuss with all participants. We recommend that for classes larger than five students, there is

an additional instructor for assistance. The lecturer can often pause the narration to allow stu-

dents to experiment on their own and synchronize the progress. While students may be given

lecture notes in the form of workflows and explanations, just like the ones from this

Fig 13. t-SNE visualization of a separate test data. This workflow uses a random sample to discover the most informative variables, that is,

variables that are most correlated with the class variable. The Apply Domain then takes the out-of-sample data and applies the transformation

from the Preprocess widget, and in this case, removes all except the ten variables chosen from the sample data. In this way, the procedure that

selects the variables is not informed by the data that is shown in the visualization. This time, the data plot does not expose any class structure; red

and blue data points are intermixed. Compare this outcome to the overfitted visualization from Fig 12.

https://doi.org/10.1371/journal.pcbi.1008671.g013
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manuscript, their primary use is self-study after the workshop. The lecture does not involve

any showing of slides. Everything is hands-on; Orange is the only tool shown on the projector.

If an additional explanation is required, say, for classification trees, logistic regression, or simi-

lar, we recommend using the blackboard.

Courses oriented towards beginners must carefully balance between oversimplification and

overwhelming. As we mentioned, our typical target audience is not students of computer sci-

ence or math. Mathematically minded students may understand the topic easier if it is

explained more formally. Computer scientists would benefit from being introduced to tools

like Jupyter Notebook and the related Python machine learning stack or similar tools in other

suitable languages. However, our target students, who do not possess those necessary skills,

would find using programming tools more difficult than the concepts we intend to teach. The

whole lecture may turn into a frustrating hunt for missing parentheses. In our past attempts at

teaching data mining through programming in Python, we have been dissipating time to even

such small details explaining that function names are case sensitive. The lessons we taught in

this way were more about programming than about data mining. The environment we select

to teach data science should serve as a helping tool instead of representing an obstacle to

Fig 14. Exploring class-randomized data. Scatterplot in Orange can search for feature combinations that best split the classes. For the yeast

expression data, diauxic shift (diau f) and sporulation at a five-hour timepoint (spo-mid) provide for the best combination. When the data is class-

randomized, the class labels change, the pattern of class-separation is no longer there, but the data points keep their position. The effect of

randomization is also visible by comparing the two Data Tables.

https://doi.org/10.1371/journal.pcbi.1008671.g014
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learning. Introduction to data science through textual programming either requires good cod-

ing skills or leads to a superficial understanding of the written code, which is in effect no

deeper, but far less satisfying for students and teachers than using visual programming tools.

We use Orange in the lectures we propose here because of its strong focus on interactivity,

simplicity of use, and educational value. In general, though, the tool’s choice depends on the

teacher’s style, so we encourage the reader to explore other tools that support visual program-

ming and workflows, such as Knime [13] or RapidMiner [14].

Using visual programming and avoiding mathematics exposes us to the danger of oversim-

plification. Students need to understand that they only attended an introductory course and

that the expressiveness of visual programming languages, however powerful they may be, is

very limited compared to coding in textual programming languages. More importantly, we

need to clarify that the language of science is mathematics and not hand waving and nice pic-

tures and that proper understanding can come only from studying the mathematical back-

ground. However, this is beyond what can be done in a few-hour lecture for the target

audience we have assumed for the lectures presented here.

The students also need to be aware that they have been exposed to a limited set of tech-

niques. This is usually not a problem because they notice that the used tools offer many options

that we have not explored, such as sampling techniques other than cross-validation. It should

also be evident that they were exposed only to school examples of carefully chosen data. In

real-world applications, they would have to deal with many other problems like imbalanced

data sets, missing data, and similar issues.

Conclusion

Overfitting is one of the key concepts to be mastered in the training of machine learning. We

here propose the content for a set of three lectures that introduce overfitting. The proposed

lectures are hands-on, require students to work and explore the data while learning about

machine learning concepts, and, to appeal to a broader audience, is carried out without the

need of knowledge of any programming languages. This type of training is suitable for teach-

ing the core, introductory classes to students with majors outside computer science, for

instance, in molecular biology and healthcare.

Hands-on training is appealing for its immediate rewards. Students get instant feedback,

gain understanding through exploring real data sets, and can relate to problems studied in

class when later analyzing their own data. For depth, though, and where required, we have to

combine such courses with more theoretical training. The training proposed here is not meant

to replace standard courses in machine learning, but rather to complement them with up-

front motivation and insight.
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