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Abstract: Defensins play an important role in fighting bacteria, and are a good candidate for bacteri-
cidal agents. However, the function and mechanism of defensins in regulating host responses against
bacteria is unclear. In this study, transcriptome analysis was used to study the comprehensive func-
tions of pBD2 in IPEC-J2 cells against E. coli. In total, 230 differentially expressed genes (DEGs) were
identified in IPEC-J2 cells between the control and E. coli groups, and were found by KEGG analysis to
be involved in many signaling pathways related to immunity. Furthermore, 812 DEGs were observed
between E. coli and E. coli +pBD2 groups, involved in the ribosome, oxidative phosphorylation, and
certain disease pathways. Among these, 94 overlapping DEGs were in the two DEG groups, and
85 DEGs were reverse expression, which is involved in microRNA in cancer, while PTEN and CDC6
were key genes according to PPI net analysis. The results of qRT-PCR verified those of RNA-seq. The
results indicated that pBD2 plays an important role against E. coli by acting on the genes related to
immune response, cell cycle, ribosomes, oxidative phosphorylation, etc. The results provide new
insights into the potential function and mechanism of pBD2 against E. coli. Meanwhile, this study
provides a certain theoretical basis for research and the development of novel peptide drugs.
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1. Introduction

In the past, the long-term use and abuse of antibiotics in animal husbandry has
resulted in serious antibiotic residues and increase of drug-resistant strains, which is
currently considered a great threat to public health [1]. Although the use of antibiotics
in livestock has been limited as much as possible in recent years, this has brought some
other challenges, such as the increase of intestinal diseases and the weakening of growth
performance, especially at the weaning stage in the pig industry. It is urgent to develop new
antimicrobial agents; host defensins may be one of the methods to solve this problem [2].

Defensins, members of the antimicrobial peptide family, exist widely in nature. They
have shown bactericidal activity against gram-positive bacteria, gram-negative bacteria,
and even multidrug-resistant bacteria; moreover, they have unique antibacterial mecha-
nisms which make it difficult to induce bacterial resistance [3]. Defensins are part of the
innate defense system and play an important role in immune response [2,4,5]. In addition,
defensins could regulate the proliferation and migration of epithelial cells, which is very
important for overcoming injury, infection and inflammation [4]. These advantages of
defensins make them ideal antibiotic substitutes.

Porcine beta defensin 2 (pBD2) is an antibacterial peptide secreted by pigs. pBD2 has
shown good antibacterial activity and immunomodulatory function in vitro [6–9]. pBD2
could inhibit E. coli and S. aureus, as well as some clinically isolated multidrug-resistant
bacteria [9]. pBD2 has the strongest antimicrobial activity among the porcine beta defensins
(pBDs) detected, including pBD1, pBD2, pBD114, and pBD129 [9–12]. In addition, pBD2
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could alleviate the inflammatory response induced by exogenous stimulation in mice [8]. As
a feed additive, pBD2 showed a certain effect on disease resistance and growth promotion,
related to the reduction of numbers of harmful bacteria [13]. pBD2 may be a suitable
antibiotic substitutes in the pig industry. However, the function and mechanism of how
pBD2 protects the host from bacteria remains unclear.

In order to explain the functions and mechanism of pBD2 in the host cells against
bacteria, Escherichia coli was selected as an example and intestinal porcine enterocyte cells
(IPEC-J2) were selected as the infected model. E. coli is a gram-negative bacteria that exists
widely in the intestinal tracts of animals. It is one of the most important pathogenic bacteria
causing diarrhea in weaned piglets, which leads to considerable economic losses [14].
The IPEC-J2 cell line was originally isolated from the jejunum of a neonatal unsuckled
piglet, and is a non-transformed, permanent intestinal cell line. IPEC-J2 cells are ideal for
studying the antibacterial effect of pBD2 on cells [15]. In this experiment, IPEC-J2 cells
were challenged with E. coli, and the transcriptome method was used to detect the effect of
pBD2 on the gene expression of cells infected by E. coli. Our study helps to understand the
functions and mechanisms of defensin in host cells against E. coli.

2. Results
2.1. Analysis of Bactericidal Activity

The recombinant pBD2 was induced and purified following our previous study [9].
The purified pBD2 showed high purity, and the molecular weight was approximately
12 kDα as expected (Figure 1). The recombinant pBD2 showed high bactericidal activity.
E. coli were cracked and dead after incubation with 20 µg/mL pBD2 for 1 h and 4 h, the
debris was observed, and the bactericidal effect was more obvious at 4 h than those at 1 h
(Figure 2).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 17 
 

 

Porcine beta defensin 2 (pBD2) is an antibacterial peptide secreted by pigs. pBD2 has 
shown good antibacterial activity and immunomodulatory function in vitro [6–9]. pBD2 
could inhibit E. coli and S. aureus, as well as some clinically isolated multidrug-resistant 
bacteria [9]. pBD2 has the strongest antimicrobial activity among the porcine beta defen-
sins (pBDs) detected, including pBD1, pBD2, pBD114, and pBD129 [9–12]. In addition, 
pBD2 could alleviate the inflammatory response induced by exogenous stimulation in 
mice [8]. As a feed additive, pBD2 showed a certain effect on disease resistance and 
growth promotion, related to the reduction of numbers of harmful bacteria [13]. pBD2 
may be a suitable antibiotic substitutes in the pig industry. However, the function and 
mechanism of how pBD2 protects the host from bacteria remains unclear. 

In order to explain the functions and mechanism of pBD2 in the host cells against 
bacteria, Escherichia coli was selected as an example and intestinal porcine enterocyte cells 
(IPEC-J2) were selected as the infected model. E. coli is a gram-negative bacteria that exists 
widely in the intestinal tracts of animals. It is one of the most important pathogenic bac-
teria causing diarrhea in weaned piglets, which leads to considerable economic losses [14]. 
The IPEC-J2 cell line was originally isolated from the jejunum of a neonatal unsuckled 
piglet, and is a non-transformed, permanent intestinal cell line. IPEC-J2 cells are ideal for 
studying the antibacterial effect of pBD2 on cells [15]. In this experiment, IPEC-J2 cells 
were challenged with E. coli, and the transcriptome method was used to detect the effect 
of pBD2 on the gene expression of cells infected by E. coli. Our study helps to understand 
the functions and mechanisms of defensin in host cells against E. coli. 

2. Results 
2.1. Analysis of Bactericidal Activity 

The recombinant pBD2 was induced and purified following our previous study [9]. 
The purified pBD2 showed high purity, and the molecular weight was approximately 12 
kDα as expected (Figure 1). The recombinant pBD2 showed high bactericidal activity. E. 
coli were cracked and dead after incubation with 20 μg/mL pBD2 for 1 h and 4 h, the debris 
was observed, and the bactericidal effect was more obvious at 4 h than those at 1 h (Figure 
2). 

 
Figure 1. Analysis of purified pBD2 by SDS-PAGE. Lanes 1, 2, 3, 4, 5, 6, 8 indicate the purified pro-
tein from different collected tubes; Lane 7 indicates the protein marker. 

Figure 1. Analysis of purified pBD2 by SDS-PAGE. Lanes 1, 2, 3, 4, 5, 6, 8 indicate the purified protein
from different collected tubes; Lane 7 indicates the protein marker.

2.2. Transcriptome Profiling

cDNA libraries were sequenced on the Illumina high-throughput platform, generating
significant amounts of high-quality raw data. After removal of adaptor sequences, low-
quality, and contaminated reads, only the resulting clean reads were assembled to build
transcripts. In these results, 20,721,673–35,369,943 clean data were obtained for samples,
and the minimum Q30 was 93.23% (Table 1). The percentage of reads mapped to the
reference genome was 95.84–96.55% (Table 2).
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Figure 2. Morphological changes of E. coli treated with pBD2, viewed by scanning electron microscopy.
(A,B) indicate the E. coli treated with 0 and 20 µg/mL pBD2 for 1 h, respectively; (C,D) indicated the
E. coli treated with 0 and 20 µg/mL pBD2 for 4 h, respectively.

Table 1. Sequencing data statistics.

Samples Clean Reads Clean Bases GC Content %≥Q30

Control-1 35,369,943 10,533,069,694 52.27% 94.10%
Control-2 32,617,012 9,703,386,646 52.26% 94.14%
Control-3 31,534,327 9,375,721,120 52.35% 94.31%
E. coli-1 24,055,348 7,170,857,754 52.64% 93.23%
E. coli-2 25,929,754 7,718,143,996 52.37% 93.55%
E. coli-3 22,754,029 6,773,668,654 52.28% 93.90%
pBD2-1 20,721,673 6,176,881,268 51.76% 93.46%
pBD2-2 23,894,463 7,107,703,946 52.28% 94.16%
pBD2-3 21,228,755 6,327,976,062 51.94% 93.67%

Notes: Control, E. coli and pBD2 indicate the IPEC-J2 in the control, E. coli and E. coli +pBD2 groups, and
1–3 indicate the three replicates, respectively.

Table 2. Gene comparison efficiency statistics.

Samples Mapped Reads Unique Mapped Reads Multiple Map Reads

Control-1 67,898,715 (95.98%) 66,065,506 (93.39%) 1,833,209 (2.59%)
Control-2 62,849,152 (96.34%) 61,097,600 (93.66%) 1,751,552 (2.69%)
Control-3 60,714,671 (96.27%) 59,081,017 (93.68%) 1,633,654 (2.59%)
E. coli-1 46,168,875 (95.96%) 44,891,836 (93.31%) 1,277,039 (2.65%)
E. coli-2 49,843,598 (96.11%) 48,508,765 (93.54%) 1,334,833 (2.57%)
E. coli-3 43,776,016 (96.19%) 42,624,022 (93.66%) 1,151,994 (2.53%)
pBD2-1 39,790,781 (96.01%) 38,760,294 (93.53%) 1,030,487 (2.49%)
pBD2-2 46,057,704 (96.38%) 44,834,945 (93.82%) 1,222,759 (2.56%)
pBD2-3 40,692,378 (95.84%) 39,483,201 (92.99%) 1,209,177 (2.85%)

Notes: Control, E. coli and pBD2 indicate the IPEC-J2 in the control, E. coli and E. coli +pBD2 groups, and
1–3 indicate the three replicates, respectively.
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2.3. Characterization of Differentially Expressed Genes by RNA Sequencing

There were 230 differential expressed genes (DEGs) between the control and E. coli
treatments, including 145 significantly upregulated genes and 85 significantly down-
regulated genes. There were 812 DEGs were between the E. coli and E. coli +pBD2
groups, including 431 significantly upregulated genes and 381 significantly downregulated
genes. There were 94 overlapping genes observed by Venn diagram analysis between the
two DEG groups.

2.4. KEGG Analysis Revealed That Immune Responses of Cells Were Trigger by E. coli

To determine the functions of the DEGs involved, Kyoto Encyclopedia of Genes and
Genomes (KEGG) annotation and corresponding enrichment analysis were performed.
KEGG pathway analysis of the DEGs between the E. coli and control groups revealed that
the immune pathways were significantly enriched, including NF-kappa B signaling path-
way, TNF signaling pathway, NOD-like receptor signaling pathway, Chemokine signaling
pathway, MAPK signaling pathway, etc., suggesting that E. coli caused immune responses
of IPEC-J2 cells to eliminate the invading microbes (Figure 3). These results clearly indicate
that the transcriptome of IPEC-J2 cells was changed after infection. Genes involved in
the immune signaling pathways are listed in Table 3. The genes related to the immune
responses include CXCL2 (chemokine (C-X-C motif) ligand 2), PTGS2 (prostaglandin G/H
synthase 2), TNFAIP2 (tumor necrosis factor alpha-induced protein 2), NFKB2 (nuclear
factor NF-kappa-B p100 subunit), NFKBIZ (NF-kappa-B inhibitor zeta), IL11 (interleukin-
11), CCL20 (C-C motif chemokine ligand 20), etc. According to the PPI (protein–protein
interaction) net analysis of the 230 DEGs, NFKB1(Nuclear factor NF-kappa-B p105 subunit),
TP53 (tumor protein p53), PTEN (Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase)
and CDC6 (cell division control protein 6) may be the key genes in IPEC-J2 cells in response
to E. coli (Figure 4).
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Table 3. DEGs involved in the immune signaling pathways caused by E. coli.

KEGG Pathway ID Gene Name Corrected p-Value

NF-kappa B signaling
pathway ko04064

TNFAIP3, BIRC3,
CXCL8, TICAM1,
NFKBIA, ICAM1,

PTGS2, BCL10,
PLAU, NFKB1, RELB,

NFKB2

0.00000127

TNF signaling
pathway ko04668

TNFAIP3, MAP3K8,
BIRC3, EDN1,

NFKBIA, ICAM1,
PTGS2, EN-

SSSCG00000008954,
CXCL2, NFKB1,

CCL20, BCL3

0.00000233

NOD-like receptor
signaling pathway ko04621

TNFAIP3, BIRC3,
CXCL8, NFKBIA,
NFKBIB, NFKB1

0.014302364

Chemokine signaling
pathway ko04062

FOXO3, RAC1,
CXCL8, NFKBIA,

NFKBIB, EN-
SSSCG00000008954,

CXCL2, NFKB1,
GNAI1, CCL20

0.014397446
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There were 812 DEGs between the E. coli and E. coli +pBD2 groups. KEGG path-
way analysis revealed DEGs involved in ribosomes, oxidative phosphorylation, and some
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diseases including Parkinson’s disease, Huntington’s disease, Alzheimer’s disease, Non-
alcoholic fatty liver disease (NAFLD), and others (Figure 5). These results clearly indicate
that the transcriptome of IPEC-J2 cells was regulated by pBD2. The 431 upregulated DEGs
and 381 downregulated DEGs were analyzed by PPI net, respectively (Figures 6 and 7).
The results showed that the DEGs related to immune responses were obvious in the
upregulated DEGs by PPI analysis, including MX1 (interferon-induced GTP-binding
protein Mx1), EIF2AK2 (eukaryotic translation initiation factor 2 alpha kinase 2), OAS2
(2′-5′-oligoadenylate synthetase 2), IFIT1 (interferon-induced protein with tetratricopep-
tide repeats 3), IFIT2 (interferon-induced protein with tetratricopeptide repeats 2), IFIT5
(interferon-induced protein with tetratricopeptide repeats 5), IF144 (interferon-induced pro-
tein 44), etc. STAT1 (signal transducer and activator of transcription 1) and CREBBP (CREB
binding protein) were the key genes (Figure 6). The downregulated DEGs were clustered
into three groups (ribosome, oxidative phosphorylation, and proteasome) (Figure 7). These
results indicate that pBD2 has multiple functions in cells against E. coli.
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2.6. Comparison of pBD2 Effect with E. coli-Induced Transcriptome Changes

There were 94 overlapping DEGs by Venn diagram analysis, which enabled us to
identify transcripts specifically regulated by pBD2. Among these 94 DEGs, 85 DEGs were
reverse expressed including 35 DEGs upregulated by E. coli and downregulated by pBD2
under E. coli stimulation (E. coli + pBD2 group). The other 50 DEGs were reverse expressed
conversely to the above genes in both DEG groups (Figure 8).
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The KEGG pathway analysis of 85 DEGs with reverse expression showed that mi-
croRNA in cancer was the only significantly different signaling pathway, including PTEN,
CDC25A (cell division cycle 25A), SPRY2 (protein sprouty homolog 2), E2F2 (E2F2 tran-
scription factor), PTGS2, and PLAU (urokinase-type plasminogen activator) (Figure 9). In
addition, PTEN and CDC6 were the hub genes in the PPI network for pBD2 to regulate
IPEC-J2 cell responses to E. coli (Figure 10). In addition, immune-response-related genes
among the 85 reverse expressed genes were considered. The immune-response-related
genes IL11, PTGS2 and PLAU were all upregulated in the E. coli group compared with
the control group, and pBD2 significantly downregulated the expression of these genes
compared with the E. coli group.
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2.7. Validation of RNA-seq Data by qRT-PCR

Ten genes were selected for validation of RNA-seq, and the results of qRT-PCR were
consistent with those of transcriptomics (Figure 11).
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L30; NDUFA2: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2; NR4A1: Nu-
clear receptor subfamily 4, group A, member 1. 

Figure 11. The verification of RNA-Seq results by qRT-PCR, between E. coli and E. coli +pBD2 groups.
The samples were analyzed in triplicate by qRT-PCR, and fold-changes in gene expression were
calculated by 2−∆∆CT methods with TUBA1B (tubulin alpha 1b) as a reference gene. MX1: Interferon-
induced GTP-binding protein Mx1; EGFR: Epidermal growth factor receptor; EIF2AK2: Eukaryotic
translation initiation factor 2 alpha kinase 2; PIK3R1: Phosphoinositide-3-kinase regulatory subunit
alpha; PTEN: Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase; OAS2: 2′-5′-oligoadenylate
synthetase 2; ATP6V0B: ATPase H+ transporting V0 subunit b; RPL30: Ribosomal protein L30;
NDUFA2: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2; NR4A1: Nuclear
receptor subfamily 4, group A, member 1.

3. Discussion

Defensins, a kind of antimicrobial peptide, play an active role in resisting the invasion
of pathogenic microorganisms [16]. pBD2 is one of the porcine beta defensins and shows
strong antimicrobial activity against E. coli, S. aureus and isolated multidrug-resistant bacte-
ria, with the advantages of high salt-tolerance, thermal stability, and low hemolytic activity,
as demonstrated in our previous studies [9]. In addition, pBD2 has an immunomodulatory
function [8]. However, the function and mechanisms of defensins in protecting the host
from bacteria are still unclear.

In this study, we explored by transcriptomic analyses the effects of defensins on IPEC-
J2 cells against E. coli. A total of 230 DEGs were obtained between the control and E. coli
groups. The significant signaling pathways were mainly involved in immune responses,
including NF-κB signaling pathway, TNF signaling pathway, NOD-like receptor signaling
pathway, chemokine signaling pathway, etc., as demonstrated by KEGG enrichment analy-
sis. The DEGs in these signaling pathways were upregulated, including NFKB1, NFKB2,
NFKBIA (NF-kappa-B inhibitor alpha), NFKBIB (NF-kappa-B inhibitor beta), cytokines
CXCL2, CCL20, IL1α (Interleukin 1 alpha), CXCL8 (C-X-C motif chemokine ligand 8), etc.
Furthermore, NFKB1, TP53, PTEN, and CDC6 were key genes against E. coli, identified
in the cells by PPI net analysis. NFKB1 is a key gene in the NF-κB signaling pathway,
and PTEN is an important gene in the PI3K phosphatidyl inositol 3-kinase (PI3K)–protein
kinase B (PKB/Akt) signaling pathway, which is involved in cell proliferation, differentia-
tion, apoptosis, and immunity [17]. TP53 and PTEN are essential for initiating apoptosis
and inflammatory response [18,19]. NFKB1, TP53, and PTEN were all upregulated, and
were closely related to inflammatory response. The transcriptomic analyses indicated
that immune responses of IPEC-J2 cells were triggered by E. coli, by which cells could
eliminate invading pathogens for survival. It has been reported that multiple signaling
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pathways related to inflammation were activated by E. coli or LPS, resulting in the release
of inflammatory cytokines [20–25]; those results were consistent with ours. CDC6 was a
key gene for cell proliferation by PPI net analysis (Figure 4). In addition to CDC6, CDK18
(cyclin-dependent kinase 18), E2F8 (E2F8 transcription factor), CDCA7 (cell division cycle-
associated protein 7), MCM10 (minichromosome maintenance 10 replication initiation
factor) and TIMELESS (protein timeless homolog) are all related to cell proliferation ac-
cording to their functions (Figure 4). It has been reported that CDC6 and CDK18 promoted
proliferation of epithelial cells and inhibited apoptosis [26]. These genes were all decreased
in the E. coli group, which perhaps suggest that cell proliferation was inhibited by E. coli.

There were 812 DEGs between the E. coli and E. coli +pBD2 groups, including 431
upregulated and 381 downregulated genes. PPI net analysis confirmed that the genes
in the upregulated DEGs related to immune responses and cell proliferation, and STAT1
and CREBBP were the key genes (Figure 6). These genes are involved in many signaling
pathways, including JAK-STAT and PI3K-AKT, which are related to immune responses. Our
results were consistent with previous findings that defensin regulates immune responses
in complex ways [27]. The genes related to cell proliferation in the upregulated DEGs
included CDC6, CDK18, CDK14, E2F8, CDCA7, MCM10, TIMELESS, CDC25A, CCNE2
(G1/S-specific cyclin-E2), etc., according to their functions and the PPI net analysis. These
genes were all increased by pBD2, which indicates that pBD2 protected cells from E. coli
infection by regulating cell proliferation and inhibiting apoptosis, which might be critical
for the resolution of injury, infection, and inflammation [2]. pBD2 upregulated DEGs
related to immune responses and cell proliferation, which perhaps indicates that pBD2
could promote cell proliferation and inhibit the immune responses caused by E. coli.

The downregulated DEGs were obviously clustered into three groups (ribosome,
oxidative phosphorylation, and proteasome) (Figure 7), which indicates that pBD2 had
multiple functions in the cells. The ribosome is a complex molecular machine composed
of numerous distinct proteins and nucleic acids, and is responsible for the translation of
information contained in mRNAs into functional proteins, which play an important role in
the execution of gene-expression programs, regulating basic biological processes such as cell
growth, cell division, and differentiation. The hyperactivation of ribosome biogenesis has a
critical role in cancer initiation and progression [28], and inhibition of ribosome biogenesis
represents a potential therapeutic avenue for cancer treatment [29]. pBD2 downregulated
the DEGs in the ribosome, perhaps implying that pBD2 could play a role in inhibiting the
occurrence of cancer. The DEGs in oxidative phosphorylation (OXPHOS) were related
to many diseases, and were also downregulated. OXPHOS was another source of ATP
in cells in addition to glycolysis. Although it was reported that OXPHOS is related to
cancer, many highly proliferative cell types including many cancer cells can preferentially
utilize glycolysis [30–33]. In addition, OXPHOS inhibitors have heralded novel uses either
for treating cancers in which OXPHOS is upregulated or alleviating tumor hypoxia to
improve treatment outcomes [34]. In this study, pBD2 could downregulate the DEGs
related to OXPHOS, which perhaps further implies that pBD2 could treat cancer. It was
reported that peptide antibiotic leucinostatins showed inhibitory action on OXPHOS [35],
which is consistent with our results. It was reported that the DEGs in OXPHOS were
significantly enriched and upregulated in the large yellow croaker (Larimichthys crocea)
when infected by Pseudomonas plecoglossicida, and were also upregulated in the murine
model when infected by R. conorii [36,37]. These findings suggest that OXPHOS was
related to immune responses and contributed to anti-infection strategies in the hosts. The
mechanism underlying this strengthened energy metabolism is unknown, and the DEGs in
OXPHOS were not enriched between the control and E. coli infection groups in this study.
pBD2 could downregulate the DEGs, perhaps implying that pBD2 could protect the host
from excessive inflammatory responses.

The proteasome is a large protein complex, responsible for the degradation of intra-
cellular proteins, which regulates cellular proteostasis through selective degradation of
ubiquitylated proteins [38,39]. Thereby, it performs a crucial role in cellular regulation
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and homeostasis, and has an important function in a variety of basic cellular processes
including regulation of cell cycle progression, signal transduction, modulation of immune
and inflammatory responses, etc. Malfunction of the ubiquitin-proteasome system (UPS)
contributes to various diseases including cancer, inflammation, and neurodegeneration [40].
In this study, pBD2 inhibited the DEGs in the proteasome, and even lowered some ubiqui-
tin expression including UBB (polyubiquitin-B), NEDD8, UBE2J2 (ubiquitin-conjugating
enzyme E2 J2), APC2 and APC11 (anaphase-promoting complex subunit 2 and 11), pro-
teasomal ubiquitin receptor UCHL3 (ubiquitin carboxyl-terminal hydrolase isozyme L3),
USP19 (ubiquitin carboxyl-terminal hydrolase 19) genes, etc., all perhaps further indicating
that pBD2 inhibited inflammations and the occurrence of cancer, as discussed above. It
was reported that PR39, one of the porcine antimicrobial peptides, was a non-competitive
and reversible inhibitor of 20S proteasome, and inhibited inflammation [41,42]. Our results
are consistent with that report. pBD2 downregulated DEGs related to ribosome, oxidative
phosphorylation, and proteasome, indicating that pBD2 could inhibit the occurrence of
cancer, which needs further research. Some reported defensins have been regarded as a po-
tential therapeutic target for cancer treatment, and attractive novel therapeutic candidates
for antimicrobial and anticancer purposes [43,44], which is also consistent with our results.

pBD2 changed the transcriptional response caused by E. coli. There were 85 genes with
reverse expression in the two DEGs group; KEGG analysis showed that these overlapping
genes included enrichment of the microRNA in cancer (Figure 9). In addition, PTEN and
CDC6 were key genes for pBD2 according to PPI net analysis (Figure 10). It has been
reported that defensin regulated the expression of microRNA, and that the expression
of miR-34a-5p increased in ethanol-induced liver injury in transgenic (TG) mice with
overexpressing human neutrophil peptide 1, compared with WT (wild type) mice [45].
Those results perhaps imply that pBD2 had the ability to regulate gene expression by
regulating microRNA, which needs further study. The genes associated with microRNA
in cancer included PTEN, CDC25A, SPY2, PLAU, E2F2, and PTGS2. It was reported
that PTEN could inhibit immune response and tumors [46]. SPRY2 was upregulated in
glioblastoma, and overexpression of SPRY2 is associated with human oral squamous-cell
carcinogenesis [47,48]. Dysregulation of PLAU is often accompanied by various cancers,
and inhibition of PLAU expression could suppress tumor growth [49]. CDC25A, E2F2, and
PTGS2 are all related to the cell cycle, and their dysregulation is related to tumors [50–52].
In this study, pBD2 showed anti-tumor potential by upregulating the expression of PTEN
and downregulating the expression of SPRY2 and PLAU, and pBD2 was also shown to
promote cell proliferation by upregulating the expression of CDC25A, E2F2, and PTGS2,
which perhaps might lead to tumorigenesis. Some scholars have reported that defensin had
a strong inhibitory effect on cancer [53–55], but others had opposite view suggesting that
defensin might be related to the occurrence of cancer because the expression of defensins
increased abnormally in cancer [56,57]. In addition to CDC25A, E2F2, and PTGS2 relating to
the cell cycle, these genes are all related to cell proliferation including CDC6, CDK18, E2F8,
CLSPN, CDCA7, MCM10, TIMELESS, KIF18B, etc., as mentioned above (Figure 10). These
genes were all decreased in the E. coli group, and all increased by pBD2, indicating that
pBD2 regulated cell proliferation and inhibited apoptosis, playing its role in the resolution of
injury, infection, and inflammation [2]. pBD3 enhanced ovarian granulosa cell proliferation
and migration [58]. Human β-defensins also stimulated various cellular activities, including
keratinocyte proliferation, migration, and wound healing [59]. Those results are consistent
with ours, which perhaps indicate that pBD2 could inhibit the occurrence of cancer, and
promote cell proliferation to protect cells from infection. The analysis of the overlapping
genes with reverse expression was consistent with the above analysis of DEGs in the E. coli
and E. coli +pBD2 groups. Our results provide new insights into the potential function and
mechanism of pBD2 against E. coli, and the results should be confirmed by further study
on mice or human cell lines.
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4. Materials and Methods
4.1. Strains and Cells

E. coli ATCC 25922 was purchased from the Beijing Ordinary Microbiology Strain Store
Center (Beijing, China). The IPEC-J2 cells were a gift from Zhanyong Wei at the College of
Veterinary Medicine, Henan Agricultural University.

4.2. Preparation for pBD2

pBD2 was expressed and purified in our laboratory by affinity chromatography based
on the constructed strains BL21(DE3) pLysS-pET30a-pBD2 [9]. The expression products
were analyzed by SDS-PAGE, and the protein concentration was determined by bicin-
choninic acid (BCA) assay (CW Biotech, Beijing, China).

4.3. Bactericidal Activity

The bactericidal activity was analyzed by scanning electron microscopy, as described
previously [6]. E. coli ATCC 25922 was cultured in Luria Bertani (LB) medium until
logarithmic growth stage at 220 rpm, then E. coli was incubated with 20 µg/mL pBD2
for 1 h or 4 h, and harvested by centrifugation. After being washed for 3 × 10 min in
10 mM PBS buffer, E. coli was fixed with 2.5% glutaraldehyde for 4 h, then dehydrated with
gradient concentrations of ethanol, and the samples were observed by scanning electron
microscopy (FEI Quanta 250, FEI, Hillsboro, OR, USA).

4.4. Cell Culture and Treatment

The IPEC-J2 cells were grown in 1640 medium supplemented with 10% fetal bovine
serum (TianHang Biotechnology, Zhejiang, China) and 1% penicillin/streptomycin at 37 ◦C
in an atmosphere of 5% CO2. The cells were seeded into a six-well plate and cultured until
reaching 80% confluence, then at the logarithmic period (MOI = 50:1) the IPEC-J2 cells were
challenged with E. coli or E. coli and 20 µg/mL pBD2 for 2 h in 1640 medium without fetal
bovine serum and 1% penicillin/streptomycin. After washing with PBS three times, the
cells were cultured for an additional 2 h in the medium without fetal bovine serum and 1%
penicillin/streptomycin. After washing three times with PBS, 1 mL of TRIzon was added
to the six-well plate, and the cells were lysed by pipetting, then the solute was transferred
to RNase-free Eppendorf tubes for RNA extraction.

4.5. Library Preparation and Quality Control

RNAs were extracted using TRIzol reagents (CW Biotech, Beijing, China). The ex-
tracted RNAs were quantified using a spectrophotometer (Nanodrop 2000, Thermo Fisher
Scientific, Waltham, MA, USA). A total of 3 µg RNA was sent to Biomarker Co., Ltd. (Bei-
jing, China) to construct the cDNA libraries. Sequencing was performed on an Illumina
HiSeqTM 2500 platform. The original raw data were saved in FASTQ file format. Each
sequenced sample included two FASTQ files, containing reads from either end of the cDNA
fragments. Quality control was performed to remove adaptor sequences, low-quality,
and contaminated reads. Then the clean reads were mapped to the reference genome by
alignment software HISAT2.

4.6. Analysis of DEGs

The transcript and gene expression levels were measured by FPKM (fragments per
kilobase of transcript per million fragments mapped). The DESeq2 R package was used to
analyze differential gene expression. The false discovery rate (FDR) was corrected using
the Benjamini–Hochberg procedure. The threshold of FDR < 0.05 was used to filter out
differential expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis of the DEGs were performed using BMKCloud (www.biocloud.net,
accessed on 5 September 2019), based on the KEGG database (http://www.genome.jp/
kegg/, accessed on 5 September 2019), and protein–protein interaction (PPI) networks of
the DEGs were constructed on https://www.string-db.org/, accessed on 17 August 2021.

www.biocloud.net
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
https://www.string-db.org/
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4.7. qRT-PCR

The extracted RNAs were converted to complimentary (c) DNA by a reverse tran-
scriptase synthesis kit (DRR047A; TaKaRa Biotechnology, Shiga, Japan). The primers were
designed using Primer Premier™ 5.0 (Sigma–Aldrich, Saint Louis, MO, USA) and are
detailed in Table 4. Assays were performed with SYBR green dye (QIAGEN, Dusseldorf,
Germany) using a real-time PCR cycler (LightCycler 96, Roche, Basel, Switzerland). The
program was 95 ◦C for 30 s, 95 ◦C for 15 s, 60 ◦C for 30 s, 72 ◦C for 15 s, for 40 cycles.
The results were analyzed using the 2−∆∆CT method with TUBA1B (tubulin alpha 1b) as a
reference gene [60].

Table 4. Primers used for qRT-PCR.

Genes Sequence (5′ → 3′) Size (bp) GenBank Number

MX1
Forward GTTACCGGGACAGCGAGATT

105 NM_214061.2Reverse CATGACTGATTCCCACGCCT

EGFR
Forward AGGACGAAGCAACATGGTCA

132 NM_214007.1Reverse TGCATAGCACAGGTTTCGGT

EIF2AK2
Forward CCCTGCACTTCTAGCCATCT

121 NM_214319.1Reverse CGACCACTGGCCATTTCTTTC

PIK3R1
Forward CTTGAGTCGGGTGCTGGAAC

164 XM_021076847.1Reverse AACGCGTCCCTAACCGATTC

PTEN
Forward TGCAATCCTCAGTTTGTGGT

224 NM_001143696.1Reverse TCCTCTGGTCCTGGTATGAAG

OAS2
Forward AGCCAGAGCAATGGGAAACT

228 NM_001031796.1Reverse GAGTTGCCCCTCAAGACTGT

ATP6VOB
Forward AACCCCAGCCTCTTCGTAAA

100 XM_021096834.1Reverse TCACTCTGGAGGTCTGAAGG

RPL30
Forward GACAAGGTCCAATGTTCCCA

110 NM_001190178.1Reverse CCAACCTCTTTTGTAGCCGT

NDUFA2
Forward TGCTAAGTGGCAAAGCCTG

167 XM_003124046.4Reverse GGTAGAGGGTGGAACAAGGAA

NR4A1
Forward TGAGAAGGTTCCCGGCTTTG

196 ENSSSCG00000031321Reverse GATGCTGTCGATCCAGTCCC

TUBA1B
Forward TACTCACCTCGACTCTTAGC

103 NM_001044544.1Reverse GATGCACTCACGCATGG

4.8. Statistical Analysis

All experiments were conducted with three biological replicates. Data were assessed
by analysis of variance using SPSS Statistics 24 (IBM, Armonk, NY, USA).

5. Conclusions

In this study, IPEC-J2 cells were challenged with E. coli, and the effect of pBD2 on
the gene expression of cells infected by E. coli was detected by transcriptome analyses.
KEGG enrichment analysis revealed that DEGs between the control and E. coli groups
were involved in signaling pathways related to immune responses. The DEGs between the
E. coli and E. coli +pBD2 groups were involved in the ribosome, oxidative phosphorylation,
and some disease pathways. These results indicate that pBD2 can play an active role in
many biological processes including cancer, cell proliferation, and immunity. Furthermore,
analysis of the overlapping genes with reverse expression in two DEG groups further
revealed that pBD2 was involved in multiple biological processes to protect cells from
E. coli. Our results provide new insights into the potential function and mechanism of pBD2
against E. coli. Meanwhile, this study provides a certain theoretical basis for the research
and development of novel peptide drugs.
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