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Genomics is Big Data
The phrase “Big Data” is being used across a diverse array of 
disciplines, each with its own interpretation of its meaning. 
To the 8,000 particle physicist consumers of Large Hadron 
Collider measurements,1 Big Data means having access to a 
constant stream of over 42 petabytes/year of particle collision 
sensor data through a three-tier network of high-performance 
computing (HPC) data centers across the world. Much of the 
heavy lifting of raw data preprocessing occurs within the mas-
sive distributed software and hardware infrastructure of net-
work, storage, and compute systems, allowing the researcher 
to mine collision events in Big Data to make amazing discov-
eries like the observation of the Higgs boson.2

To the consumer of genomics data, who are now resident 
in all life science disciplines ranging from ecologist to oncolo-
gist, Big Data might mean a dozen text files, each derived from 
a raw image file produced by the DNA sequencer, filled with 

tens of millions of DNA sequence strings summing to tens 
of gigabytes of data. That researcher might have trouble trans-
ferring the data from a DNA sequencing instrument to the 
computational workflow site, and may even resort to mailing 
a hard drive to a collaborator if the network bandwidth is too 
limited. Once data reach the target file system, the researcher 
must balance finite storage and processing resources to pro-
cess raw DNA sequence data into powerful constructs like a 
new genome (eg, coffee3) or a biomarker signature of cancer 
drug resistance.4 To these researchers, modern DNA sequence 
analysis is a Big Data endeavor. If all the DNA sequencing 
instruments were stacked next to the LHC collider, anchoring 
only four, albeit much larger, instruments, and the annual DNA 
output is summed, even the particle physicist would probably 
agree that genomics is a now a Big Data discipline.

While rapid DNA sequencing has been around for 40 
years,5 only recently did it enter the Big Data zone. Many 
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biologists use deep DNA sequencing technology, which 
generates gigabyte dataset files, as the engine for a growing list 
of powerful applications. High-throughput sequencing allows 
the rapid construction of entire DNA molecules (reference 
chromosome assemblies) or partial sequencing of DNA/RNA 
molecules at deep enough sampling for gene expression and 
polymorphism discoveries. These data troves are stored in bur-
geoning data repositories such as the Sequence Read Archive 
(SRA) that can be accessed National Center for Biotechnology 
Information (NCBI), the European Bioinformatics Institute 
(EBI), and the DNA Data Bank of Japan (DDBJ).6 SRA con-
tains 4.0 petabytes of data deposited in the last 6 years with 
geometric growth,7 CGHub,8 which stores National Can-
cer Institute data from petabyte scale projects including The 
Cancer Genomics Atlas9 and Illumina’s BaseSpace.10 Data 
access at these repositories has inspired or taken advantage 
of advanced data transfer networks such as Internet2 100Gbit 
Advanced Layer 2 Services (AL2S11) and GENI,12 data flow 
control applications such as Globus Online13 and Aspera,14 
and cyberinfrastructure environments (reviewed in15) including 
XSEDE,16 iPlant,17 Open Science Grid,18 ELIXIR,19 UPP-
NEX,20 CloudBioLinux,21 BGI-Cloud,22 and CloudLab.23 
Diving sequencing costs and the power of the high-through-
put sequencing measurement paradigm will surely accelerate 
genomics data accumulation and processing demands.

No matter which discipline generates Big Data, it must 
be transferred, stored, processed, and archived for reproduction 
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Figure 1. High-throughput DNA sequence data flows across multiple networks. A representative data analysis lifecycle begins when physical molecules 
(DNA, RNA) from biological samples are measured at a sequencing facility. DNA text data files (FASTQ) are sent to the researcher across inter-
organization networks A or B to a local or cloud storage site. Sometimes researchers receive datasets via mailed hard drives across the postal network 
(see note below for clarification). DNA sequences are then transferred to the workflow compute site (eg, /scratch) across network D, which could be 
another organization or within the user’s HPC compute system. Multiple arrows are shown for network D, as one or more data streams are possible during 
transfer. Once data is transferred to HPC nodes, workflows including preprocess, genome alignment, and downstream analyses are subject to internal 
network E constraints (eg, Infiniband). Final data results (including raw FASTQ) are then transferred over network F into a data archive. All hardware has 
constraints. Each network might be capable of different transfer rates (1M. 100 G bits per second). Each file system has finite storage, variable read/
write rates, variable numbers of controllers, and parallelization. Note that only one flow is shown, yet compute could occur across multiple systems.

of results as well as unforeseen data mining opportunities. 
The high-throughput DNA sequence data life cycle is shown 
in Figure 1. Note that this life cycle includes data genesis at 
the DNA sequencer and includes multiple networks data 
must flow through, both between organizations and within an 
HPC system, where workflow software crunches data flowing 
through networks within the data center. Most researchers are 
focused on biological experimental design, yet Big Data can 
easily overwhelm the average researcher’s compute and stor-
age resource allocations. Therefore, careful consideration of the 
data life cycle must be managed by the researcher or abstracted 
through automated tools. In essence, Big Data biology is still 
driven by the tried and true scientific method of hypothesis 
testing through experimentation, but Big Data forces a con-
comitant “technology experimental design” that can be com-
plex and often beyond the capacity of both the experimentalist 
and standard IT support within a research enterprise.

DNA sequencers and other instruments inject measure-
ments of the natural world into the biological data ecosystem. 
While data are created with a specific purpose in mind, one can 
view genomic data generators as connections to the larger world 
of scientific collaboration. This collaboration occurs through 
networks like the Internet and Internet2, where the data flows 
between the original investigators’ compute resources and enters 
repositories such as NCBI where creative data recombination 
and analysis can produce evidence for unforeseen hypotheses. 
This collaborative work and data flow allows the original and 
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opportunistic investigators to test hypotheses far beyond the 
original context of the data. Given the potential of Big Data 
mining, it is essential for twenty-first century biologists to be 
aware of the underlying data transfer network technology.

Data transfer requests are affected by every link along the 
way, including the source computer (and storage), the remote 
computer (and storage), and all of the intermediate network 
connections. This article is designed to raise awareness of these 
myriad issues and discusses potential solutions to the travails 
one is likely to encounter. Specifically, we will describe the cur-
rent state of the hardware technology that links all stages of 
the genomics data life cycle. We will describe the current limits 
of network, storage, and data security and access technology. 
A primary intention of this article is to orient the genomics 
researcher in key aspects of the data transfer processes in order 
to design networked analysis systems for a discrete research 
group, and to help the experimentalist frame his/her own 
genomics-oriented needs to enterprise IT professionals.

Data Transfer Networks
Data transfer networks and new network technologies are 
great enablers of genomic data lifecycles. Rapidly increasing 
network speeds (eg, 100 Gbit/s Internet2  AL2S) and com-
puter power hold the promise of moving datasets from instru-
ment to compute and finally to end result in time frames that 
might someday be useful for near-real-time feedback. Modern 
technologies such as software-defined networking (SDN) 
enable virtualization of the network, the ability to optimize 
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Figure 2. Seven-layer open systems interconnection (OSI) model. This model of data communication abstraction layers allows for the conceptualization of 
data transfer networks. Adapted from http://en.wikipedia.org/wiki/OSI_model under terms of the Creative Commons Attribution-Share-Alike License 3.0.

paths, schedule transfer jobs, and the ability to contain data 
flows with specific security characteristics. However, as with 
most technologies, scientists will go through much iteration in 
order to make these technologies enable their discovery pro-
grams and not just be “cool technology” on the horizon. Scien-
tists who need to deploy advanced networks on their systems 
should understand what is possible now, set strong develop-
ment goals, and test these networks with real-world datasets. 
For optimum experience, scientists should build strong col-
laborations in their IT departments with progressive network 
administrators, system administrators, storage administrators, 
and development staff in order to truly strive toward their spe-
cific goals. Often, IT professionals are focused on the con-
struction of robust general-purpose “production” systems, and 
the scientist may need to explicitly communicate the emerging 
data needs for genomics applications.

Network data flow from source to destination is often 
conceptualized as the seven-layer open systems Interconnec-
tion (OSI) model (Fig. 2). Modern genomics data lifecycles 
require modern network hardware that can sustain network 
flows on the order of 1 Gbit/s, or preferably greater, across 
these layers. To put into perspective, a 1 Gbit/s data flow 
transfers a terabyte of data in approximately three hours. If 
a network can sustain a 10 Gbit/s data flow, the network can 
transfer the same terabyte of data in 20 minutes.24 As networks 
improve (ie, 40 and 100 Gbit/s with 400–1,000 Gbit/s on the 
horizon), these transfer times drop dramatically and a scientist  
is able to use the network to transfer larger datasets faster. 
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However, maximum data flow rates are often measured under 
ideal conditions since many variables affect the actual trans-
fers, such as network interface card (NIC) capability, interme-
diate processing nodes, firewalls, routers, network congestion, 
computer bus speed, file system speed, and other factors.

The ability to sustain a flow (or collection of flows) at 
1 or 10 Gbit/s transfer speeds is a function of maintaining an 
end-to-end path that can sustain the transfer speed. In simple 
terms, the end-to-end transfer rates are limited by the slow-
est link, wherever it might exist within a path. Typical desktop 
hosts have 1 Gbit/s NIC connections, while modern servers 
holding large datasets have 10 Gbit/s or better NICs. However, 
NICs in servers and DNA sequencers can have widely varying 
throughputs. Across a data transfer path, the speed of the slow-
est NIC defines the theoretical transfer rate across that path.

Unfortunately, finding the slowest NIC is not going to 
define the actual maximum data transfer rate across a network 
path. NICs plug into a computer bus, such as the PCI Express 
bus, which can have different speeds (ie, 2.5–128 Gbit/s) 
depending on the version and number of lanes supported. NICs 
also have varying amounts of data buffer memory and internal 
architectures, some of which might support off-loading of spe-
cific network features to hardware for acceleration [eg, network 
processing unit (NPU)]. The actual network devices (routers 
and switches) have similar limitations. Routers and switches 
take the data from the computer and pass it across the local 
area network (LAN) and the wide area network (WAN). Each 
point-to-point set of interfaces through which the data passes 
can affect the data speeds. Each point-to-point set of interfaces 
has a particular speed, an existing amount of traffic, a set of 
memory buffers, and an existing amount of loss or errors.

The best way to see how well a network is functioning 
is to test it. Network engineers have many tools at their dis-
posal such as perfSONAR.25 It should be noted that, often, 
domain-specific engineers typically focus on their specific 
subsystems including networking, storage, and security, so 
a data source to destination test by the data consumer will 
provide a realistic measure of network performance. This is 
a good point to remind the reader that networks are shared 
resources, so data flows from other users (network congestion) 
will obviously slow down the expected data transfer rates and 
tests should be spread out at different times. Realistic transfer 
measurements, coupled with knowledge of the slowest hard-
ware point on the path, provide a data flow baseline. If the 
baseline is near the expected transfer maxima, then all is well. 
However, if performance is significantly less than expected, 
it may be time for a discussion between the data consumer 
and IT engineers. Often, there is a malfunctioning hardware 
component or misconfigured device that can be rectified. If 
the data pipe is running optimally and performance is still not 
what the researcher needs, then it may be possible to relieve 
bottlenecks (eg, see storage section below) through focused 
hardware investments and possibly through changing I/O 
allocation policies for heavy data transfer users.

Data Transfer Network Protocols
In addition to physical hardware, network protocols, transfer 
methods, and parameters used in transfers can all affect the abil-
ity of a scientist to fully realize the goals of migrating data at full 
line rate from source to destination endpoint. Network protocols 
define how data passes over the network in a manner in which an 
endpoint can decode in a decipherable way. The efficient transfer 
of large datasets typically involves the creation of “chunks” that 
an application sends across the various links to the destination. 
The loss of a particular chunk can be highly impactful. Such 
losses can happen for a variety of reasons, including exhaustion 
of packet buffers in the network equipment, reaching the peak 
capacity for a specific link, failing or intermittent optics, or even 
degradation of fiber or copper infrastructure. Applications can 
rely on network protocols to handle resending data, or the appli-
cations can handle the resending by themselves.

Applications primarily use two specific Layer 4 transport 
network protocols for transferring data: transmission control 
protocol (TCP) and user datagram protocol (UDP). Both these 
transport protocols layer on top of the Layer 3 Internet Protocol 
(IP). An application using TCP relies on the transport protocol 
to send chunks of data, each of which receive an acknowledg-
ment when the destination receives them. There is a maximum 
amount of unacknowledged data that can be in transit on the 
links (the “TCP Window”), which means that the sender must 
pause when that limit is reached. Likewise, either side may 
detect a lost packet, and then retransmitting of the missing 
chunks proceeds. For high performance, such losses must be 
minimal (ideally zero), since a loss of only 1 packet in 22,000 
can cause a significant drop in performance.26 An application 
using UDP allows the transport protocol to send data in an 
“unreliable” or “best-effort” method. The protocol continues to 
send data as rapidly as possible without tracking and resending 
missing chunks. Since the transport protocol does not handle 
the tracking of the chunks, the applications running on both 
ends must coordinate those activities. Both UDP and TCP 
protocols work, but as genomics data sizes increase, the way 
these protocols are tuned and the raw network fidelity can have 
a huge impact transfer rates, especially over long distances.

Data Transfer Applications
In order for the scientist to move datasets over the network, he 
or she interacts with a software application to handle the trans-
fers. These Layer 7 applications, regardless of the underlying 
protocols, move the data in either a serial fashion (ie, one 
file after another) or a parallel fashion (ie, two or more data 
streams at the same time). Both methods can effectively fill an 
end-to-end network path to capacity, but parallel transfers can 
often radically speed up transfer. While any Layer 7 transfer 
data application can transfer data in parallel streams by piping 
files in byte offsets and reconstructing them, several software 
packages explicitly use parallelization in their design includ-
ing Aspera fasp14 and Globus Online’s gridFTP technology.27 
Additional variables such as file size, number of files, encryption 
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requirements (see next section), the manner that the application 
interacts with the network, and storage considerations all affect 
the actual performance of the transfers. Generally, compress-
ing lots of little files into several larger files and using a parallel 
transfer application yields the best results with typical datasets.

Data Transfer Security 
Prior to the transfer of genomics data to a new location, a scien-
tist must consider whether regulations or common sense require 
data encryption, stringent access control, and firewalls. For small 
datasets, there is little impact on encryption and decryption, but 
for large genomics datasets these procedures can delay data entry 
into post-transfer analysis workflows. The scientist must also 
understand whether these encryption requirements apply to the 
data while it resides on disk, while it is “in flight” between two 
endpoints, or both. Without file or transfer encryption, a mali-
cious eavesdropper can tap a wire or switch and read all the 
contents of the file in plain format. With file encryption but no 
transfer encryption, the eavesdropper can capture the encrypted 
files and apply decryption techniques to the full files. With both 
file encryption and transfer encryption, the eavesdropper can 
capture encrypted segments of transfers, but he or she must 
decrypt how the files exist on the network and then what the 
files actually are. For the purposes of transfer, the act of encrypt-
ing may incur a performance penalty on the transfer itself.

The three basic principles of information security, gener-
ally known as CIA, are confidentiality (no unauthorized disclo-
sure of data), integrity (no unauthorized modification of data), 
and availability (ensuring the accessibility of data to legitimate 
users). Different security mechanisms provide different degrees 
of confidentiality, integrity, and availability. A data center 
generally relies on access control and other security practices 
to achieve the CIA. Access control is a security mechanism 
that protects data from unauthenticated users and determines 
the level of authorization for an authenticated user.

Access control provides the functions of authentication 
and authorization. Authentication identifies a legitimate user 
of the protected data. The proof of identity can be one or a mix 
of the following: 1) what the user knows (eg, password, PIN, 
pass phrase, or challenge response where the user must answer 
a question); 2) what the user has (eg, security token, ID card), 
3) what the user is or does (eg, finger print, retinal pattern, 
signature, voice, face). Authorization grants or denies permis-
sion to an authenticated user to perform certain operations on 
protected data based on data security policies. Access control 
also traces and logs the operations performed by a user for 
auditing purpose.

When a user requests to perform certain action (eg, data 
download, data modification, data deletion) on the data on the 
servers, the user submits his/her identity and credential (eg, 
username and password), which together uniquely identify 
the user. The access control system verifies the identity and 
credential against its identity database. If the authentica-
tion is successful, then the access control system examines its 

data security policy database, which stores policies defining 
the authorizations for authenticated users. For example, an 
authenticated user may be authorized to download data but not 
to change data. If the action that the user requests to perform 
on the data is authorized according to the data policies, then 
the access control system will grant the permission to the user. 
Otherwise, even though a user is successfully authenticated, 
the action request will be denied. Access control enforces 
security controls on data and the servers storing data.

In addition to data encryption and access, networks are 
protected by firewalls. A firewall is a network security system 
that protects the infrastructure, service, and data of a network 
by enforcing controls on the incoming and outgoing network 
traffic at the network border. Every packet passing the border is 
examined against a set of firewall rules preinstalled in the fire-
wall. Firewall provides security at the cost of introducing traffic 
delays, as each packet is held at the firewall for screening. For 
most of the common missions and services today running in a 
campus network, the impacts of traffic delays caused by fire-
walls are small and tolerable, considering the security benefits 
they offer. However, in large dataset transfer scenarios, firewalls 
can introduce latencies, bandwidth ceilings, and, occasionally, 
dropped packets if under heavy load. Firewalls serve a neces-
sary purpose, but scientists and IT engineers have to be aware 
of the workflow and the impacts to the specific workflows in 
order to achieve proper balance of security and performance.

Campus networks are general-purpose networks, which 
are not designed and optimized for data-intensive science 
applications. Scientific data flows tend to be large and long-
lived, known as “elephant flows”, whereas most campus use is 
small and short-lived (eg, web traffic) and known as “mouse 
flows”. It is recognized that stateful firewalls have become 
performance bottlenecks for data-intensive applications.28 The 
Science DMZ model (Fig. 3) was proposed to solve the prob-
lem by removing the performance limits caused by a state-
ful firewall.29 A Science DMZ is a subnetwork of a campus 
network that is structured to be safe but without the per-
formance limits that result from a stateful firewall. The idea 
behind the Science DMZ is to create a “demilitarized zone” 
that is as close as possible to the network edge, outside the 
network enterprise, and put the special switches and gears 
for data-intensive systems in that zone. By bringing the data-
intensive systems together and close to the network edge, the 
path to reach these systems is shortened, thereby reducing the 
communication time. Since Science DMZ is placed outside of 
the network enterprise, traffic to the Science DMZ does not 
go through the firewall, hence removing the firewall perfor-
mance bottleneck. Network gear in the Science DMZ can be 
optimized for high-performance (100 Gbit/s interfaces) and 
large buffers, without requiring the entire enterprise to sup-
port these more costly solutions. Without firewall protection, 
there must be a substitute security mechanism to protect the 
Science DMZ. The substitute security mechanism of the 
Science DMZ might be an alternative such as setting access 
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control lists (ACLs) in the DMZ router, manipulating route 
tables, utilizing devices that manipulate data plane flows, etc. 
These security approaches allow traffic from particular known 
sources to specific known destinations and ports. These meth-
ods effectively provide functionality approaching key aspects 
of the enterprise firewall and, simultaneously, allow the full 
throughput of data.

Data Flow Control with Software-defined 
Networking
SDN is an important advance toward allowing more effective 
scheduling of I/O resources used in WAN transfers. SDN is a 
new network paradigm that enables applications and network 
operators great freedom to programmatically customize their 
networks. This paradigm accomplishes this customization by 

separating the control plane that decides how to forward traffic 
from the data plane that performs actual traffic forwarding, as 
seen in Figure 4A. Network devices, hence, become simple, 
pure packet-forwarding devices. An application program-
ming interface (API) is provided for network operators and 
applications, which allows them to enforce control over packet 
forwarding rules on network devices.

Why SDN? In traditional non-SDN networks, a flow of 
packets traversing the hops between communication ends are 
handled at network devices (routers and switches) according to 
well-defined, standard protocols. Neither the application initi-
ating the flow nor the network operator has full control over 
the flow. The complex and static nature of traditional networks 
makes them difficult to meet the requirements of various stake-
holders and applications. Network operators face the challenges 

DMZ switch

Internet

Border router

Firewall

Internal
network

High performance
data transfer

nodes

High performance
storage

Data acquisition
systems

Science DMZ
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of difficult management tasks.30 To enforce network policies, 
network operators need to manually configure each individual 
network device from various vendors using vendor-specific con-
figuration tools and interfaces, which can take a long time. For 
network researchers desiring to experiment with new network 
protocols, there is almost no practical way to conduct the experi-
ment on traditional non-SDN networks.31 SDN is a mechanism 
to return data flow control back to the data transfer agents.

Genomics scientists are experiencing increasing needs 
for transferring Big Data across long-distance geographic 
locations. Big Data transfer applications have demanding, 
multi-domain bandwidth requirements. While upgrading 
existing networks with larger pipes and faster switches sig-
nificantly increase end-to-end bandwidth, there is a greater 
need for simple and scalable end-to-end network architec-
tures and implementations that can most efficiently utilize 
available network bandwidth.28 Existing solutions in tradi-
tional non-SDN build bandwidth-guaranteed virtual circuits 
between the communication ends. A virtual circuit is a way 
of transferring data over packet-switched networks in such 
a way that it appears as though there is a dedicated physi-
cal layer link between the source and destination for the data 
transfer. While these solutions are widely adopted, several 
challenges remain28:

•	 Campus networks or enterprise networks were not archi-
tected, deployed, or optimized for Big Data transfers. 
Tailoring networks to better meet the needs of Big Data 
transfers is nontrivial with traditional networks.

•	 Bandwidth-guaranteed virtual circuits need to be manu-
ally built, configured, and managed by network operators 
between two communication points each time a new data 
transfer starts and need to be torn down when the trans-
fer ends in order to release network resource. For a data-
transfer-intensive environment, an automatic mechanism 
is called for.

SDN, emerging as a new network paradigm, offers the 
capabilities that can be leveraged to build solutions for Big Data 

transfer that address the challenges. Various SDN-based solu-
tions for Big Data transfers have been proposed28,32–34 Open-
Flow is one embodiment of SDN concept and experiences 
high popularity.31 The architecture of OpenFlow is depicted 
in Figure  4B. A centralized controller controls OpenFlow 
switches. An OpenFlow Switch has one or more flow tables. 
A flow table consists of multiple flow entries. Each flow entry 
has match fields, counters, and instructions. Data packaged in 
frames arriving at an OpenFlow switch are compared with the 
match fields of each entry, and if there is a match, the frame is 
processed according to the instructions in that entry. Counters 
are used to keep statistics about the frames. If no match is found, 
the OpenFlow switch encapsulates the frame and sends it the 
controller. The controller is software application that programs 
the flow tables of each OpenFlow switch, using the OpenFlow 
protocol. The communication between the controller and an 
OpenFlow switch is through a secure communication channel.

In the context of big genomics data, SDN technology 
coupled with innovative network approaches can decrease 
the time to transfer a set of large DNA sequence files or 
other type of biological data from one remote repository to 
a researcher for timely analysis. Steroid OpenFlow Service 
(SOS33) is an SDN-based solution designed to seamlessly 
increase the throughput of large data transfers across large 
networks (with wide geographical distances and latencies 
which increase the delay–bandwidth product). A diagram 
depicting the SOS architecture is shown in Figure 5. SOS 
leverages the fact that TCP is typically unable to utilize all 
the bandwidth available over large networks. TCP is only 
permitted to send its window-size number of packets before 
receiving an acknowledgment. In a large network, this means 
the sender must wait idle for the acknowledgment prior to 
sending additional data packets. SOS works by redirect-
ing the designated TCP connection of such long-distance 
data transfer to a local SOS agent via an in-path OpenFlow 
switch. The local SOS agent transparently acknowledges the 
packets from the source of the data transfer as if it was the 
intended destination. Because the local SOS agent is deployed 
on the source’s local network, the delay-to-acknowledgment 

SOS agent SOS agent

LAN

LAN

LAN

LAN

Transparent redirect
to and from agentsSource client at

campus A
Destination client at

campus B

Wide Area
Network

SOS OpenFlow
controller

Floodlight

Figure 5. Steroid OpenFlow Service (SOS) network architecture. SOS works by redirecting the designated TCP connection of such a long distance data 
transfer to a local SOS agent via an in-path OpenFlow tunnel to a remote SOS agent.
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is negligible as compared to the real destination. As such, 
the source can continuously transfer data to the local agent 
without pause.

As the source SOS agent accumulates a buffer of data 
from the data transfer source, a suitable destination SOS agent 
is located nearby the intended data transfer destination. The 
source and destination SOS agents establish a number of paral-
lel TCP connections between each other to rapidly transfer the 
data from the source SOS agent to the destination SOS agent. 
The single buffer of data at the source SOS agent is fed into the 
multiple parallel TCP connections. The parallel TCP connec-
tions each have the same TCP windowing problem; however, 
since they all operate independently, one connection’s pause for 
an acknowledgment does not prevent any of the other con-
nections from transmitting data. In this way, the large network 
between the two agents can be utilized to its full potential, and 
the bottleneck then migrates toward the network bandwidth 
itself rather than TCP.

Data Storage
Advanced data transfer networks that quickly control the flow 
of genomics data are critical pieces of the Big Data analysis 
puzzle. Of course, large storage footprints are required and 
often guide the scale of an experiment. Using today’s com-
mercial technology, the interface of the network at the storage 
system is a core bottleneck in the data transfer process. This 
section discusses file system considerations in the context of 
data transfers.

As of this writing, there are two devices typically used 
for active data storage: magnetic disk (HDD) and solid state 
disk (SSD). HDD still costs considerably less than SSD and is 
generally used for large-scale storage. HDD have various per-
formance rates depending on the technology. Some of the bet-
ter enterprise disks maintain a read throughput of about 225 
MBytes/s and a write throughput of about 222 MByte/s. These 
values assume that data is read and written in large sequential 
chunks. Typical SSD performance is about 498 MB/s reading 
and 458 MB/s writing written sequentially. Accessed in ran-
dom 4K chunks, this drops to 31 MB/s reading and 84 MB/s 
writing; however, if about 64 different files are written in 4K 
chunks, this goes up to 204 MB/s reading and 217 MB/s writ-
ing. Hardware vendors are continuing to ramp up SSD perfor-
mance so that these numbers may soon shift upward.

While a faster data transfer option, SSDs have a much 
shorter expected lifespan than HDD, ie, as little as 10 months 
in continuous usage. For this reason, most data center class 
storage systems still employ HDD as the primary active stor-
age. SSD has a number of uses, though. First, SSD arrays are 
being pushed into production as Data Transfer Nodes (DTN) 
in a data center. These fast, parallel storage systems are placed 
close to the fastest world-facing pipe and used as a staging 
area for Big Data receipt prior to pushing onto slower storage. 
Second, medium-size databases with a write-some/read-many 
usage patterns work well on SSD. Another approach is to use 

SSD as a burst buffer – a place to write data temporarily before 
either being sent over the network or before being written to 
disk. This setup is similar to a disk cache, but regular cache is 
volatile whereas data on SSD survives a crash or loss of power. 
These burst buffers are typically managed by system software 
and may not be directly visible to the user. Alternatively, these 
can be set up for specialized purposes or specific algorithms.

In a cluster-based processing system, especially one with 
many users and various applications, storage configuration 
can be a very complicated problem. Different applications may 
present different workloads to storage, and multiple users may 
run various applications at the same time. A configuration 
that works really well for one workload may not work well for 
another. Even worse, an application that is a good match to the 
storage configuration may run poorly when other users execute 
applications that are not well suited for that workload.

Regardless of target workloads, a storage system for 
a large multiuser cluster will employ many storage devices 
(HDD or SSD, from here on we will simply refer to primary 
storage as “disk”). Multiple disks are employed both to achieve 
a large storage area and/or to improve performance through 
parallelism. Parallelism is simply the idea that multiple disks 
(and controllers, channels, server, etc.) can be operating simul-
taneously and thus get more I/O done per unit time. This 
implementation is used in almost any large-scale cluster. Not 
as obvious, though, is how this parallelism is used by a given 
workload, and to what extent the file storage system software 
supports this usage pattern.

Big Data transfers require parallelism. For example, 
a traditional logical volume manager (LVM) treats a group 
of disks as if they were one disk, stacked one after the other. 
Thus if you write large amounts of data to it from the net-
work, it will fill up the first disk and then move on to the 
second, and so forth. This implementation is a great solu-
tion for managing the size of storage system, but not so great 
for parallelism. The likelihood is that only one disk will 
be accessed at a time by any given program. Note that this 
description does not refer to any particular LVM, as most 
modern products include many ways to manage the disks 
including redundant array of disks (RAID) and just a bunch 
of disks (JBOD). A different approach is striping, whereby a 
group of disks are also treated as a single disk, but the logical 
order of the data is rearranged so that one block of data (usu-
ally 4K) is written to a disk, then it moves to the next disk, 
and so on, in round-robin fashion. With this organization it 
is now much more likely that an application will access data 
on multiple disks at one time (as long as it accesses more than 
one block at a time) and thus can achieve higher performance 
through parallelism.

These schemes can be very useful for small to medium 
sized systems. They are fairly easy to manage and inexpensive to 
implement. On a large system there is a bottleneck. One must 
consider how the various nodes of the cluster will access these 
disk systems. Storage systems are connected to the nodes used 
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for computation through a network. This connection may be 
the main LAN network of the cluster (such as a large Ethernet, 
Infiniband, or Myrinet network), or this may be a specialized 
storage area network (SAN) designed for connecting storage 
(eg, fiber channel). SANs can be very expensive to implement 
on a large cluster, and can even be rather expensive on smaller 
systems due to the specialization of the hardware. Still SANs 
may be used within the storage system to share drives. From 
this point on, we will focus on LAN approaches. The main fea-
ture of a LAN approach is the use of a computer known as 
the “file server”. This computer has the disks attached directly 
or through SAN and have a connection to the LAN. The file 
server utilizes software to allow other computers to mount its 
disks for access. A file server may be as complex as a large com-
puter, with lots of memory, I/O devices, network interfaces, 
and several cores. By contrast, a file server may be a very simple 
device that runs an embedded server software such as network-
attached storage (NAS), which is an appliance with disks that 
connects to a LAN and uses network file system (NFS) or simi-
lar to serve workstations. A large server can manage more disks, 
but there are limits to having all I/O requests come through one 
of these. While large servers can move an impressive amount of 
data from disk to network, the latency of each data request can 
overwhelm the server when a large number of small requests 
occur. Thus most data centers employ many servers in order to 
once again achieve parallelism between them.

With multiple servers, once again, how the storage system 
is configured can have a massive effect on performance. Each 
server can present a distinct file system, and parallelism occurs 
when users put files on different ones. This implementation is 
generally confusing to users, so the favored alternative is the 
single name space model, where it appears that there is one 
large file system that is actually spread across different servers. 
Individual datasets (files) can be placed on one server at a time, 
or distributed across many or even all of the file servers. Small 
files tend to work better being stored at one place, whereas 
very large datasets can be accessed in parallel if they are dis-
tributed among many file servers. Once again, we have the 
same problem discussed above in that some applications may 
not have been designed for a given storage architecture. The 
more servers you have, however, the more flexibility to man-
age how and where data is stored for the best performance. 
On the other hand, more servers means more cost – especially 
if each server is a large system with lots of RAID hardware 
and disks. Smaller and simpler servers managing fewer disks 
favor a larger number, but each individual is less powerful. In a 
nutshell, when designing a system for rapid Big Data transfer 
onto disks, one must carefully consider these aspects of stor-
age system architecture. If not, a fast input network may be 
bogged down by a traditional storage configuration.

Data Staging, Archiving, and Access
In a large system similar to that shown in Figure 1 for genom-
ics data processing, there are several places where storage 

systems play a key role. At the center of such systems is a 
repository – a place to store datasets that have been or will be 
processed in response to requests across the network. To the 
upper left is data ingest where new datasets produced by the 
gene sequencer hardware is brought into the system and stored 
in the repository. Along with the raw data is metadata, which 
includes what the data is, where it was generated, and other 
factors. This data may be stored with the raw data in the same 
dataset, near the data in its own file, in a database system, or 
possibly distributed in several places. Ingested data typically 
goes through some form of ingest processing – a standard set 
of codes that are applied to all data in order to get it ready 
for users.

Next, requests arrive for the data to be processed by some 
application or experiment. The data must be retrieved from 
the repository with its metadata and sent to a processing sys-
tem, which is typically an HPC cluster of some kind. The data 
may need to be transmitted over a WAN first, but in either 
case it ends up on a temporary scratch volume, which is often 
a shared finite resource. Scratch volumes are normally opti-
mized to provide the best performance for the applications 
on the processing cluster and not for long-term storage of the 
data. Typically, the processing system and its scratch volume 
utilize scheduling to control access to processors, storage, and 
the LAN. Processed data is stored back to the scratch volume. 
Once data is processed, it moves to an analysis phase, which 
may be carried out on the same cluster, or it may be moved 
to one that is better configured for this phase. Various algo-
rithms are employed, and visualization is often a part of this 
phase. Data may be accessible from the scratch volume, or it 
may require moving. Finally, data product results are moved 
to a storage facility for keeping. This task may mean mov-
ing the results back to the original repository, or to a similar 
storage area near the processing system. Clearly, the actual 
data movement rate into and out of repositories is an impor-
tant consideration for Big Data and is subject to the same data 
transfer laws described above.

A significant question one must answer is: how long must 
huge genomics datasets be retained? 

If a central organizational repository exists, perhaps 
all data can remain online until it passes to the destination 
repository, and then removed from the system. If the scien-
tist needs the data in the future, it can be retrieved (eg, sub-
mission to a campus archiving system, data submissions to 
NCBI). If data must be retained longer, how long is enough? 
There is a cost involved in “retaining all raw data”, and this 
will drive the repository phase of the genomics data lifecycle. 
The scientist must compare this cost with the cost of simply 
recreating the data. Data that is being retained but with a 
low likelihood of access can be archived on local tape sys-
tems, cloud-based solutions such as Amazon Web Services 
(AWS) Glacier,35 or Google nearline storage36 (still in beta).

If the scientist stores the data on tape, a data manage-
ment system must be put in place in order to track, monitor, 
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and maintain the data. Open source and commercial systems 
exist that can provide a file system or object store view of 
data with the storage of data existing on disk, tape, or cloud 
(or a combination). Tape, though considered “dead” at one 
point, continues on. Tape has high density (up to 8 PB/rack), 
cheap media costs, and low power use. Time to first byte 
is around 90  seconds, so with large genomic files this is a 
small percentage of the total data transfer time. Combin-
ing tape with a disk cache can ameliorate this issue, and 
the researcher can trade off cost for the disk cache for lower 
latency to access files on tape. The reality of data erosion on 
specific media over time is real, and data must migrate every 
few years to new media (whether tape or disk) to maintain 
data integrity.

Cloud solutions are attractive repository solutions, but 
the scientist must be careful to consider acceptable transfer 
times from sequencing instrument to the storage cloud as dis-
cussed above. Cloud service costs are transparent (eg, AWS 
is currently at $0.01/GByte/month or $120/TByte/year); 
however, there can be costs to retrieve data, so these archives 
could be function as write once, read rarely, and perhaps are 
not touched again until they are disposed after a few years. 
Additionally, cloud storage implementations may have annual 
hosting fees. Large organizations managing petabytes of data 
will likely choose a commercial cloud as a full or partial solu-
tion, but this decision is accompanied by the transfer of data 
security to the cloud provider and realities of using an exter-
nal service provider including the possibility that the provider 
could go out of business. Just as moving petabytes of data from 
organization to organization across networks requires care-
ful thought and engineering, so too does managing “static” 
archives of petabytes of precious biological measurements, 
with strong potential for exabytes of storage in coming years. 
The total cost of the cloud may well be lower than organi-
zational hosting charges, but value exists in evaluating these 
costs for the scientist’s own particular situation with geomet-
ric dataset growth in mind.

Conclusions
While moving “small data” is easy across the commer-
cial Internet, moving and managing Big Data at the speeds 
needed for high-throughput science requires careful planning 
and engineering. This planning can result in orders of mag-
nitude difference in transfer efficiency. Significant delay in 
Big Data transfer can make the difference between choosing 
whether to proceed down a novel research path or letting the 
hardware decide the amount of research that can be done in 
a particular timeframe. An experiment that might require a 
month to transfer the data might be declined, whereas a 3-day 
data transfer could be completed over a long weekend and 
research completed the following week. Technologies such as 
SDN, the Science DMZ, high-performance networking, and 
high-performance storage all play a crucial role in accomplish-
ing this mission.
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