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Abstract

Describing the physical habitat diversity of stream types is important for understanding

stream ecosystem complexity, but also prioritizing management of stream ecosystems,

especially those that are rare. We developed a stream classification system of six physical

habitat layers (size, gradient, hydrology, temperature, valley confinement, and substrate) for

approximately 1 million stream reaches within the Eastern United States in order to conduct

an inventory of different types of streams and examine stream diversity. Additionally, we

compare stream diversity to patterns of anthropogenic disturbances to evaluate associa-

tions between stream types and human disturbances, but also to prioritize rare stream types

that may lack natural representation in the landscape. Based on combinations of different

layers, we estimate there are anywhere from 1,521 to 5,577 different physical types of

stream reaches within the Eastern US. By accounting for uncertainty in class membership,

these estimates could range from 1,434 to 6,856 stream types. However, 95% of total

stream distance is represented by only 30% of the total stream habitat types, which sug-

gests that most stream types are rare. Unfortunately, as much as one third of stream physi-

cal diversity within the region has been compromised by anthropogenic disturbances. To

provide an example of the stream classification’s utility in management of these ecosys-

tems, we isolated 5% of stream length in the entire region that represented 87% of the total

physical diversity of streams to prioritize streams for conservation protection, restoration,

and biological monitoring. We suggest that our stream classification framework could be

important for exploring the diversity of stream ecosystems and is flexible in that it can be

combined with other stream classification frameworks developed at higher resolutions

(meso- and micro-habitat scales). Additionally, the exploration of physical diversity helps to

estimate the rarity and patchiness of riverscapes over large region and assist in conserva-

tion and management.
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Introduction

Classification systems have a long history in stream ecology [1]. Stream classifications serve

many fundamental purposes, including understanding similarities and differences among dif-

ferent types of streams, making inferences regarding stream ecosystem behavior, and commu-

nicating the complexities of ecosystem function [2]. However, they also provide many applied

outcomes, such as grouping sites with similar characteristics [3], stratifying analyses for moni-

toring and/or experimentation [4], prioritizing aquatic conservation actions [5], and generaliz-

ing ecological responses to disturbances [6].

Recent high-resolution geospatial products (e.g., National Hydrography Dataset) have

shaped our understanding of stream diversity in the landscape, such as the importance of

scale-dependence in understanding stream behavior [7,8] and the importance of dendritic

connectivity in organizing aquatic communities [9]. Most contemporary stream classifications,

however, have not made use of these latest geospatial datasets. Within the last two decades,

stream classifications have either classified groups of discrete observations (e.g., stream gages)

[10] or relied on landscape regionalization to deduce behavior of stream environments (e.g.,

hydrologic landscape regions) [4]. In contrast, the local heterogeneity of riverscapes may be

better captured by classifications at the stream-reach scale [11]. Classifications based on stream

reaches ensures the scale of classifications match the processes they are meant to reflect. Addi-

tionally, these approaches are comprehensive in that they represent all observations, rather

than a subset of samples selected purely on the basis of available information [12]. In recent

years, the number of studies utilizing stream reach datasets for classification have grown, but

applications have been limited to state or sub-regional spatial extents [11, 13–17].

Aside from the issue of spatial resolution, classifications have been catered towards describ-

ing natural patterns in individual aspects of physical habitat, primarily hydrology. Hydrologic

classifications, as opposed to other measures of physical habitat, have been prioritized because

of their utility in informing regional water management and water policy decisions [18,19], as

classes represent groups of streams with similar hydrologic characteristics and hence, manage-

ment units. However, the prevalence of hydrologic classifications is also likely an artifact of the

availability of widespread stream gage discharge data [19], whereas other physical measures

are either not as numerous or not systematically collected in a standardized way. Less common

are classifications for temperature regimes [20, 21] or geomorphological types [16, 22]. Even

fewer are classifications that combine multiple habitat features [11, 14, 23]. Incorporating

more habitat features in classifications provides a more holistic assessment of stream environ-

ments and may also ensure classifications are ecologically relevant [11]. Ultimately, this sug-

gests that contemporary classifications have provided a limited understanding of the regional

diversity of stream ecosystems.

At the most basic level, stream classifications are an inventory of different types of streams.

Incorporating multiple components of habitat into spatially contiguous stream reach datasets

provides an opportunity to inventory the uniqueness of stream environments over large spatial

scales. Additionally, examining stream diversity in relation to anthropogenic disturbances pro-

vides a gap-analysis framework to prioritize rare stream types lacking natural representation

in the landscape [13]. Herein, we estimate the physical habitat diversity of stream environ-

ments over the entire Eastern United States (US). To understand the physical diversity of

stream habitats, we create a composite classification system of natural patterns in stream

hydrology, temperature, stream size, and channel/floodplain geomorphology information

within approximately 1 million stream reaches of the Eastern United States. To date, a multi-

layered stream classification of this scope or resolution has not been documented in the litera-

ture. We focus on the Eastern US as this region encompasses three previous sub-regional
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classification efforts [23–25] and provides a sufficiently large area to examine heterogeneity in

stream physical types. We then compare our typologies to anthropogenic disturbance regimes

to examine associations among classes and levels of disturbance. Finally, we overlay the rarity

of stream typologies and disturbance levels to prioritize streams for restoration, conservation

protection, and biological monitoring [26].

Methods

Overview of classification approach

Within aquatic systems, there have been divergent approaches to stream classification, repre-

senting varying justifications for classification development [1, 4, 11, 19]. As Melles et al. [1]

suggests, there is no single “best” stream classification designed to meet all needs for its use,

but to serve as an aid to research, conservation, and management. Our intended purpose for

the stream classification was to estimate the diversity of physical habitats in streams within a

region. This requires some explanation of terminology. Layers represent different categories of

stream habitats (e.g. size, temperature) and each layer may have multiple classes (e.g., headwa-

ter, creek and cold, warm). A typology is a specific combination of classes from all layer catego-

ries for each stream. By physical diversity, we are referring to the total number of typologies

for all streams within a region.

Based on input from advisory board comprised of 41 aquatic ecologists and conservation

planners in the Eastern US [23], we selected physical habitat layers that were hypothesized to

exert the strongest influence on aquatic habitat structure and the composition of ecological

communities and could feasibly be mapped at the stream reach scale. These layers included

stream size, gradient, temperature, hydrology, valley confinement, and substrate, in that order

of influence; however, we fully admit there are other physical and non-physical factors besides

those we considered that are important to stream ecological communities and ecosystem func-

tionality (e.g., chemical properties).

Beyond selecting what information to include in classification lies the difficulty of deter-

mining class breaks among observations. Although our layers are relevant to the biological

structure of stream communities, we do not partition classes based on biological discrimina-

tory power (see rationale below). In general, we relied on published values of class breaks

reported in previous stream classification efforts to distinguish typologies, with emphasis on

studies using thresholds defined via expert judgement or via analyses aimed to capture pre-

dominant variation in stream types. We excluded studies partitioning classes using ecological

community data. Where possible, we attempted to find consensus in the most widely accepted

threshold values in the literature. If reported values were unavailable, we relied on clustering

to represent predominant physical variation of stream types by capturing breaks in the fre-

quency distributions. We further justify our stream classification approach based on the fol-

lowing criteria:

1. Empirically Based: Inductive approaches to stream classification tend to accurately reflect

on-the-ground conditions because utilize information from empirical observations, such

as stream discharge gages, in clustering solutions [19]. In contrast, deductive approaches

use spatial regionalization or clustering of landscape and climate factors to presume varia-

tion in stream diversity [4] andhave been shown to poorly represent actual differences in

streams [27].

2. Physical habitat diversity versus biological discrimination: Because classifications are com-

monly used for conservation management, class partitions are frequently determined by

their ability to discriminate amongst biological communities (e.g., [11]). However, there
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are disadvantages to incorporating ecological information into the classification process.

The number of classes in any classification system depends on the source of variation used

to partition classes, which changes with scale [28]. Compared to physical properties of

streams, ecological datasets are collected within relatively limited spatial and temporal

extents [29]; thus, altering the structure of habitat variables to maximize ecological interpre-

tation not only reduces the variation used to determine stream habitat diversity, but also

removes the mechanistic linkage between physical process and the structure of ecological

dynamics. Hence, we relied on existing classification paradigms using physical patterns

(e.g. [22, 30, 31]) to partition classes.

3. Stream reach resolution- Adequately modeling thephysical properties of streams, such

as hydrology or temperature, requires assembling information in a fashion that captures

upstream processes and the advection of hydrologic forces [8, 32, 33]. This requires a

spatial topology among river patches as a template to summarize the cumulative effects

of upstream landscape patterns on longitudinally nested river habitats. The NHDPlus

dataset [34] provide an ideal framework of topologically connected reaches and serves

as an intermediate spatial resolution that scales between watersheds and microhabitats

[30, 31, 33].

4. Layered vs Lumped Approach When classifying streams based on multiple habitat layers,

there are generally two alternative approaches. Cocktail approaches lump multiple environ-

mental variables into a single agglomeration of classes either deterministically or through

multivariate clustering. As an example, Ecoregions represent geographic areas of presumed

similarity in climate, hydrology, geomorphology, topography, land use, and ecological com-

munities [35]. In such a deductive classification, one cannot distinguish the diversity of

stream systems because individual habitat components have been masked by coarser-

scale agglomeration. As another example, Leathwick et al. [11] developed a sophisticated

approach to stream-reach scale classification by weighting environmental landscape vari-

ables based on their explanatory power of fish and invertebrate distribution data. While

the classification was adept at biological discrimination, the physical diversity of individual

habitat layers was compromised because cluster solutions collectively grouped stream prop-

erties based on minimizing within-group variation.

In contrast, layered approaches compartmentalize streams into different components of

habitat or functional properties (e.g., [36]). Additionally, layered classifications make no

pre-defined judgement of the relative importance of different habitat constituents [14], and

as such, they are flexible and can accommodate for the selection of one or many compo-

nents that may be relevant to capturing stream physical diversity, depending on the

application. While we recognize that different habitat components are interrelated and

hierarchically structured, using the relative importance of habitat components in structur-

ing ecological communities or processes to govern estimates of physical diversity of stream

systems is problematic because any measure of relative importance is completely scale-

dependent [14, 27].

5. Natural conditions–Understanding the physical diversity of stream systems, especially how

stream diversity has been impacted by anthropogenic disturbances, requires physical habi-

tat layers be based on natural (i.e., minimal disturbance) conditions. In this case, classes

might represent idealized habitat conditions to guide restoration and management. If habi-

tat layers within stream classifications are based on natural conditions, then altered condi-

tions can always be added as an additional layer as the reference provides the baseline to

measure the altered condition.
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Layer development

Given the properties mentioned above, we developed a physically-based layered classification

of stream reaches based on empirically-driven observations of six natural habitat characteris-

tics including: hydrology, temperature, size, gradient, valley confinement, and substrate. We

use the stream network topology of the NHDPlus version 1, 1:100,000 scale (NHDPlus V1)

as the spatial template of our classification. The spatial extent includes hydrologic regions 1

through 6 of the Eastern US [37]. Within this region, there are approximately 1.5 million km

of stream reaches; however, classifying all of these reaches was not possible because many

streams lack geospatial variables for predicting habitat values. Most of these streams are

braided or consist of artificial channels with no topological connection to other reaches, which

prevents network routing to accumulate geospatial information. Many spatially-explicit data-

sets (e.g., climate, soils, geology, landforms, baseflow index, contact time, etc.) were down-

loaded, processed, and attributed to all NHDPlus v1 catchments in the Eastern US in a

Geographic Information System. Almost 200 variables were derived from these datasets and

summarized for each NHDPlus v1 catchment (S1 File). These variables were then accumulated

for the entire drainage network upstream of each stream reach using the NHDPlus v1 Catch-

ment Attribute and Accumulation Tool (CA3T) with the total upstream drainage routing

option [34]. Variables were then used to develop models to predict stream class membership.

Size, gradient, and confinement layers relied on stream attributes derived directly from

remote sensing information for all stream reaches; thus, observations for these layers were

comprehensive and represented the entirety of stream geography in the region. However,

appropriately characterizing hydrology, temperature, and substrate layers required us to

summarize data from empirical field observations and then construct predictive models to

extrapolate those patterns to all stream reaches in the landscape. Because the field observations

represented only a subset of streams, we conducted an analysis to determine whether streams

including our observation datasets were representative of the overall variation of streams

within the Eastern US (SI File). We found that the subset of streams containing each of our

observational datasets (hydrology, temperature, and substrate), capture over 98.5% of the over-

all variation represented by the entire stream dataset (S2 File). Hence, we felt that our empiri-

cal observations sufficiently covered a diversity of streams in the region.

Size. Stream size is indicative of major ecosystem changes along the river continuum,

such as transitions in the state and source of energy to ecosystem metabolism [38]. The earliest

approaches to stream classification differentiated stream size based on order [39, 40]. While

this seems like a straightforward approach to size classification, stream order is influenced by

the scale of mapped hydrography and may not be indicative of river discharge [41]. Alterna-

tively, mean annual discharge provides a continuous metric of size and is proximally-linked to

ecological processes [42]. Although mean annual discharge estimates are available from NHD

[34], we elected to use upstream drainage area because this metric has been most commonly

applied in most recent stream classification systems [23, 43], is more versatile as it represents

both the scale of upstream landscape processes and network position [44] and is more readily

available in many regions of the world relative to flow information. Additionally, drainage

area correlates strongly with mean annual discharge and the correlation remains consistent

across all regions in our study area (S3 File). Cumulative upstream drainage area (km2) is pro-

vided as an attribute with the NHDPlus V1 dataset. We used a combination of literature review

of physically-based stream size thresholds [13, 24, 25, 30, 43; 44; 45] and k-means clustering to

explore potential breaks in size classes (S1 Fig). We log(x+1) transformed drainage area and

then partitioned size into different clusters using a similar k-means clustering approach as

described above (from 2 to 15 cluster solutions). We found consistency among values reported
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in literature (S1 Fig), as well as congruence among our class breaks and those of the previous

size classifications; thus, we relied on these published values to determine our class breaks

(Table 1, S1 Fig).

Gradient. Gradient (i.e., stream bed slope) exerts control on stream physical habitats,

including channel morphology, hydraulics, sediment transport, habitat units, and substrate

[46]. Rosgen [22] provides a geomorphic classification of rivers based on stream channel typol-

ogies describing predominant variation in channel dimensions, sinuosity, entrenchment, and

substrate grain size across the US. Despite the documented criticisms and limitations [47],

Rosgen’s classification is useful for research [47], has been widely institutionalized by manage-

ment agencies [48], and has been previously used for partitioning gradient classes within

other stream classification efforts [24, 43]. Rosgen [22] provides six major gradient thresholds

(Table 1), which we used to portion stream reaches into gradient classes based on stream slope

values obtained from flowline attributes within the NHDPlus V1 dataset. Stream slope values

were determined using smoothed elevations created from 30-m digital elevation model data.

The difference in maximum and minimum values (i.e., rise) were summarized along each

NHDPlus flowline and divided by the total length of the flowline (i.e., run) [34]. It should be

noted that NHDPlus flowline length underestimates true sinuosity and total length of stream

reaches; thus, gradient is slightly over-estimated in most cases.

Hydrology. The natural flow regime of rivers, measured as the magnitude, frequency,

duration, timing, and rate of change of flow creates and maintains habitat [49], organizes

aquatic organism life histories [50], and sustains the structure and function of aquatic and

riparian ecosystems [51]. Numerous examples of hydrologic classifications exist where long-

term stream discharge records are statistically summarized and clustered using computation-

ally demanding algorithms, resulting in groups of streams with similar hydrologic behavior

(for a review, see [19]). A recent hydrologic classification was completed for the entire U.S.

using US Geological Survey (USGS) stream gages representing reference-quality hydrologic

information [52]. Stream gages were clustered into 15 different types using a Bayesian mixed

modeling technique based on hydrologic statistics summarizing at least 15 years of discharge

data. These classes represent natural variation in hydrology and classes are not influenced by

river size (by standardized magnitude-related statistics). Within the Eastern US, 897 of these

USGS gages represented 9 of the 15 hydrologic classes (Table 2). We developed a random for-

est model to predict hydrologic class membership based on 192 variables including landscape,

climate, topography, and soil variables summarized in drainage basins above each stream gage

(S1 File). Using this model, we then extrapolated hydrologic class membership to all NHD

stream reaches in the region.

Temperature. Stream temperature imposes physiological limits on freshwater organisms

[53], while exerting controls on ecosystem metabolism and nutrient processing [54]. Recent

efforts to examine natural variability in stream temperatures suggest that summer temperatures

Table 1. Value ranges used to partition size, gradient, temperature, and substrate classes. Codes for classes are provided.

Size Classes Range (km2) Gradient Classes Range (Rise/Run) Temperature Classes Range (˚C) Substrate Classes Range (mm)

Headwater (HW) 0–10 Very Low (VL) < 0.001 Cold (CD) 12–19 Sand- Fine Gravel (SG) 0–16

Creek (CK) 10–100 Low (L) 0.001–0.005 Cold-Cool (CC) 19–21 Coarse Gravel (CG) 16–64

Small River (SR) 100–500 Moderate (M) 0.005–0.02 Cool (CL) 21–23 Small Cobble (SC) 64–150

Medium River (MR) 500–2500 Moderate High (MH) 0.02–0.04 Cool-Warm (CW) 23–25 Large Cobble (LC) 150–300

Mainstem (MS) 2500–10000 High (H) 0.04–0.1 Warm (W) 25–30 Small Boulder (SB) 300–600

Large River (LR) 10000–25000 Steep (S) > 0.1 . . ... . . ... Large Boulder (LB) 600–1000

Great River (GR) > 25000 . . ... . . .. . . . . ... . . ... Large Boulder-Bedrock (LBB) 1000–1604

https://doi.org/10.1371/journal.pone.0198439.t001
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(July-August averages) are the most influential determinants of divergent thermal regimes [21,

55, 56]. We compiled temperature data from multiple sources, including 762 USGS gauges with

daily records [56] and 1588 individually deployed temperature loggers from federal and state

agency personnel [55]. Of these, 869 sites were determined to be representative of reference

conditions based on the National Fish Habitat Risk Assessment (NFHA) [57] and evaluating

the degree of upstream regulation (DOR) by impoundments (see disturbance section for

definition). Reference conditions were determined as sites having NFHA assessment scores

as “low” or “very low” and DOR< 4% [58]. Using the same predictor ensemble for hydrology,

we developed random forests to predict summer temperatures for the reference sites and then

extrapolated those values to all NHD stream reaches (S1 File). Using estimated summer-time

temperature values for all stream reaches in the region, we used a k-means clustering procedure

to partition classes. To determine the most parsimonious solution that explained the most vari-

ation, sum-of-squared-distances (SSD) within groups were compared to number of clusters

(from 2 to 15 cluster solutions). We selected the smallest number of clusters than minimized

the SSD within group. The resultant class threshold values are provided in Table 1.

Valley confinement. Valley confinement refers to the potential of river channels to

migrate and interact with their floodplain. The degree of valley confinement determines the

formation of floodplains and riparian wetlands and the interaction between channel morphol-

ogy and floods, which influence sediment budgets and formation and maintenance of in-

stream and riparian habitats [59, 60, 61]. A similar metric is entrenchment, technically defined

as a ratio of floodplain width to bankfull width, where the floodplain is measured at 2X bank-

full height [22]. We used the Valley Confinement Algorithm (VCA) tool [62] within ArcMap

10.2 to delineate unconstrained valley bottoms for all NHDPlus stream reaches. VCA estimates

bankfull depth of the stream channel based on regional precipitation data and drainage area

for each stream reach [63]. Flood height is determined based on a user-defined flood-factor

multiplied by bankfull depth. Nagel et al. [62] recommends 5X bankfull depth is appropriate

for defining valley bottoms. Based on 30-m DEMs, the program uses an algorithm to intersect

flood height with the surrounding hillslope to general floodplain valleys as polygons. Once

Table 2. Criteria defining differences in hydrology and confinement class membership. Hydrology class member-

ship and descriptions were based on [37].

Classes Description/Criteria

Hydrologic Classes

Intermittent Flashy 2 (IF2) High intermittency

Late Timing Runoff (LTR) Semi-stable, late annual maximum due to hurricanes

Perennial Runoff 1 (PR1) Seasonally variable and semi-stable, but lower baseflows, higher variability, and

different timing than PR2

Perennial Runoff 2 (PR2) Seasonally variable and semi-stable, but higher stability, higher baseflows than PR1

Snowmelt 2 (SNM2) Distinct and consolidated seasonal periods of runoff, stable, relatively high baseflows

Stable High Baseflow (SHBF) High baseflows, stable, and relatively high runoff

Super-stable Groundwater

(SSGW)

Very high baseflows, very high stability, but not necessarily high runoff

Perennial Flashy (PF) Moderate intermittency, low predictability, semi-flashy

Confinement Classes

Unconfined (UC) Valley bottom covering > 50% stream reach length and valley bottom width > 4X

bankfull width

Moderately Confined (MC) Valley bottom covers 25%-50% of stream reach length and valley bottom

width > 4X bankfull width. Or valley bottom covers > 50%, but valley width is 2–4

X bankfull width.

Confined (C) All reaches not falling into either of the categories below

https://doi.org/10.1371/journal.pone.0198439.t002
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valley bottoms are delineated, thresholds are required to determine whether valley bottoms

extend laterally beyond the bankfull width a sufficient distance to be constitute an ‘uncon-

strained’ stream reach. This required estimating bankfull width for each stream reach. We

used a combination of in situ field observation and remote sensing information from 1708

sites to develop an empirical model to predict bankfull width for all stream reaches. Field

observations of bankfull width (n = 1403) were derived from Environmental Protection

Agency’s (EPA) National Rivers and Streams Assessment (NRSA) [64]. However, the EPA

NRSA assessment tended to exclude headwater and very large systems. Thus, we randomly

selected a subset of NHDplus stream reaches (n = 305), stratified by stream size, in the Eastern

US to augment the sample of bankfull width measurements. We used aerial imagery to esti-

mate bankfull width for stream reaches at the midpoint, upstream, and downstream end of

each reach (if visible) and then calculate mean bankfull width. Random forest models were

used to predict bankfull width and extrapolate estimates to all stream reaches using 156 predic-

tors (S1 File). Bankfull width estimates were then used to generate polygon buffers around all

streamlines.

Bankfull widths were then compared to valley bottoms to determine valley constraint status.

Typically, stream channels with entrenchment ratios of> = 4 are considered unconfined [63]

whereas streams with entrenchment ratios between 2 and 4 indicate some moderate interac-

tion between channels and their floodplain [22]; however, these estimates only consider a sin-

gle point and not the extent of the floodplain in relation to the entire stream reach. Thus, it’s

difficult to arbitrarily classify reaches as either “confined” or “unconfined” without some inter-

mediate category. Based on the values above, we classified stream reaches as “unconfined if the

valley bottom had widths at least 4X that of the bankfull width and covered at least 50% of the

stream reach length. Moderately confined stream reaches met the following criteria: 1) valley

bottoms had widths� 4X the bankfull width, but only covered 25%–50% of the stream reach

length, or 2) valley bottoms with widths 2-4X the bankfull width and covered 50% of the

stream length. All other stream reaches were defined as confined.

Substrate. Stream substrate type and size exerts a strong influence on invertebrate com-

munity composition [65], variant life history strategies for fish [66], and the nature of periphy-

ton colonization [67]. We compiled 1059 field measurements of streambed surficial substrate

particle sizes from stream habitat assessments from the EPA NRSA (n = 586) and EPA

National Stream Survey (NSS) (n = 473) databases [68]. Of these, 459 sites (NRSA, 243; NSS,

216) were representative of reference conditions using the same protocol as temperature moni-

toring stations. At each field site, multiple transects were laid perpendicular to the channel and

multiple grids were established per transect [69]. In each grid, dominant substrate size was

determined visually or manually based on the Wentworth scale [70]. We then calculated the

percentage of grids at each site falling into different substrate size categories, which included %

fines (0.03mm), % sand (1mm), %gravel (33mm), %big rock (1055mm—cobble through boul-

der sizes), and %bedrock (2056mm). Based on percentages with each substrate size category,

we estimated a weighted mean diameter of substrate at each site (this is not analogous to D50).

Using 159 predictors, we developed random forests to predict mean substrate diameter for

each site and then extrapolated those values to all NHDPlus V1 stream reaches (S1 File). The

Wentworth scale of grain-sizes [70] is a widely adopted template for classifying substrate size

categories; thus, we defined substrate classes based on mean weighted substrate diameter using

a modified Wentworth scale (Table 1). Given that mean weighted substrate diameters were

biased towards larger particles, we combined finer Wentworth categories (sand and fine grav-

els, coarse gravels) and expanded the cobble and boulder Wentworth classes into separate

types (small and large cobble, small and large boulder, large boulder-bedrock complexes)

(Table 1).
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Anthropogenic disturbance

As described earlier, layered approaches provide the ability to consider both the natural and

altered condition of streams. We considered four measures of disturbances in stream environ-

ments: landcover (urbanization or agriculture), impoundment and dam regulation, upstream

fragmentation imposed by dams, and a cumulative measure of disturbance. For urbanization

and agriculture, landcover types were summarized as the percentage of upstream cumulative

area under all developed landcover types and crop or pasture landcover types, respectively.

Using spatial coverages of NHDPlus waterbodies, we identified all stream reaches impounded

by reservoirs. Dam regulation was assessed for each stream reach using Degree of Regulation

(DOR), a measure of the percentage of annual runoff volume stored within all impoundments

upstream [58, 71]. For the DOR calculation, dam locations and storage values were obtained

from the National Anthropogenic Barrier dataset [72] and summarized within each stream

reach’s upstream network. For each stream reach, fragmentation was assessed in two ways: 1)

a binary indication of whether a reach was connected (i.e., unobstructed flow) to the ocean,

and 2) a Dendritic Connectivity Index (DCI), which is a percentage of a reach’s upstream func-

tional network distance relative to total upstream network distance [9]. The functional net-

work is calculated as the total distance of stream environment available upstream bounded by

dams. A cumulative disturbance index was developed by the National Fish Habitat Partnership

(NFHP), as a multi-metric indication of landscape-related risks to fish habitats in US streams

[57, 73]. The index summarizes many anthropogenic disturbances (e.g., urbanization, number

of dams, pollution discharge permits) for the entire network upstream of each reach in the US.

However, we observed that the cumulative disturbance index only includes the number of

upstream dams and does not account for the magnitude of dam regulation (i.e., dam storage)

or fragmentation (i.e., length of streams fragmented by dams). Thus, we assigned stream

reaches to classes of hypothesized disturbance levels from high-to-low intensities: 1) impound-

ment, 2) noticeable dam regulation or DOR> = 4% [58], 3) fragmented upstream watershed

or DCI < 75%, or 4) landscape alteration if the NFHP cumulative disturbance index fell under

“moderate”, “high”, or “very high” values. If any of the conditions above were met, a stream

reach was considered “disturbed”. Otherwise, a stream was classified as “not disturbed”.

Class-disturbance associations

Because some habitat layers may show a greater prevalence to disturbance, we evaluated

associations between classes for each layer and disturbance levels. We modeled associations

between physical habitat layers on each continuous disturbance variable mentioned above

using generalized linear models [74]. All binary or proportional disturbance variables were

modeled as binomial distributions whereas DOR was modeled as a gamma distribution follow-

ing log(x+2) transformation and scaling all values to>1. Associations among each physical

type and disturbance classes were evaluated using X2 tests and measures of association strength

(Phi-Coefficient and Cramer’s V).

Biological sampling

Of practical importance is understanding how well the diversity of physical types have been

biologically surveyed. Almost 900,000 occurrence records of fish, mussels, and crayfish were

compiled using several open-access databases for the entire US and overlain with NHDPlus

V1 catchments [29]. Records were included if they documented the year, latitude, and longi-

tude of collection. All records collected prior to 1990 were removed from consideration as

these are not representative of present-day surveys. Records were summarized as binary
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indicators of occurrence for fish, mussel, crayfish, or a combination of the above. The fre-

quency of stream reaches biologically sampled was compared among different physical stream

types.

Stream habitat diversity and uncertainty

Diversity. In the previous sections, we evaluated each physical habitat layers separately;

however, stream typologies represent combinations of habitat layers. Obviously, various com-

binations of habitat layers will yield different numbers of stream typologies. An example of a

combination of habitat layers (Table 1) could resemble the following: CK-M-PR2-CD-UC-LB,

which represents a Creek with moderate gradient, perennial runoff 2 hydrology, cold tempera-

tures, unconfined valley geomorphology, and large boulder substrate. Evaluating the diversity

of stream habitat types required that we first identify a relevant number of layer combinations

to consider. However, the degree to which new typologies emerge with additional combina-

tions of layers can indicate the degree of inter-relationships among layers. For instance, a

high-gradient channel is also very likely to be confined. In situations of high inter-relationships

among layers, increasing combinations of habitat layers will yield little increases in unique

typologies, i.e. minor additions to diversity. In this case, we refer to the addition of these layers

as redundant. Assuming layers are completely independent of one another, a complete facto-

rial combination of habitat layers can be used to estimate the number of expected typologies

(Ĉ):

Ĉ ¼
Yn

i

Ki

Where K represents the number of classes within the ith habitat layer (e.g., temperature, gradi-

ent) and n represents the number of habitat layers being considered. In this case, all possible

class combinations for all habitat layers (n = 6) yields 39,690 expected classes. Because of inter-

relationships among layers, Ĉ is likely to greatly exceed the observed combination of classes

(C). Based on these values, we can calculate a diversity score as an indication of redundancy,

by dividing C by Ĉ .

To balance redundancy with information gained from including more layers, we compared

the diversity score to different combinations of physical layers. Combinations included all

layers together, various combinations of 5 layers, and combinations of 4 layers. An optimal

number of layer combinations seeks to maximize the diversity index while simultaneously

minimizing losses in information (i.e., increasing numbers of classes). Thus, an optimum

occurs where the diversity score reduces towards an asymptote with increasing numbers of

classes. Once an optimum number of physical type combinations was identified, we calculated

the rarity of each class as the cumulative length (km) represented in the landscape.

Some of the geospatial data (e.g., PRISM climate) used to derive variables in stream reaches

were relatively coarse (e.g., 800m) and could influence the predicted classification for small

streams. We determined that classes with cumulative lengths < 1km could be an artifact of

underlying data rather than a legitimate stream class. Thus, we separated classes with cumula-

tive lengths > 1km for all subsequent analyses.

Uncertainty. Mapping stream classes in the landscape does not come without uncertainty,

and this uncertainty can propagate through combinations of classes used to develop stream

typologies, thereby influencing our diversity estimates. We compiled estimates of deviations in

layer values (e.g., temperature, ˚C) or estimates of probabilities in class membership, in the

case of hydrology, to develop a range of possible values for each stream reach (S4 File). Based
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on class partition thresholds (Table 1), we then re-classified all stream reaches for each layer. If

partition tresholds were exceeded, we assigned each reach to 2nd most probable class (S4 File).

We then developed a series of new stream typology scenarios by varying classes within each

layer independently and then varying all layers collectively. The number, cumulative stream

length, and rarity (defined below) of new typologies were compared to the optimal number of

typologies defined above (i.e., simple typologies). On a reach-by-reach basis, we also examined

the agreement between the original simple typology and all typology scenarios. We measured

agreement as the percentages of stream length sharing similar typologies and sharing similar

rarity.

Prioritization scenarios for conservation protection, restoration, and

biological monitoring

A physical inventory of stream reaches provides an opportunity to assess the physical unique-

ness of stream types and prioritize streams for different objectives. We developed three

prioritization scenarios for streams in the Eastern US with divergent objectives: conservation

protection, restoration, and biological monitoring. Prioritizing streams for conservation protec-

tion aims to identify streams that are rare and have little or no human disturbance. Using the

optimal number of physical combinations (previous section), we ranked stream types from

highest to lowest prevalence (according to total length) and generated a cumulative frequency

distribution. We selected rare classes as those with total lengths falling within the lowest 10th per-

centile of all classes. From these classes, we selected stream reaches classified as “Not disturbed”.

Restoration prioritization also aims to identify rare classes, but in contrast to conservation

protection, it identifies streams with high disturbance levels. Additionally, streams having bio-

logical information can inform and assess the effectiveness of restoration practice. We devel-

oped a disturbance threshold (D), which simultaneously considers both the prevalence of a

stream type from the cumulative frequency distribution and the disturbance frequency of a

class (i.e., the proportion of stream length classified as disturbed). D was estimated using the

following inverse logistic equation:

D ¼ Lþ
d

1þ es�ðXr � X0Þ

� �

Where L represents the lower limit of acceptable disturbance frequency for the rarest stream

type and d represents the maximum limit of acceptable disturbance frequency for the most

abundant stream type, S is the steepness of the decline in D, Xr is class rank with higher values

indicating higher abundance, and X0 represents the class rank identified as the point of inflec-

tion. It should be noted that d is an additive component that takes L into consideration, i.e.

maximum disturbance is d + L. Additionally, because class rank directly relates to cumulative

frequency, X0 can be identified on the basis of cumulative frequency thresholds.

Conservation planning goals have often used protected-area targets of 10% per biome [75];

however, these have been shown to under-represent biomes and species in jeopardy [76].

Rodrigues et al. [77] showed that countries with at least 60% protected areas had virtually no

gap species (species whose distribution does not overlap protected areas). Presuming the loss

of rare stream types has a greater likelihood of jeopardizing species declines, we adopted a con-

servative goal of restoring at least 60% of stream length within highly rare stream types and at

least 10% of stream length of dominant stream types. Concurrently, we determined that the

rarest and most abundant stream types should have no more than 40% and 90% of stream

mileage being classified as disturbed, respectively; thus, L = 0.4 and d = 0.5. S was assigned a

value of -0.0125 because it provided a desirable steepness to avoid over-inclusion of abundant
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stream types as values approached critical cumulative frequency thresholds. Out of 1983 total

stream classes, the 284 most abundant classes represented 90% of total stream length. Hence,

X0 was assigned a value of 1700 as this represents the 90th percentile critical disturbance

threshold and an appropriate inflection point. All stream types with disturbance frequencies

surpassing D were selected. From these, we identified individual stream reaches that fell within

one of the disturbance categories (e.g., impounded, fragmented) and had been biological sam-

pled for fish, crayfish, or mussels.

While identifying where biological information exists is important, prioritizing streams

lacking biological monitoring is equally important, as this constitutes an information gap [13,

26]. This is especially true of rare streams facing high risk of anthropogenic disturbance with

biological communities in jeopardy of homogenization or sensitive species loss. We selected

streams whose class disturbance frequencies > D and whose entire class had not been biologi-

cally sampled since 1990.

Results

Out of 1.5 million km of stream reaches in the Eastern US, approximately 125,000 km of

streams (8.3%) were unavailable to classification due to inability to summarize geospatial vari-

ables in stream networks (i.e., braided or artificial channels). The remaining 1.38 million km

of stream reaches (91.7%) had sufficient geospatial characteristics to assign physical classes

deterministically or through predictive modeling.

Based on literature values, we identified seven size classes based on upstream drainage

area (Table 1). Stream lengths among size classes displayed an exponential decay distribution,

with small systems having the highest frequency and very few large river systems (Fig 1a).

Fig 1. The distribution of size and gradient classes. (a) Size and (b) gradient classes for stream reaches based on drainage area and channel slope, respectively. Total

length of streams per class reported as 103 km.

https://doi.org/10.1371/journal.pone.0198439.g001
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Headwater streams and creeks comprised 54% and 25% of total stream length, respectively.

Approximately, 1% of streams were classified as Large or Great Rivers (� 10,000 km2). Gradi-

ent breaks were based upon values provided by Rosgen [22]. Streams were dominated by mod-

erate (32%), low (25%), and very-low gradient (19%) classes (Fig 1b).

Random forests predicting hydrologic classes had 80.7% out-of-bag accuracy (cross-valida-

tion rate). Variables characterizing hydrology (e.g., baseflow index) and climate had the high-

est relative importance in models, followed by soil characteristics (S1 File). Hydrologic classes

represented by fewer stream gauges typically had higher error rates (S1 File). For example,

intermittent flashy 1 and 2 types were extremely rare (< 4 observations), which resulted in

100% misclassification error for those hydrologic types. Error rates for other classes ranged

from 0.08 to 0.55. The most abundant hydrologic types were Perennial Runoff 1 and 2 streams

and Stable High Baseflow streams (Fig 2a).

Summer-time average temperature varied across the Eastern US (Fig 2b). Random forests

predicting mean summer temperatures explained 70.5% of variation in the out-of-bag sample

(S1 File). For the K-means analysis, sum-squared distances within groups minimized at five

cluster solutions (Table 1). Cold-Cool (28%) and Cool (23%) streams were the most abundant

whereas Warm (9.4%) streams were the rarest (Fig 2b).

Within the Eastern US, the VCA tool generated over 1.2 million valley bottoms with a

cumulative area approximating 219,000 km2 (Fig 3). Random forests explained 84.5% varia-

tion in bankfull width (S1 File). The majority of stream reaches (56%) were classified as uncon-

fined compared to moderately confined (12%) and confined (23%) (Fig 3).

Random forest models explained 56.8% of variation in mean substrate diameters (S1 File).

Based on a modified Wentworth scale (Table 1), we portioned substrate diameters into seven

substrate classes (Fig 4). Almost 61% of streams were dominated by small boulder or large

boulder stream types (Fig 4).

Stream habitat diversity and uncertainty

Diversity. When considering all six layers, the total number of combined stream classes

was 5577 types compared to the 39,690 potential types (Fig 5a) (For a subset of typologies,

see S1 Table; All typologies listed in S5 File;). Hence, the diversity score is very low (0.14) and

suggests there is a great deal of redundancy relative to the expected diversity. Approximately,

25% of classes (n = 1389) were represented by< 1km of total stream length and potentially

an artifact of uncertainty in predictor information. Various combinations of 4 and 5 different

physical types yielded a range of diversity scores from highly essential to highly redundant

combinations (Fig 5b). A combination of size, gradient, temperature, and confinement had

the highest diversity score (Fig 5b). When plotted against the number of classes, the diversity

score minimized at an intermediate combination of 5 physical stream class types representing

a balance between only essential classes and potential information lost (Fig 5c). Because of the

poor predictive accuracy of modeling substrate size in stream reaches and the fact that sub-

strate classes did not contribute greatly to uniqueness, we simplified the classification by

excluding substrate and retaining the other five layers (size, gradient, hydrology, temperature,

and confinement), representing 1983 typologies, 1521 of which were represented by at least 1

km (S5 File). Of these, 305 classes made up 90% of the total length of streams in the Eastern

US, and 430 classes made up 95% of the total length (Fig 5d).

Uncertainty. By imposing uncertainty in classes, we developed a series of typology scenar-

ios (S4 File). The majority of scenarios resulted in diversity and rarity estimates similar to that

of the original simple typologies (Table 3). When considering uncertainty in all six layers, the

total number of combined classes was 6856. After excluding substrate, our typology estimates
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ranged from 1966 to 2140 when we only varied individual layers. Varying all layers collectively,

however, resulted in 2679 total typologies (Table 3). Excluding stream typologies < 1km

resulted in 1434 to 1650 typologies for varying individual layers and 2027 when all layers were

allowed to vary. The number and percentage of rare types was similar between the original

simple typology and that of all scenarios (Table 3).

Fig 2. The distribution of hydrologic and temperature classes. (a) Hydrologic classes from stream gages [37] were mapped to stream reaches using predictive

models. (b) Temperature classes developed from average July and August stream temperatures at monitoring stations extrapolated to stream reaches. Total length of

streams per class reported as 103 km.

https://doi.org/10.1371/journal.pone.0198439.g002
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Fig 3. The distribution of valley confinement classes. Valley bottoms delineated for stream reaches and used to determine confinement

class. Example close-up of valley bottom and stream network. Total length of streams per class reported as 103 km.

https://doi.org/10.1371/journal.pone.0198439.g003
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On a reach-by-reach basis, variant size, gradient, and confinement classes had 96%, 79%,

and 97% agreement, respectively, with the original simple typologies (S4 File). Variant hydrol-

ogy and temperature classes had 42% and 34% agreement, respectively. When all layers were

varied, new typologies only had 12% agreement with original simplified typologies. Agreement

in patterns of rarity were generally higher than that of all streams (S4 File). Variant size, gradi-

ent, and confinement classes had 98%, 87%, and 65% agreement, respectively, with the original

simplified typologies (S4 File). Variant hydrology and temperature classes had 45% and 39%

agreement, whereas varying all layers had 31% agreement.

Disturbance

Landscape disturbance, dam regulation, and dam fragmentation was widespread across the

Eastern US (Fig 6). Approximately 16% of streams have at least 10% urbanized land cover

in their upstream networks whereas 5.4% have at least 25% upstream urbanization (Fig 7).

Agricultural impacts were more pervasive with 56% and 37% of streams having at least 10%

and 25% agriculture land coverage, respectively, in their upstream network (Fig 7). Most

streams (90%) have some upstream regulation by dams (DOR > = 1%); however, only 7.2%

of streams have DOR > = 4% (Fig 8). Additionally, 9.5% of stream reaches are impounded

(Fig 8). Almost 78% of streams are disconnected from their terminus in an estuary or Great

Lake. Only 17% of streams are connected to the Atlantic Ocean or Gulf of Mexico whereas

5.1% of streams are connected to a Great Lake (Fig 9). Despite the degree of disconnection

to estuarine or Great Lakes, almost 81% of streams have fully connected upstream water-

sheds (i.e., DCI = 100%) (Fig 9). Considering overall disturbances, 69.5% of streams in the

Eastern US are either impounded, regulated, highly fragmented, or have significant land-

scape disturbances.

Fig 4. Substrate classes developed from weighted mean particle sizes at field locations and extrapolated to stream reaches. (median particle size not available).

Total length of streams per class reported as 103 km.

https://doi.org/10.1371/journal.pone.0198439.g004
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Class-disturbance associations

The strength of associations between disturbances and stream classes, as measured by General-

ized Linear Models, varied considerably. Relationships were strongest for models predicting

% agriculture and DCI from stream classes (Table 4). Except for size, all stream classes

explained� 78% of the variation in % agriculture (Nagelkerke R2) whereas size, gradient, and

hydrology explained� 74% of the variation in DCI (Table 4). Relationships between stream

classes and other disturbance variables were weaker than those for DCI and % agriculture.

Fig 5. An assessment of stream class diversity, redundancy, and uniqueness. (A) Various combinations of stream classification layers yield observed (i.e., unique)

and theoretical (i.e., potential) numbers of classes. (B) Diversity score (observed/theoretical classes) relative to various combinations of stream class layers. (C) The

optimal number of classes is found where the diversity score minimizes. This attempts to strike a balance between removing redundancy and losing information on

stream physical diversity. Complex classes refer to all combinations of stream layers (n = 5,577 classes) whereas simple classes refer to all combinations minus the

substrate layer (n = 1983). (D) Distribution of class lengths relative to abundance. Simple classes tend to shift the distribution into fewer, more abundance classes that

have cumulative lengths> 1km.

https://doi.org/10.1371/journal.pone.0198439.g005

Table 3. Comparison of the total and rare typologies emerging from the simple typology versus those arising from scenarios assessing uncertainty in class member-

ship. Rare types refer to stream typologies with cumulative lengths in the lowest 10th percentile of all typologies. Layers do not consider substrate classes.

Typology Scenarios Total Types Total Types >1km Rare Types >1km % Rare Types >1km

Simple (Original) 1983 1521 1217 80.0

Variant Size Class 1974 1514 1210 79.9

Variant Gradient 1987 1529 1220 79.8

Variant Hydrology 2140 1650 1216 73.7

Variant Temperature 1872 1434 988 68.9

Variant Confinement 1966 1506 1126 74.8

All Layers Varied 2679 2027 1501 74.1

https://doi.org/10.1371/journal.pone.0198439.t003
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Fig 6. Disturbance regimes mapped to stream reaches.

https://doi.org/10.1371/journal.pone.0198439.g006
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Confinement and gradient classes explained 54% and 16% of variation in impoundment rates,

respectively (Table 4). Size was the only class explaining noticeable variation (25%) in DOR.

Gradient, hydrology, temperature, and substrate classes explained 20% to 36% of variation in

urbanization and 9.2% to 32% of the variation in connectivity (Table 4). All classes had signifi-

cant associations (p< 0.0001) with overall disturbance regimes (Table 5). Confinement classes

had the strongest association with overall disturbance, followed by size and gradient classes

(Table 5).

Prioritization scenarios for conservation protection, restoration, and

biological monitoring

Of the 1521 simple typologies, a total of 306 classes have 100% of their streams categorized as

disturbed, yet represent 20% of the physical diversity of streams in the Eastern US (Table 6, Fig

10). Additionally, 492 classes (32%) have at least 95% of their stream lengths classified as dis-

turbed. A total of 36 classes have been completely lost to impoundment. Classes with distur-

bance frequencies exceeding D totaled 1151, which represented 75% of the physical diversity

in the entire region and 24% of the total stream length (Table 6, Fig 10). We identified 916

Fig 7. Proportion of stream length having various levels of % agriculture or % urban land cover in their upstream watersheds according to stream classes.

https://doi.org/10.1371/journal.pone.0198439.g007
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classes for conservation protection, which represented 60% of the physical diversity of streams

in the Eastern US, but only 2.5% of the overall stream length for the region (Table 6, Fig 11).

Of the classes with disturbance frequencies exceeding D, we selected 752 classes for restora-

tion, which represented 49% of the diversity in the region, but only 2.1% of overall stream

Fig 8. Proportion of stream length either impounded or regulated by various degrees by impoundments according to stream classes.

https://doi.org/10.1371/journal.pone.0198439.g008
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Fig 9. Proportion of stream lengths according to stream class membership connected (free-flowing) to the ocean or a Great Lake and falling under various levels

of fragmentation, as measured by the Dendritic Connectivity Index (see [9]).

https://doi.org/10.1371/journal.pone.0198439.g009
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length. Finally, streams prioritized for biological monitoring represented 363 classes, 24% of

the regional diversity, but< 0.5% of the overall length (Table 6, Fig 11).

The patterns in disturbance and diversity remained similar even when we imposed uncer-

tainty in classes and typologies (S2 Table). Thus, the prioritization scenarios were only con-

ducted for the original simplified typologies.

Discussion

Understanding the diversity of streams across large spatial extents highlights commonalities

and uniqueness in stream ecosystems [78]. Heterogeneity in stream physical diversity provides

a spatial template [79] or landscape filter [80] to examine the influence of physiochemical vari-

ation and anthropogenic disturbance regimes on ecological strategies. These patterns are of

Table 4. Nagelkerke’s R2 values and McFadden’s pseudo-R2 (for DOR) from generalized linear models predicting disturbances from stream classes.

Disturbance Size Gradient Hydrology Temperature Confinement Substrate

Impoundment1 0.002 0.159 0.061 0.059 0.540 0.034

DOR2 0.245 0.101 0.033 0.015 0.007 0.013

Connectivity1 0.000 0.092 0.212 0.156 0.008 0.323

DCI1 1.000 0.890 0.742 0.378 0.131 0.234

Urbanization1 0.021 0.220 0.236 0.199 0.044 0.360

Agriculture1 0.011 0.863 0.989 0.781 0.808 0.978

Modeling using 1binomial distribution or 2gamma inverse distribution

https://doi.org/10.1371/journal.pone.0198439.t004

Table 5. Measures of association between stream classes and disturbance classes. Disturbance classes are a categorical indication of the anthropogenic stressor, if pres-

ent, inducing the largest influence on a stream and includes (in order of greatest to least influence): Impoundment, dam regulation, dam fragmentation, landscape alter-

ation, and no disturbance.

Disturbance Df Likelihood ratio X2 Phi Contingency Cramer’s V

Size 24 139346 188596 0.47 0.426 0.235

Gradient 20 154060 159111 0.432 0.397 0.216

Hydrology 32 63407 64714 0.276 0.266 0.138

Temperature 16 61665 64966 0.276 0.266 0.138

Confinement 8 348589 321971 0.615 0.524 0.435

Substrate 24 55599 56277 0.257 0.249 0.128

https://doi.org/10.1371/journal.pone.0198439.t005

Table 6. Filtering criteria for prioritizing streams according to rarity and disturbance regimes. D refers to Disturbance Threshold.

Filters Classes Length (km) Reaches % physical diversity % stream length

Class Disturbance > D 1151 361592 279548 75.7 24.0

Class Disturbance = 100% 306 136521 141038 20.1 9.07

Class Disturbance > 95% Disturbance 492 250888 256866 32.3 16.7

Classes with 100% Impoundment 36 252 163 2.37 0.02

Prioritization

Conservation Protection 916 38047 22540 60.2 2.53

Restoration 752 32186 13319 49.4 2.14

Biological Monitoring 363 7134 7397 23.9 0.47

All Prioritizations 1328 77367 43256 87.3 5.14

https://doi.org/10.1371/journal.pone.0198439.t006
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Fig 10. Simple stream classes whose rarity and disturbance levels exceed the disturbance threshold. Proportions of stream length within

each simple class are plotted against class abundance ranking. The cumulative frequency of stream lengths versus class abundance is

provided. The inflection point of the disturbance threshold occurs at the 90th percentile of class abundance. Proportions of class membership

(based on length) that fall under individual disturbance regimes are compared to class abundance ranking.

https://doi.org/10.1371/journal.pone.0198439.g010
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practical significance because they can be used to assess stream rarity and prioritize conserva-

tion efforts. Additionally, generalizing streams into classes has relevance to increasing the

representation of finer-scale stream processes in large-scale models of Earth’s ecosystems [81].

Within the Eastern United States, we estimate there are anywhere from 1,521 to 5,577 dif-

ferent physical types of streams based on combinations of our habitat layers. However, if we

consider uncertainty in mapping classes to stream reaches, those estimates could range from

1,434 to 6,856 different types of streams. Out of 1521 simplified types, the most dominant

stream typology is a headwater, moderate-gradient, stable-high baseflow, cool, unconfined

stream, which comprises over 47,500 km (3%) of stream length in the Eastern US (S1 Table).

In comparison, the rarest simplified type is a small-river, high-gradient, stable-high-baseflow,

Fig 11. Prioritization of streams based on (a) conservation protection where rare streams with cumulative lengths in the top 10th percentile (highest percentile are the

most rare) also have no known anthropogenic disturbances, (b) restoration for stream reaches with class disturbance levels exceeding the disturbance threshold and

individually falling within one of the four disturbance classes, and (c) biological monitoring where streams with class disturbance levels exceeding the disturbance

threshold, and in classes not biological sampled since 1990.

https://doi.org/10.1371/journal.pone.0198439.g011
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cool-warm, confined stream, which comprises only 1 km. The range in potential physical

typologies should be expected as this represents a balance between capturing all dimensions of

physical rarity while removing redundancy arising from interrelated physical layers. Indeed,

stream classification requires striking a balance between preserving the “[individuality] of

every stream” [82] with generalizations of stream ecosystem properties. Realistically, streams

represent a continuum of physical values in multiple dimensions. While this creates a chal-

lenge for classification approaches that seek arbitrary boundaries among typologies, streams

are predisposed to classification because their physical attributes display repeatable patterns in

the landscape [78]. Additionally, we consider the estimates of physical types as conservative.

For instance, our estimates of the physical diversity of stream types would have increased con-

siderably had we included smaller headwater and ephemeral systems.

The majority of stream length (95%) in the Eastern US is represented by less than 30% of

the total diversity of stream types (430 of 1521 classes). This suggests that most stream types

are numerically rare and non-redundant in the landscape. Additionally, we find that 32% of

the physical diversity of stream types have been virtually lost to anthropogenic disturbances.

Of these, 36 classes (2.5% of stream diversity) are completely impounded and are unlikely to

be restored to a natural condition. Even when we accounted for uncertainty in stream typolo-

gies, patterns of rarity and disturbance were consistent and, in some cases, higher that simpli-

fied typologies (S2 Table). While stream classes with no natural representation represent only

8% of total stream length, the consequences could be devastating to aquatic communities if the

diversity of these species pools are shaped by the geophysical diversity of stream types. Further-

more, our estimates of the extent of disturbance impacts are likely an underestimate of cumu-

lative disturbance, as the extent of historical disturbances (e.g., mill ponds) is not represented

in current maps of current land cover and infrastructures [83].

Stream classes showed strong associations with anthropogenic disturbance regimes. In

some ways, this is not surprising as it is difficult to separate certain anthropogenic disturbances

(e.g., agricultural land use) from natural geophysical types (e.g., valleys) [84]. In other cases,

however, class-disturbance associations could reflect our inability to separate natural variation

from human impacts on the landscape. For example, confinement was highly associated with

impoundment and agriculture. Unlike other classes, confinement reflects the current condi-

tion (not reference condition) of valley geomorphology in the landscape based on recent DEM

data; thus, we have no way to separate natural variation from human disturbance. In other

cases, however, associations between classes and anthropogenic disturbances is related to

increased propensity of some systems to face anthropogenic pressures. An unfortunate finding

was that rare streams tended to have a larger portion of their membership disturbed (Fig 9).

One probable reason is that large river systems are rare, yet face a higher likelihood of distur-

bance from dam regulation, impoundment, and cumulative upstream landscape disturbances.

Additionally, despite highly heterogenous types of streams, humans tend to value relatively

homogenous river types (e.g. stable and perennial flows, moderate sized supportive of recrea-

tion) [85]. This suggests that society may undervalue rare streams leading to higher prevalence

of disturbance and lack of protection for these stream types.

Our conservation protection, restoration, and biological monitoring prioritization efforts

yielded a cumulative total of 1328 classes that represented 87% of the physical diversity of

streams, while only constituting 5% of total stream length in the Eastern US. While 77,000 km

of streams seems like a large number and impractical for management, this estimate is quite

reasonable given current stream management efforts. For instance, our restoration prioritiza-

tion isolated 32,186 km of stream reaches or 2.1% of stream length in the Eastern US. In com-

parison, the documented national cumulative stream length falling within restoration projects

as of 2005 was > 21,000 km [86]. Our restoration prioritization translates to 1463 km of
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streams per state in the Eastern US, which is quite higher than the average number of restored

stream miles documented for Southeastern states, 169 km per state [87]. Our biological moni-

toring prioritization identifies 1% of streams, representing 24% of physical stream diversity in

the Eastern US, which corresponds well to estimates of existing systematic aquatic biological

surveys for the entire US (i.e., 5% of the nation’s area) [29].

An important caveat is that the prioritization scenarios we provide represent only a few

examples of a wide range of possible scenarios that could be used to target sites for restoration,

conservation, and monitoring. Furthermore, stream reaches identified in our assessment

require field verification and more precise identification of impacts and needed restoration

prescriptions. Likewise, our biological monitoring assessment was based on available open-

access biodiversity data and may not reflect all sample occurrences. More importantly,

our uncertainty assessment suggests that on a reach-by-reach basis, typologies could shift dra-

matically. Thus, care should be taken when interpreting our findings and more subsequent

research is needed to ensure any prioritizations account for uncertainty.

Utility of stream classifications, a case study

Layered stream classifications that represent the multidimensional characteristics of fluvial

habitats can be used for many purposes. As our analysis showed, stream classifications can be

used as an inventory of common-to-rare physical types that support conservation prioritiza-

tion efforts; however, there are many other examples of potential applications. For example,

stream classifications consolidate rich habitat information into typologies and hence, could be

used for aquatic species distribution modeling (SDM). Layers of stream classes could be incor-

porated as variables in SDMs or, in cases of limited occurrence data, habitat typologies can be

used as an “envelope” of habitat suitability [88].

Multiple frameworks suggest using stream classes as a template to examine disturbance-

ecology relationships [18, 89]. Specifically, stream classes could be used to understand how

different stream environments respond to disturbance, or even further, understand how physi-

cal properties mediate disturbances on ecological communities. Stream classes can be used to

stratify stress-ecosystem response curves [90], which provide a mechanistic understanding of

how disturbance alters habitat, which subsequently, structures ecological communities. For

example, hydrologic classes have been used to stratify hydrologic [91] and ecological [92]

responses to dam regulation.

Stream classes also offer a framework to guide restoration actions in two main ways.

First, stream classes provide a multi-dimensional template to preliminarily identify reference

streams that share similar physical, and presumably, ecological properties to disturbed streams

in the process of restoration. Disturbance layers provide additional information to select

sites meeting reference condition criteria or sites with similar disturbance regimes. Secondly,

stream classes, if based on natural variation (as in our classification), represent an idealized ref-

erence condition. Class membership can be used to infer a range of expected conditions for

streams in the absence of disturbance [91] and infer mitigation needs.

Case study. As an example of the utility of the stream classification, we provide a case

study examining stream systems similar to Walker Branch, Tennessee, and the Lower Roanoke

River, North Carolina. Walker Branch drains a relatively undisturbed and forested watershed

in the Ridge and Valley Ecoregion (Fig 12) and has been the focus of almost 30 years of long-

term stream ecology research on organic matter processing [93], nutrient cycling [94,95], eco-

system metabolism studies [96], and water chemistry dynamics [97]. As with other long-term

ecological research, Walker Branch was selected as a representative of many streams with simi-

lar climate and landscapes across the US in order to extend biogeochemical research findings
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Fig 12. Case study examining streams similar to Walker Branch, Tennessee, and the Lower Roanoke River, North Carolina. (A) Locations of

Walker Branch and the Lower Roanoke River and associated Ecoregions. Study side maps of (B) Walker Branch watershed and (C) the Lower

Roanoke River. Streams in the (D) Ridge and Valley and (E) Mid-Atlantic and Southeastern Plains were sequentially filtered based on whether they

matched the same typology as Walker Branch and the Lower Roanoke River, respectively. Sequential filtering started with size classes, and then was

followed by gradient, hydrology, temperature, confinement, and substrate (i.e., in order of hypothesized importance in structuring stream

ecosystems). Total length of streams matching filters is provided.

https://doi.org/10.1371/journal.pone.0198439.g012
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as broadly as possible [97]. Our layered classification approach provides a template to test this

assumption. We incrementally selected streams in the Ridge and Valley Ecoregion and the

entire Eastern US matching the layer typologies of Walker Branch, starting with size, followed

by gradient, hydrology, temperature, confinement, and substrate (i.e., in order of hypothesized

importance in structuring stream ecosystems). Based on our complex stream typologies,

Walker Branch is a headwater, moderate-gradient, stable-high baseflow, cool, valley-confined,

large-boulder type system. This unique typology represents less than 1% of streams (631 km)

in the Ridge and Valley Ecoregion and less than 0.5% of streams (~4900 km) in the entire East-

ern US (Fig 12, S2 Fig). Even if we use the simplified typology (i.e., removes substrate), these

percentages remain the same. Additionally, the above percentages drop by 30–70% if only

streams with minimal disturbances are considered (Fig 12). Although headwater systems

represent > 50% of all stream length in the Eastern US, just the unique combination of

headwater and moderate-gradient types is found in only 9% of all streams in the Eastern US.

Depending on the research application, one or multiple layers can be selected to identify

streams that match the physical properties under consideration to extend research findings to

other systems.

Similar to Walker Branch, the Lower Roanoke River (LRR) has been an active location of

research, but for different reasons, specifically the conservational importance of the river, its

floodplain, and entry into Albermarle Sound in providing habitat for a large diversity of sensi-

tive animal and plant species [98, 99, 100]. The majority of the mainstem Roanoke River and

its tributaries are highly regulated by impoundments, the most downstream of which is Roa-

noke Rapids Dam (Fig 12). Below Roanoke Rapids Dam, the LRR flows freely for 326 km

through the Southeastern Plains (SP) and eventually Middle Atlantic Coastal Plains (MACP)

Ecoregions before entering the estuary (Fig 12). Because the Roanoke River has been a focus of

intense management, primarily developing environmental flows [98, 100) and preserving nat-

ural floodplain inundation [99], identifying case studies or reference streams to guide manage-

ment could be important. The predominant typology of the LRR is a large-river, very-low

gradient, stable-high baseflow, warm, unconfined valley, small-boulder and coarse-gravel

type system. Because big river systems are rare, we included both large and great river classes,

which collectively only represent roughly 1% of all streams in both the SP and MACP Ecore-

gions, as well as the entire Eastern US (Fig 12). Considering only simplified typologies, less

than 1400 km (0.4%) and less than 1900 km (0.1%) of streams share similar typologies to that

of the LRR in the selected Ecoregions and entire Eastern US, respectively (Fig 12, S3 Fig). Vir-

tually, all these systems (e.g., Pee Dee, Ocmulgee, Appalachicola River) are highly regulated by

dams and could serve as ideal case studies (SI 8); however, the prospect of a minimally dis-

turbed reference system with very similar properties to the LRR is unlikely.

Classifications at stream-reach resolutions

Historically, stream classification efforts have remained divergent from the mapping ofstream-

reaches, as most past efforts have typically been the focus of clustering discrete objects, as

opposed to developing spatially comprehensive and contiguous characterizations of stream

landscapes (except see [11]). Prior to the availability of large stream-reach datasets, many

stream classifications remained conceptual frameworks that expanded our understanding of

stream function and organization [30,82], but did not translate into widely-applicable and spa-

tially coherent classification products. Ultimately, this limits the questions we can ask regard-

ing the diversity of stream ecosystems within a large region. Our analysis suggests that stream

physical diversity is very high and that similar stream types are patchily distributed in the land-

scape. The distribution of stream types tends to represent a balance between longitudinal
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forces of organization [38] versus patchy geomorphic controls [101]. For instance, stream

types in some layers show strong patterns of regionality and longitudinal gradients (e.g.,

hydrology, temperature) whereas others occur as more discrete patches (e.g., gradient, con-

finement). However, combining all six layers results in highly variant stream types occurring

within close proximity, which tends to agree with the concept that streams are organized as

highly variable hydrogeomorphic patches [102].

Our stream classification and assessment of physical diversity should be viewed within the

context of reach-scale segments (i.e., 1:100K scale or 1 km segments). We considered six differ-

ent physical layers that could be characterized from available remote sensing products, many

of which had resolutions > 30 meters. This approach will exclude measures of physical geo-

morphic diversity measured at the meso- or micro-habitat scales, i.e. 1 to 100 meters [30], such

as within-channel geomorphology. In comparison, multiple studies have evaluated the hetero-

geneity of spatial variation in morphological units, bedforms, bars, and stream bed topography

[103–106]. These studies generally conclude that geomorphological diversity is high, but the

degree of heterogeneity is completely dependent upon the scale of analysis. Hence, combining

our classification with those developed a meso- and micro-habitat scales would likely yield an

exorbitant number of possible stream reach-meso-mico typologies across the Eastern US.

Limitations and conclusions

Our estimation of riverscape diversity for the Eastern US is certainly an artifact of our

approach and selection of layers. We fully recognize that there are multiple other physical

and non-physical habitat layers that could have been included that would have increased the

dimensionality of our stream diversity estimates. For instance, water chemistry, such as alka-

linity, has been modeled for large regions of the US [107] and has been included in other

stream classifications [23]. Additionally, other reach-scale layers depicting stream network

configurations, such as tributary junctions, could have also been included to represent spatial

arrangements of dendritic river systems. Tributary junctions create discontinuities among

stream patches [108] and induce large effects on the ecosystem processes and habitat diver-

sity of rivers they enter [36]. However, the number of stream typologies in our analysis was

already quite large for informing practical approaches to conservation and management.

Moreover, we found that combinations of each subsequent layer beyond five habitat attri-

butes did not yield large increases in our diversity score. Furthermore, the cumulative error

propagation from the addition of more layers would likely lead to more instability in stream

typologies.

Another difficult, but necessary, aspect of developing classifications is separating multi-

dimensional data into distinct groups. Realistically, however, many environmental phenomena

likely represent gradients in values as opposed to distinct thresholds or boundaries. Subse-

quently, observations with environmental values near the fringe of cluster’s multidimensional

space could theoretically share membership with multiple different clusters. Furthermore,

probabilities of “fuzzy membership” for each classification is likely compounded with the

assemblage of multiple habitat layers. Hence, layered approaches to stream classifications

could overestimate the physical diversity of streams because all variation is not jointly consoli-

dated through clustering. However, individual stream types, and subsequently, measures of

stream diversity, may be difficult to interpret from agglomerative clustering solutions. Alterna-

tively, preserving the identity of habitat layers within final stream typologies is important to

understanding and communicating the functional components of streams [36].

Extrapolating habitat conditions to a large number of unsampled stream reaches based on

empirically-driven predictive models does not come without limitations. For example, this
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approach requires sufficient sample sizes of empirical observations to model habitat conditions

in unsampled streams. However, this requirement comes at a cost to limitations in our choice

of habitat layers and associated classes. For example, a more sophisticated classification of

thermal regimes [e.g., 21] would have been ideal, as opposed to relying on a more simplified

classification of July-August averages; however, sample sizes from Maheu et al.’s [21] classifica-

tion (n = 50 in Eastern US) were not sufficient to support model development. Additionally,

our modeled substrate values are biased towards larger substrate classes because we used a

weighted mean diameter of particles, as this could be readily calculated from empirical data

sources.

Such approaches will also induce uncertainty into estimates of habitat conditions in

unsampled stream reaches; thus, any interpretation of stream typologies should take our

estimates of model error into consideration. After accounting for uncertainty in classes, we

observed little variation in our diversity and rarity estimates and their overlap with disturbance

regimes. However, on a reach-by-reach basis, uncertainty in class membership creates a high

potential for shifts in typologies. A common observation is that empirical observation net-

works within stream environments are under-representative of the diversity of stream ecosys-

tems [109]. While we acknowledge that our models are not immune to the issues arising from

data limitations, our compilations of empirical observations are not small (i.e., 500–2000 sam-

ples) and represent >98% of the overall variation of stream landscape attributes for the entire

region.

The resolution of our classification and related measures of diversity are completely depen-

dent upon the scale of the underlying datasets used in its development (i.e., NHDPlus V1).

For instance, our classification omits very small headwaters and ephemeral streams and hence,

underestimates the diversity of stream types. Likewise, assessments of natural variation and

anthropogenic disturbances are also dependent upon available information, which may be

inaccurate. In particular, estimates of fragmentation by dams are dependent upon data that

appropriately characterize barriers. However, these datasets are many times incomplete and

miss small impoundments [110]. While our assessment excluded information at finer resolu-

tions, our classification approach does not preclude incorporating higher-resolution layers

(e.g. tributaries, pools, riffles) as patches within reaches.

Wohl [85] concludes that most studies evaluating heterogeneity in stream geomorphology

suggest that diversity of stream environments high. While our focus is on the reach or segment

scale rather than within-reach scale, our findings concurrently suggest that stream physical

diversity is extremely high. By extrapolating rates of diversity from our classification to the

entire conterminous US (1 million:2.6 million reaches), we estimate there could be anywhere

from 4,000 to 14,5000 different types of stream reaches present. Understanding this level of

diversity in important for representing these ecosystems in Earth System models, but also

potentially useful to practical applications, such as prioritizing streams for conservation, resto-

ration, and monitoring.
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S1 Fig. Drainage-area thresholds supporting size classes. Breaks or threshold values found

in the literature for stream size classifications based on upstream drainage area.

(TIF)

S2 Fig. Walker Branch case study sites. Stream reaches in the Ridge and Valley Ecoregion

scored according to their similarity to Walker Branch.
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S3 Fig. Roanoke River case study sites. Stream reaches in the Middle Atlantic Coastal Plain

and Southeastern Plains scored according to their similarity to the Lower Roanoke River.

(PDF)

S1 Table. Stream typology examples. Examples of the 30 most dominant and 30 rarest simpli-

fied stream typologies in the eastern US (does not include substrate classes). Codes for classes

are provided in Table 1. All typologies for both simple and complex approaches are provided

in SI.

(PDF)

S2 Table. Disturbance patterns and uncertainty in typologies. Comparison of disturbance

patterns between the original simple typology and typology scenarios arising from class

uncertainty. The % physical diversity is calculated relative to the number of typologies with

lengths > 1km whereas the % stream length is calculated relative to the total length of all

streams in the Eastern US.

(PDF)

S1 File. Predictor variables and model performance. Spatial variables, their sources, and

whether they were used to model hydrologic classes, temperature classes, substrate size or

bankfull width. Results of random forest models are provided including performance, variable

importance, and the confusion matrix (hydrologic classes).

(XLSX)

S2 File. Observation data representation. Representativeness of the subset of streams con-

taining empirical observations of hydrology, temperature, and substrate on the overall varia-

tion represented by all streams in the region.

(PDF)

S3 File. Drainage-area vs. flow relationships. Relationships between drainage area and mean

annual flow stratified by different climate zones and hydrologic regions for the Eastern US.

(PDF)

S4 File. Methods for quantifying typology uncertainty. Approach and results of examining

the effect of uncertainty of mapping classes to stream reaches on stream typologies and rarity

estimates.

(PDF)

S5 File. Simple and complex stream typologies. List of simple (substrate excluded) and com-

plex (all habitat layers) stream typologies found in the analysis and total length occupied in

streams in the eastern US. Stream typologies for all uncertainty scenarios and their length are

also provided.

(XLSX)
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