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Abstract

Single-cell genome sequencing provides a highly granular view of biological systems but is

affected by high error rates, allelic amplification bias, and uneven genome coverage. This

creates a need for data-specific computational methods, for purposes such as for cell line-

age tree inference. The objective of cell lineage tree reconstruction is to infer the evolution-

ary process that generated a set of observed cell genomes. Lineage trees may enable a

better understanding of tumor formation and growth, as well as of organ development for

healthy body cells. We describe a method, Scelestial, for lineage tree reconstruction from

single-cell data, which is based on an approximation algorithm for the Steiner tree problem

and is a generalization of the neighbor-joining method. We adapt the algorithm to efficiently

select a limited subset of potential sequences as internal nodes, in the presence of missing

values, and to minimize cost by lineage tree-based missing value imputation. In a compari-

son against seven state-of-the-art single-cell lineage tree reconstruction algorithms—Bit-

Phylogeny, OncoNEM, SCITE, SiFit, SASC, SCIPhI, and SiCloneFit—on simulated and

real single-cell tumor samples, Scelestial performed best at reconstructing trees in terms of

accuracy and run time. Scelestial has been implemented in C++. It is also available as an R

package named RScelestial.

Author summary

Reconstructing the evolutionary history from the genome sequences of single cells can

provide a detailed understanding of evolutionary events and changes on a very fine-

grained scale, for instance in the development of organs and cancer. Due to the increasing

sizes of single-cell datasets, scalable and accurate methods are required. In this work we

describe Scelestial, a software implementing an adapted Steiner tree approximation algo-

rithm for evolutionary tree reconstruction from the analysis of single-cell datasets. The

Steiner tree approximation algorithm, unlike other heuristics and sampling-based meth-

ods (e. g. Markov chain Monte Carlo), provides guarantees of its performance. A compari-

son of Scelestial with state of the art methods showed that it performed favourably in
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terms of quality of the inferred trees as well as speed across a large number of simulated

data sets, and produced the most plausible evolutionary scenarios on single cell data sets

from cancer patients. Taken together, our results show that Scelestial provides a valuable

addition to current single cell lineage inference techniques.

This is a PLOS Computational Biology Methods paper.

1 Introduction

Lineage trees describe the evolutionary process that created a sample of clonally related enti-

ties, such as individual cells within an organ or a tumor. A lineage tree also suggests the consti-

tution of a founder cell, as well as of its descendants, and the evolutionary events that occurred

during lineage formation. Single-cell genomic data provide a highly resolved view of cellular

evolution, substantially more than bulk genome sequencing [1]. However, they also come with

high rates of missing values and distorted allele frequencies arising from amplification biases

and sequencing errors [2]. Multiple displacement amplification (MDA) is a commonly used

single-cell DNA sequencing that is suitable for single-nucleotide polymorphism identification.

Lineage tree reconstruction from single-cell data therefore requires specific considerations for

handling missing values and errors. Specific approaches to tackle this problem include the

methods of Kim and Simon [3], BitPhylogeny [4], OncoNEM [5], SCITE [6], SiFit [7], SASC

[8], SPhyR [9], SCIPhI [10], SiCloneFit [11], B-SCITE [12], and PhISCS [13]. Kim and Simon

[3] make use of the infinite site assumption and infer a “mutation tree” based on calculating a

probability for ordering mutations in a lineage and constructing a tree, finding the maximum

spanning tree in this graph. BitPhylogeny [4] provides a stochastic process through a graphical

model that stochastically generates the given input data and uses Markov Chain Monte Carlo

(MCMC) for sampling to search for the best lineage tree model and the associated parameters.

OncoNEM [5] and SCITE [6] infer a phylogenetic tree over all the samples under a maximum

likelihood model. OncoNEM uses a heuristic search, whereas SCITE uses MCMC sampling to

find a maximum likelihood tree. SiCloneFit [11] infers subclonal structures and a phylogeny

via a Bayesian method under the finite site assumption. SASC [8] and SPhyR [9] consider the

k-Dollo model, a more relaxed model in comparison than infinite site assumption. In k-Dollo

model, a mutation can be gained once in a tumor but may be lost multiple times afterwards.

SASC uses simulated annealing and SPhyR uses k-means to find the best k-Dollo evolutionary

tree. B-SCITE [12] and PhISCS [13] infer subclonal evolution, based on a combination of sin-

gle-cell and bulk sequencing data. B-SCITE uses an MCMC method to maximize a likelihood

function for trees and sequencing data. PhISCS formulates tree reconstruction as combinato-

rial and mathematical programming problems, and uses standard mathematical programming

solvers to find the solution. Integer or integer linear programmings for the phylogenetic tree

reconstruction are also available [14, 15].

The Steiner tree problem is a classic problem in theoretical computer science with a wide

range of applications in various areas including very-large-scale integration design [16], net-

work routing [17], civil engineering [18], and other areas [19–22]. Given a weighted graph and

some vertices marked as terminals, the Steiner tree problem is the problem of finding the min-

imum weighted tree that connects all the terminal vertices, with non-terminal vertices that
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may or may not be included in the optimal tree. Although the Steiner tree problem is NP-hard

and no polynomial-time exact solution is known, some elegant approximation algorithms are

available. They guarantee polynomial time and a constant factor approximation ratio, and have

been used for phylogenetic reconstruction [23]. This is a great advantage compared with sampling

heuristics such as MCMC for finding an optimal solution, which may be trapped in local optima.

Here, we describe Scelestial, a method for lineage tree reconstruction from single-cell data-

sets, based on the Berman approximation algorithm for the Steiner tree problem [24]. Our

method infers the evolutionary history for single-cell data in the form of a lineage tree. Dealing

with missing values makes the problem much harder in theory. To overcome this difficulty, we

considered a geometrical representation of the problem. Considering two-state sequences, the

sequences can be represented as data points in a high dimensional space such that dimensions

correspond to sequence loci. In this representation the phylogeny inference problem could be

considered as a geometric Steiner tree problem, in which weight of edges are calculated as the

Euclidean distances between the points. The idea of the definition of the cost function in Sce-

lestial regarding the missing values is to put a new point for each sequence at the center of

mass of the points representing all the potential imputations of a sequence. Considering this

geometrical representation, although the definition of cost function imposes some extra cost

in the result of the algorithm caused by misplacement of the center from the best imputation,

which we do not know in advance, helps us to get a fast yet accurate and robust algorithm.

2 Results

Scelestial is a phylogenetic inference algorithm based on an approximation algorithm for the

Steiner tree problem that has been adapted for single-cell data. Scelestial’s input is a set of sin-

gle-cell genome sequences given as a matrix of point mutations, which may contain missing

values. Scelestial defines a cost function for every pair of sequences and starts with a minimum

cost spanning tree between the samples, and considers it as a first-order approximation of the

inferred phylogeny. Scelestial then iteratively improves the inferred tree by considering all sub-

sets of samples of a size up to a constant parameter k and all the potential phylogenies contain-

ing these samples as their leaf nodes. The output is an unrooted phylogenetic tree representing

the evolutionary relationships between sampled cells.

Phylogenetic inference methods produce trees with samples assigned only to leaf nodes.

However, in single cell analysis some methods (e.g. SASC [8]) produce a tree allowing samples

to be assigned to internal nodes. An assignment of a sample to an internal node indicates an

ancestral node with a state indistinguishably similar to that sample (Fig 1A, 1B, 1E, 1G and

1H). It could equally well be represented by a tree with samples assigned only to terminal

nodes by adding a branch with zero edge length leading to that sample to this node. Scelestial

follows the single-cell convention.

Since Scelestial reconstructs a phylogeny by considering the similarity of the sample nucleo-

tides in variable positions and therefore does not need to be given information on the refer-

ence alleles as input. However, Scelestial does make use of this information when using the

option for specifying the root of the phylogeny, which is then identified as the sample most

similar to the reference (normal) cells.

2.1 Performance in lineage tree reconstruction on simulated data

We compared the performance of Scelestial to SCITE, OncoNEM, BitPhylogeny, SASC (as a

recent instance of k-Dollo-based methods), SCIPhI, SiFit, and SiCloneFit. For this, we gener-

ated data with the cell evolution simulator provided by OncoNEM and with another tumor

evolution simulator that we developed (Section 3.2).
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Fig 1. Lineage trees inferred by different methods on a single-cell dataset from a muscle-invasive bladder tumor.

Nodes in these trees represent clones (i.e., inferred, evolutionary genomes ancestral to the observed single-cell

genomes). For the methods generating trees over samples, and not the clones, colored nodes represent samples. Blue

nodes represent clones containing only normal cells, orange nodes represent clones containing only cancer cells, and

brown nodes represent clones containing both normal and cancer cells. Text within the nodes indicates the

identification number of the assigned sample cell(s) to the corresponding clone. White nodes represent nodes with no

observed sample.

https://doi.org/10.1371/journal.pcbi.1009100.g001
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The methods evaluated in this study were developed under different assumptions and evo-

lutionary models. However, in a more general view, the sampled cells are formed through an

evolutionary process. Thus, there is an actual evolutionary tree relating all of them in the real

world, and the ultimate goal of all of the methods and models is to infer the true evolutionary

relation between the samples. Thus, we evaluated the performance of the algorithms via com-

paring their resulting tree with the ground truth, on the simulated data. For the clone-based

trees, we considered each clone as an internal node with all its samples as its direct descendants

with zero length edges. With this consideration, the measures used for evaluation of the trees

could be used for both clone-based and sample-based models.

We calculated their distance to the ground truth lineage trees as the normalized pairwise

distances between corresponding samples, as described in Section 3.4.1. In addition, we calcu-

lated the similarity between the generated trees and the ground truth by comparing tree splits

(Section 3.4.2). For run time evaluation, we executed all the methods on simulated tumor data

over a range of numbers of samples and sites. We also assessed the run time performance of

the methods in relation to different parameters, such as the number of samples and sites (Sec-

tion 2.6).

First, we evaluated the algorithms on data created with OncoNEM’s simulator. The simula-

tor creates samples by producing clones and sampling from these clones (Section 3.3). It

accepts the number of clones (i.e., the number of nodes in the lineage tree), the number of

sampled cells, the number of sites, the false positive rate, the false negative rate, and the missing

value rate as parameters. We used 1.5% for false positive, 10% for false negative and 7% for the

missing value rates. These parameters are consistent with observed parameters in single-cell

data [25]. We performed tests for 50 and 100 samples, 5 and 10 clones, and 20 and 50 sites, and

calculated the pairwise distance between the inferred and ground truth trees for all methods

(Table 1). For each setting we evaluated the results for 10 different simulations and calculated

the average (Table 1). From these data, Scelestial reconstructed lineage trees with the lowest

distance to the ground truth tree in 7 out of 8 cases. SiFit performed best in the remaining

case.

Next, we simulated 100 single-cell datasets from a solid tumor covering a range of evolu-

tionary time spans (i.e., a range of mutations per branch in the resulting lineage trees from one

to ten), using a simulation method we implemented (Section 3.2) and compared the methods

on this simulated dataset (Fig 2). The simulated data provide a granular simulation of tumor

evolution and single-cell sequence data. Tumor growth was simulated with 50 samples and

Table 1. Comparison of reconstruction of ground truth lineage tree from data simulated by OncoNEM, showing the distance between the inferred trees and the

ground truth for all methods across eight lineage trees. Each cell represents average of tree distance measure for ten different simulated datasets. The best results among

all the methods for each evolutionary tree are shown in bold. The variance of the values are represented in brackets.

50 samples 100 samples

5 clones 10 clones 5 clones 10 clones

Method 20 sites 50 sites 20 sites 50 sites 20 sites 50 sites 20 sites 50 sites

OncoNEM 0.93 (0.03) 0.97 (0.03) 0.80 (0.01) 0.76 (0.01) 0.96 (0.02) 0.96 (0.02) 0.84 (0.01) 0.78 (0.00)

Scelestial 0.84 (0.02) 0.86 (0.03) 0.73 (0.01) 0.68 (0.00) 0.89 (0.02) 0.88 (0.02) 0.76 (0.01) 0.71 (0.00)

BitPhylogeny 0.96 (0.03) 0.95 (0.02) 0.94 (0.01) 1.03 (0.05) 0.97 (0.04) 1.05 (0.02) 0.94 (0.01) 0.97 (0.02)

SCITE 1.00 (0.02) 0.97 (0.02) 0.93 (0.03) 0.89 (0.03) 0.99 (0.02) 0.96 (0.02) 0.91 (0.01) 0.98 (0.05)

SASC 0.88 (0.01) 0.91 (0.02) 0.80 (0.00) 0.78 (0.00) 0.93 (0.02) 0.92 (0.01) 0.82 (0.00) 0.80 (0.00)

SCIPhI 0.94 (0.03) 1.00 (0.01) 0.92 (0.03) 0.90 (0.01) 0.96 (0.02) 1.01 (0.03) 0.96 (0.02) 0.90 (0.04)

SiFit 0.88 (0.03) 0.90 (0.02) 0.87 (0.05) 0.82 (0.09) 0.86 (0.02) 0.91 (0.02) 0.84 (0.03) 0.79 (0.02)

SiCloneFit 0.96 (0.03) 1.01 (0.02) 0.83 (0.01) 0.79 (0.01) 0.99 (0.02) 1.05 (0.02) 0.90 (0.02) 0.81 (0.00)

https://doi.org/10.1371/journal.pcbi.1009100.t001
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200 sites. The other parameters (missing value rate, false positive rate, and false negative rate)

were set as in the OncoNEM simulation. Specifically, we used 1.5% for the false positive rate,

10% for the false negative rate, and 7% for the missing value rate. The main difference between

our simulation and the OncoNEM simulation tool was that we considered the relative fitness

between clones and let the clones proliferate with a probability proportional to their relative

fitness.

The lineage tree reconstruction error was calculated as the sum of all distance errors over

every pair of samples (Section 3.4.1). The lower the lineage tree reconstruction error, the more

similar the tree is to the ground truth one. In addition, we determined the split similarity

between the resulting trees and the ground truth tree (Section 3.4.2). A higher split similarity

measure reflects a better reconstruction of the tree’s topology. Overall, when considering the

lineage tree reconstruction error, none of the resulting trees was highly similar to the ground

truth tree (Fig 2A). Nevertheless, there were differences in the accuracy of the inferred trees.

With these data, considering the average performance measure of 10 datasets for each muta-

tion rate, Scelestial performed best in 10 out of 10 cases regarding the split similarity measure.

Scelestial also performed best for the distance measure in 9 of 10 cases; SiCloneFit was the best

for the remaining case. The performance of Scelestial, SiCloneFit, and OncoNEM improved

with the number of mutations (Fig 2A). This increase in the mutation rate had a very large

effect on the performance of SiCloneFit and OncoNEM, whereas the performance of SASC

and SiFit was stable across changes in the number of mutations between clones.

Overall, the relative performance of lineage tree reconstruction for different methods was sim-

ilar to that observed before (Table 1). This also indicates that the relative difficulty of tree infer-

ence for the simulation method provided by OncoNEM and our simulation method are similar.

2.2 Robustness across varying data properties

We next evaluated the robustness of Scelestial to dataset properties over 420 datasets with vary-

ing parameters that we generated for this purpose with our tumor simulator. We fixed the

Fig 2. Comparison of the methods for single-cell lineage tree reconstruction on simulated tumor data. Note that in case of the

lineage tree reconstruction error (A), lower values show a better reconstruction. On the other hand, the split similarity measure

represents (B) similarity between the reconstructed tree and the ground truth tree, making higher values favorable.

https://doi.org/10.1371/journal.pcbi.1009100.g002

PLOS COMPUTATIONAL BIOLOGY Scelestial: Single-cell lineage tree inference algorithm

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009100 August 11, 2022 6 / 27

https://doi.org/10.1371/journal.pcbi.1009100.g002
https://doi.org/10.1371/journal.pcbi.1009100


default configuration in our simulation as 50 samples, 200 sites, five evolutionary nodes in the

simulated evolutionary tree, 1.5% as the false positive rate, 10% as the false negative rate, and

7% as the missing value rate. We set the average number of mutations between nodes in the

evolutionary tree to 20. For evaluating the robustness of Scelestial with respect to one parame-

ter, we set the other parameters to their default values and evaluated Scelestial over a range of

the parameter under study. We used the following ranges: false positive rate: 0–50%; false neg-

ative rate: 0–30%; missing value rate: 0–50%; samples: 5–200; sites: 20–1000.

Scelestial was not very sensitive to variation in the tested parameters (Figs 3 and 4) in terms

of their influence on the tree distance error and topological accuracy measured by split similar-

ity. As expected, performance decreased with increasing missing value, false negative, and false

positive rates (Fig 3). For datasets including more than 25 sites, the sample distance measure

was stable. For all parameters except the false negative rate we observed a non-monotonic rela-

tionship to the sample-distance-error, which due to the underlying complexity of simulations

was difficult to associate with any specific property or parameter.

2.3 Case study: A single-cell dataset from a muscle-invasive bladder tumor

We inferred lineage trees for single-cell data of a muscle-invasive bladder tumor [26] with

OncoNEM, BitPhylogeny, SCITE, SASC, SCIPhI, SiFit, and SiCloneFit. The data was captured

via whole-genome amplification and then second-generation sequencing of the whole single-

cell genomes. Then, samples with less than 70% coverage of the exome targets or high rate of

false heterozygous variant calls on the X chromosome were removed. The resulting single-cell

DNA sequence data consists of 44 tumor cells as well as 13 normal cells, and included 443 vari-

able sites directly taken from [26]. We converted this to the required input matrix for all the

methods, in which only the reference state, variant state, and missing values were specified. In

the resulting matrix, 27% of the elements represented the reference state, 17% represented var-

iant states, and 55% represented missing values. Unlike the original study [5], which includes

only one normal cell, we used all cancer cells as well as 13 normal cells for lineage tree recon-

struction, to see whether a distinct cancer cell lineage would become apparent in the inferred

trees. All methods except SCITE removed the redundant inner nodes of the trees (i.e., nodes

with not more than one child). For the SCITE method, to obtain a comparable small tree, we

compressed the tree in the same manner.

In the trees inferred by BitPhylogeny, SCITE, SiFit, SASC, and SCIPhI (Fig 1 and Table 2),

normal and cancer cells were not separated into distinct subtrees. In the inferred trees by SCI-

PhI, BitPhylogeny, and SCITE, normal and cancer cells were even assigned to the same clone,

which seems unlikely as an evolutionary scenario. In contrast, the trees of OncoNEM, SiClone-

Fit, and Scelestial effectively separated normal and cancer cells. OncoNEM placed all the nor-

mal cells in one clone, while Scelestial and SiCloneFit separated all the cancer cells and normal

cells into distinct subtrees. SCIPhI, OncoNEM, SCITE, and SASC trees contain cancer cells as

ancestors of normal cells.

The evolutionary trees (Fig 1) returned by all the algorithms except Scelestial were directed.

The most plausible scenario for cancer evolution is the rooting of a cancer lineage close to this

root or to some internal lineage of normal cells, instead of cancer cells being placed as ancestral

to normal cells. SiCloneFit as well as SiFit did not place any cancer cells as ancestors of normal

cells.

2.4 Case study 2: A single-cell dataset from metastatic colorectal cancer

We inferred lineage trees by all methods on single-cell data of colorectal cancer from two

patients [25]. In this dataset, 178 single-cell samples were gathered from the first patient: 117
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Fig 3. Robustness of Scelestial to variation in the properties of ground truth lineage trees in terms of sample distance in the trees

between the inferred and ground truth trees.

https://doi.org/10.1371/journal.pcbi.1009100.g003
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Fig 4. Robustness of Scelestial to variation in the properties of ground truth lineage trees in terms of topological similarity

between the inferred and ground truth trees.

https://doi.org/10.1371/journal.pcbi.1009100.g004
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samples from normal cells, 33 samples from the primary tumor, and 28 samples from metasta-

sis of the tumor to the liver. The data represent 16 genomic sites with 6.7% missing values

directly taken from [25]. The single-cell data for this dataset was generated from single nuclei

captured from patient samples and isolated by FACS and then barcoded using a 1000 cancer

gene panel (T1000) and sequenced on the Illumina platform.

In the reconstructed lineage trees for the first patient (Fig 5), OncoNEM, BitPhylogeny, SCI-

PhI, and SCITE suggest clones including both normal and cancer cells, which, as outlined above,

is unrealistic. SASC produced a lineage tree with several normal and cancer cells that evolved

from cancer clones. Removing normal cells and their direct parent from the SiFit tree (with the

background assumption that normal cells produce normal cells) produced nine connected com-

ponents, demonstrating the substantial mixing of cancer and normal cells. For this case, SiClone-

Fit separated all the cancer cell samples from the normal cells and metastatic cell samples well.

However, SiCloneFit suggested metastatic cell samples to be closer to normal cell samples than

the primary tumor cell samples in the inferred lineage tree. Scelestial placed two of the metastatic

cell samples outside of the subtree of cancer cells, and one of metastatic cell samples outside of

the subtree of the other metastatic samples. The comparison between SiCloneFit and Scelestial’s

results shows that SiCloneFit produced a better partitioning of normal, primary tumor, and met-

astatic tumor cell samples. On the other hand, SiCloneFit produced a less resolved tree and also

produced a tree with a not realistic evolutionary distance between normal, primary and meta-

static cell samples. Scelestial on the one hand placed three metastatic cell samples not in a subtree

of the rest of metastatic cell samples, but Scelestial inferred a tree with a better evolutionary

placement of metastatic tumor cell samples relative to primary tumor cell samples.

From the second patient, 182 single-cell samples were taken: 114 normal cells, 29 primary

tumor cells, and 39 metastatic cells. Thirty-six features were extracted by evaluation of the can-

cer mutations of the samples. Of all sites, 7.7% were missing values.

All algorithms, except Scelestial, separated normal from cancer cells less well than for the

first patient (Fig 6 and Table 2). Similar to their trees for the first patient, OncoNEM, BitPhylo-

geny, SCIPhI, and SCITE suggested several mixed clones including normal and cancer cells.

Table 2. Comparison of single-cell phylogenetic trees reconstruction methods on real single-cell genomic datasets.

Muscle-invasive bladder tumor (Fig 1) Metastatic colorectal cancer, Patient 1 (Fig 5) Metastatic colorectal cancer, Patient 2 (Fig 6)

Mixed

cancer

and

normal

sample

Cancer

sample

as

parent

of

normal

sample

Cancer

sample

components

Cancer

sample not

in largest

component

Mixed

cancer

and

normal

sample

Cancer

sample

as

parent

of

normal

sample

Cancer

sample

components

Cancer

sample not

in largest

component

Mixed

cancer

and

normal

sample

Cancer

sample

as

parent

of

normal

sample

Cancer

sample

components

Cancer

sample not

in largest

component

BitPhylogeny 18 0 13 37 67 6 7 34 129 10 8 34

Scelestial 0 0 1 0 0 0 2 2 0 0 2 1

OncoNEM 0 1 1 0 118 0 2 1 106 2 2 3

SASC 0 2 3 6 0 33 13 17 0 52 10 9

SCIPhI 23 1 4 22 16 0 6 12 128 2 5 29

SCITE 20 2 7 19 24 2 4 11 109 2 4 6

SiCloneFit 0 0 1 0 0 0 1 0 0 0 3 2

SiFit 0 0 3 6 0 0 9 43 0 0 7 10

Formal definition of the measures (columns) presented in Section F in S1 Text. In all the measures lower values represent better performance. The best performance of

each measure for each dataset is shown in boldface.

https://doi.org/10.1371/journal.pcbi.1009100.t002
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Fig 5. Lineage tree inferred by the different methods on a single-cell dataset from the first colorectal cancer

patient.

https://doi.org/10.1371/journal.pcbi.1009100.g005
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SASC produced a lineage tree with several normal and cancer cells evolving from each other.

SiFit produced a lineage tree with two subtrees containing both normal and cancer cells as well

as three cancer samples outside these two subtrees. Except for one cell, all cancer cells were

separated from normal cells into one subtree in Scelestial’s tree. In the SiCloneFit tree, the can-

cer cells MP1–176 and MP1–179 were misplaced outside of a cancer cell lineage and closer to

normal cells. Metastatic and primary tumor cells were not well separated from one another in

the trees generated by Scelestial as well as by SiCloneFit. Overall, though, Scelestial and SiClo-

neFit created the most realistic lineage trees of all the methods analyzed.

2.5 Mutation pattern analysis of Scelestial’s phylogeny for case studies

In analysis of the placement of normal cells as parents of cancer cells in the phylogenies, as in

the case for single-cell case studies, placement of a normal cell like BN15 as the parent of BC18

in the first case study (Fig 1) suggests an evolutionary process in which a cell, which was not

present in the sampled cells, was ancestral and very similar to the normal cell BN15, leading to

a cancer cell lineage.

Except for missing values, all normal samples including BN15 have the same mutation pat-

tern in the 443 loci identified in this study. Of the 443 loci, 21 were in 17 known cancer-related

genes (MTOR, PDE4DIP, PDE4DIP, PDE4DIP, TPR, SF3B1, RAP1GDS1, RAP1GDS1, EBF1,

NSD1, RAD21, PSIP1, BMPR1A, NT5C2, ATM, CLIP1, MYH11, USP6, USP6, RABEP1, and

BCR) specified in Tier 1 (genes with documented cancer related activities) of the Cancer Gene

Census database [27]. All normal cells and BC18 had mutations in 4 of these genes (EBF1,

NT5C2, ATM, RABEP1), and either BC18 or BN15 had missing values in the remainder. Fur-

thermore, BC18 and descendant cells had mutations in the cancer-related genes (in PDE4DIP,

as well as a back mutation in MTOR, and USP6) in comparison to normal cells, which may

have contributed to turning this lineage into an active cancer line.

In the second case study for the first patient (Section 2.4, Fig 5), the normal cell N-103 was

placed as the parent of a big subtree with 26 cancer cells. Already some normal cells have sev-

eral mutations in cancer-related genes listed in the COSMIC database [27], such as N-54 (a

mutation in TCF7L2), N-67 (mutations in TRRAP, TP53), N-102 (a mutation in KRAS), N-103

(a mutation in TP53), and N-111 (a mutation in GATA1), and one unlisted one in EYS. The

mutation in TP53 was common in primary and metastatic tumor cells (54 mutated samples

and 2 non-mutated and 4 missing values in 58 primary and metastatic cells). Thus the sample

N-103 could be a precancerous sample having gained a mutation in TP53, which is a known

tumor suppressor. Among most of the descendant cancer cells, more cancer-related changes

were obtained, such as in CCNE1, POU2AF1, and KRAS.

In the phylogeny for the second patient (Section 2.4, Fig 6), the normal cell N-9 was placed

at the ancestor of all cancer cells as well as normal cells, except for N-27. In the normal cells, in

N-82, N-83, N-85, N-113, and N-114, loci in CIITA were different than in the cancer cells.

Additionally, differences were observed in NR3C2, ATR, ALK, EPHB6, SPEN in intermediate

cells (I-1 to I-8) relative to the cancer cells.

Excluding mutations appearing in intermediate or normal cells, we partitioned the remain-

ing mutations in two sets based on their appearance in metastatic cells, denoted as M-muta-

tions, the mutations appearing at most once in primary tumor cells (mutations in LINGO2,

IL7R, LINGO2, SPEN, F8, LAMB4, PIK3CG, LINGO2, PTPRD, FUS, NR4A3, HELZ, PRKCB)

and P-mutations (mutations in APC, FHIT, ATP7B, LINGO2, LRP1B, CHN1, IL21R, APC,

TOX, MN1, MYH11, TP53, NRAS, CDK4, LINGO2, STRN). Of these, APC, FHIT, LRP1B,

IL21R, APC, MN1, MYH11, TP53, NRAS, CDK4, and STRN from the P-mutations set, as well

as IL7R, SPEN, FUS, NR4A3 from the M-mutations set are known cancer related genes.
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Fig 6. Lineage tree inferred by the different methods on a single-cell dataset from the second colorectal cancer

patient.

https://doi.org/10.1371/journal.pcbi.1009100.g006
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MP1–178 and MP1–179 have only 4 mutations from the P-mutations set, and were placed

in Scelestial’s tree between the normal samples and cancer samples. Other descendant cancer

cell samples, except for MP1–176, which was misplaced inside a normal lineage, have more P-

mutations. Sample M3–147, the direct descendant of MP1–176 and ancestor of the remaining

cancer samples in Scelestial’s tree, has all the mutations of MP1–179 as well as 4 more P-muta-

tions. Thus, Scelestial’s tree represents a potential evolutionary scenario in which mutations in

APC, TOX, MN1, and TP53 were gained initially (by an ancestral cell similar to MP1–179),

then a descendant gained mutations in ATP7B, IL21R, NRAS, LINGO2 and the rest of cancer

cells descended from this cell.

Details of analysis of the placement of cancer cell samples close to normal cells for all three

real single-cell datasets are given in Section I in S1 Text.

2.6 Run time efficiency

We compared the run times of the eight methods with default settings (as described in Section

2.1) on the 110 datasets generated by the OncoNEM simulator (Fig 7). We simulated data with

10 mutations on average at each evolutionary step, a range of 20 to 100 samples, and a range of

50 to 200 sites. The runtime comparisons were performed on virtual servers with 24 to 69 Intel

QEMU Virtual 2.8 GHz core CPUs (version 2.1.2), and 100 to 3000 GB RAM. To disregard

the effect of using several cores, the user time was considered as the actual time of a task.

SCITE, SCIPhI, BitPhylogeny, and Scelestial were the only methods finishing their task

across the whole range of sample sizes within 100 seconds. Scelestial, SCIPhI, and SCITE’s run

times grew almost linearly with an increasing number of samples. The run time of BitPhylo-

geny does not seem to be directly related to the number of samples but was random for the

tested cases, since it applies MCMC and its run time depends on the number of iterations.

When we increased the number of sites, the run time of Scelestial also grew almost linearly.

Next to Scelestial, BitPhylogeny and SCITE were the fastest methods. Over all cases, Scelestial

was faster than all other methods in seven cases; BitPhylogeny was the fastest in six cases.

With these data, as well as being fastest, Scelestial, as before, also had the smallest average

error in lineage tree reconstruction (Fig 8A). Among 74 cases, in terms of sample distance

error, Scelestial performed best in 40 cases and SiCloneFit in 34 cases. In terms of the split sim-

ilarity measure of topological correctness, Scelestial performed best in 64 cases and SiCloneFit

in 11 cases. Thus, in these tests Scelestial was best overall in both run time and error. SCITE

and BitPhylogeny had similar split similarity, with SCITE being faster than BitPhylogeny on

average. Considering the pair distance error, the performance of BitPhylogeny was better than

that of SCITE. The performance of OncoNEM with respect to the pair distance error was bet-

ter than that of BitPhylogeny and SCITE in a lot of cases and on average. However, the vari-

ance of the pair distance error and the split similarity of OncoNEM’s results were higher than

those of others. The range of variation of performance for OncoNEM is clearly shown in the

split similarity measure chart for this dataset (Fig 8B).

According to theoretical analysis, the run time of Scelestial is polynomial with respect to the

number of samples with exponent k, which is a parameter for the Steiner tree approximation

algorithm. In Fig 7, the quadratic form of the run time might not be directly evident. This is

normal because the chart is cropped for large values to show the differences for all the algo-

rithms except OncoNEM and SiFit. The chart is also drawn logarithmically in the y-axis,

which makes it hard to see the actual growth in it. SCIPhI, SCITE, and BitPhylogeny show sim-

ilar behavior. In practice, the run times of all the algorithms except for Scelestial and SCIPhI

grew substantially with an increasing number of sites.
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On large datasets, both in terms of the number of sites and the number of samples, Scelestial

and SiCloneFit perform best with respect to the split similarity measure and lineage tree recon-

struction error (Figs C and D in S1 Text). Similar to the same observation for normal-sized

samples (Fig 8), Scelestial’s results have less variance than those of SiCloneFit. Note that Onco-

NEM has errors for datasets with high numbers of samples.

SASC, SiCloneFit, SCITE have a longer running time than SCIPhI, BitPhylogeny, and Sce-

lestial (Panel (II) of Fig E in S1 Text). Of these three fast methods, Scelestial performs best both

in terms of split similarity and lineage tree reconstruction error measures (Fig C in S1 Text).

On datasets with large numbers of samples, the two methods with the highest accuracy, Sceles-

tial and SiCloneFit, in addition to SASC, are the slowest ones. In this range of samples (500–

900), the running time of Scelestial greatly increased, and at 800 samples, Scelestial became

slower than SiCloneFit (Panel (I) of Fig E in S1 Text). The accuracy of the methods is similar

to their accuracy on data sets with a larger number of sites (Fig D in S1 Text), i. e. Scelestial

and SiCloneFit perform best with respect to the lineage tree reconstruction error and sample

distance measures. In conclusion, considering accuracy and run time, Scelestial and SiCloneFit

performed best across different data sets. Although the two methods show similar accuracy, on

datasets with many sites, Scelestial is faster, and on datasets with many samples (800 samples

or more), SiCloneFit is the faster option. Note that in comparison with SiCloneFit, Scelestial

shows less variation across performance measures on different datasets.

3 Materials and methods

3.1 Data format

We model the data as an m by n matrix D with single-cell samples as columns and features as

rows. The element of D corresponding to a single-cell c and a locus f is denoted D[c, f] and

Fig 7. Run time comparison in relation to the number of samples and sites.

https://doi.org/10.1371/journal.pcbi.1009100.g007
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represents the result of a variant call obtained from a single-cell sample of a diploid genome,

which may be one of the 10 states from the set {A/A, T/T, C/C, G/G, A/T, A/C, A/G, T/C, T/G,

C/G} or a missing value X/X. When the data do not provide all the information (e.g., for data

obtained from OncoNEM’s simulation tools), we can convert 0/1 (reference state/variant

state) matrices to the 10-state format by coding 0 as A/A and 1 as C/C. All the single-cell line-

age tree reconstruction methods we consider here support missing values in their input matri-

ces. With this coding, we cannot differentiate between the case of two similar alleles, e.g. A/A

and the case of a missing allele in one strand. We hope that considering an error as a regulari-

zation method helps us to find the model (which is a lineage tree) that fits the data best.

3.2 Synthetic data generation via tumor simulation

We developed a tumor growth simulation method as a data source for the evaluation of Sceles-

tial and for a comparison with state-of-the-art methods. The simulation has three phases: (1)

simulation of evolution, (2) sampling from the tree, and (3) simulation of sequencing.

In the simulation of evolution phase, the evolutionary process is simulated and a tree is gen-

erated. This simulation is based on evolutionary events that happen in a tumor. We modeled

the cell division, mutation, and selection in the evolutionary process of the tumor in this simu-

lation. Each node in the evolutionary tree represents a cell (or representative of a bulk of simi-

lar cells) in the history of tumor formation. To each of these, an advantage value is assigned

that shows the relative growth or division advantage of the cells corresponding to that node.

The advantage value of a node is the same as its parent advantage value plus or minus a uni-

form random number. The evolutionary tree is constructed through several steps. In each step,

one new node is generated and its parent is chosen from the current nodes with a probability

proportional to their advantage values. We calculated the advantage value for the newly born

node as a random perturbation added to its parent’s advantage value. The actual sequence for

Fig 8. Comparison of methods with respect to running time and lineage tree reconstruction error. For the results

obtained from different execution of a method a confidence ellipsoid is calculated and shown as the shaded area

around the resulting points. The confidence interval is calculated under the assumption of normal distribution of the

points in the two dimensional diagram.

https://doi.org/10.1371/journal.pcbi.1009100.g008
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the new node is calculated from the sequence of the parent with some random mutations. The

number of mutations from its parent is derived from a Poisson distribution about an average

parameter specified in the input. The locations of the mutations are chosen uniformly from all

the loci.

In the sampling phase, samples are chosen from the nodes of the tree with a probability

which is proportional to their advantage values. In the simulation of the sequencing phase,

missing values and errors are then incorporated by stochastic processes.

3.3 Synthetic data generated by OncoNEM’s simulation tool

We used simulated data generated by OncoNEM’s simulation software for our evaluation. The

OncoNEM simulator is based on the evolution of clones. First, it generates a lineage tree, then

it assigns mutations to tree nodes under the infinite site assumption. Afterwards, it generates

output sequences by sampling from the tree and generating sequences with single-cell

sequencing issues, including missing values, false positives, and false negatives.

3.4 Comparison of a resulting lineage tree with a ground truth

We define two measures between trees: (1) a distance measure that compares distances

between samples in two trees, and (2) a similarity measure that compares the set of splits made

by two trees applied to the set of samples. For both measures, we used a weighted version of

classic 0/1 measures.

Different measures used in the literature are clustering accuracy [12], order of mutation in

a phylogenetic tree, ancestor-descendant accuracy of mutations, different lineages, and co-

clustering mutations [12]. These measures are used for evaluating mutation trees, which is not

what we generate in the Scelestial method.

3.4.1 Sample distance measure between trees. We quantify the distance between two

trees based on the shortest-path matrix proposed by [5] and the path-length-difference metric

[28]. The basic idea is that we calculate pairwise distances between each pair of input cells in a

tree T. We also create a pairwise distance matrix PDT between the inputs for the tree. Follow-

ing this, we normalize the matrix PDT to obtain PDT as PDT½i; j� ¼ PDT½i; j�=
P

x;yPDT½x; y�.
Since different concepts of weight for the tree edges are used in different methods, the normal-

ization phase allows us to neglect absolute values and only consider the relative edge distances

in the lineage trees provided. We define the distance between two trees T and T0 as

DðT;T 0Þ≔
P

i;jjPDT½i; j� � PDT0 ½i; j�j, which represents the distance between the normalized

pairwise distance matrices for the two trees. The value of D(T, T0) lies in the range between 0

and 2.

3.4.2 Split similarity measure between trees. We defined the split similarity between two

trees T and T0 as the similarity between two sets of splits generated by two trees. For each edge

e in a tree T, we define the split Se as the set {A, B}, where A and B are the set of samples sepa-

rated by the edge e in T. We define a similarity between two splits {A1, B1} and {A2, B2} as the

number of samples that are split similarly in two splits. However, since there is no difference

between A and B in two splits, we define the similarity score as:

maxfjA1 \ A2j þ jB1 \ B2j; jA1 \ B2j þ jB1 \ A2jg

To calculate the distance between two sets of splits, we find the mapping between the elements

of two sets with the maximum similarity score. The mapping similarity score is the sum of the

similarity of the scores of matched splits. We then defined DS(T, T0) as the normalized match-

ing score which is the mapping score between T and T0 divided by the mapping score of T with
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T. The split score value is between 0 and 1. The split similarity measure is a relaxed version of

the symmetric difference or partition metric as in [29]. For each edge of a tree two splits are

defined as the subset of samples that are located on one side of the edge. The set of all these

splits is called the split set. The distances calculate a measure given two sets of splits, The parti-

tion metric for two split sets counts the number of common sets in two split sets. We calculate

a relaxed version of it: for each two splits, we calculate a similarity measure between those as

the size of their intersection, and find a matching between splits included in the split sets with

the maximum sum of split-similarity scores. So, we use some rational similarity between the

splits, as an extension to the approach presented by [29], which uses 0/1 scores between two

splits.

3.5 The Scelestial algorithm

The Scelestial algorithm is a maximum parsimony algorithm, in other words, its objective

function is to find an evolutionary tree for a set of sequenced samples that minimize the num-

ber of changes (mutations). It is shown by Alon et al. [23] that under the Neyman 2-state sub-

stitution model [30], which is suitable for cell lineages that evolve on short time scales, the

maximum likelihood tree inference problem could be approximately reformulated as a maxi-

mum parsimony problem. Thus, the Scelestial algorithm tries to find a solution for a maxi-

mum likelihood problem via approximately solving a maximum parsimony problem.

In the Neyman 2-state substitution model, sequences are modeled as two state characters.

The loci mutate independently and to each edge e of the evolutionary tree a mutation probabil-

ity of pe is assigned that represents this mutation probability. The maximum likelihood infer-

ence problem then would be the problem of finding an evolutionary tree, mutation

probabilities, and internal nodes’ sequences that maximize the likelihood function. Alon et al.

[23] show that the maximum likelihood problem could be approximately reformulated as a

maximum parsimony problem. At last, the reformulated maximum parsimony problem is

solved approximately via an approximation algorithm for the Steiner tree problem.

We incorporate an approximation algorithm for this problem provided by Berman et al.

[24] and its modification for lineage tree reconstruction [23]. We modified the algorithm to

support missing values. In the following, we examine the details of the Steiner tree problem,

the reduction of lineage tree reconstruction to the Steiner tree problem and the incorporation

of missing values into our method. Although the theoretical approximation results could only

be applied for the two state case without the missing values, we can extend the algorithm to be

used for these cases.

A schematic view of the Scelestial algorithm is provided in Fig 9. The main part of the Sce-

lestial algorithm is described in Algorithm 1. Sub-modules of the Scelestial algorithm are

described in Algorithm 2–5. The inputs to the algorithm are the sample sequences, and the

algorithm infers the phylogeny as well as its internal nodes.

The Berman approximation algorithm for the Steiner tree problem and theoretical analysis

was provided by Berman, and the suggestion of using this approximation algorithm for Ney-

man 2-state sequences was made by Alon. In this work, we implemented the algorithm,

adapted it to be used for sequences with missing values and more than two states. Note that we

are not aware of analytically proven guarantees regarding the performance of the theoretical

algorithm for more than two-state sequences.

3.5.1 The Steiner tree problem. The Scelestial algorithm is based on the Berman approxi-

mation algorithm for the Steiner tree problem [24]. The input of a Steiner tree problem con-

sists of a weighted graph G = (V, E, w) and a subset of its vertices S� V, which are called

terminals. It is convenient to suppose that the weight function w satisfies the triangle inequality
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Fig 9. The details of the Scelestial algorithm. The inputs to the Scelestial algorithm are a) a set of sequences S, b) the

degree of restriction of the restricted Steiner tree k. The value k represents the size of trees to be considered as potential

improvement for the tree T (details in Section 3.5.1). An example is shown at the right side of each step. The input

sequences S are “CAC”, “GAG”, “GCC”, and “XAC” (“X” represents a missing value). In step 1 the tree T is initialized

with the minimum spanning tree of the input sequences S. The edge lengths represent the cost of the edge according to

the Scelestial’s cost function (see Section 3.5.5). In step 2 an example of a subset of sequences for K is highlighted in the

picture. In step 2A a tree τ over leaf nodes K is shown. In step 2B bridges are highlighted as red edges between input

sequences. In step 2C the result of adding tree τ to the current tree T is shown. In this example the bridges shown in

step 2B are removed and two edges between nodes K corresponding to bridges are added. For each bridge an edge

between the two nodes from K which their path passed through the edge is added. The new costs are defined as it is

shown in step 2C. In step 3, the trees τ are added to the tree with their corresponding internal nodes. In step 4 lowest

cost imputation of sample nodes are added to the tree, in the sample place as input sequences.

https://doi.org/10.1371/journal.pcbi.1009100.g009
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(i.e. w(x, y) + w(y, z)� w(x, z), for all three vertices x, z, y 2 V). In the case of no missing values

occurring in the data, the triangle inequality constraint is satisfied, for example, for the Ham-

ming distance between nodes. However, in the case of single-cell data, which contain a lot of

missing values, we should consider this constraint carefully.

The Steiner tree problem is the problem of finding a minimum-weight connected subgraph

of G that contains all the terminals S. The Steiner tree problem is an NP-hard problem and it is

known that under reasonable complexity assumptions, no approximation algorithm can

approximate the result better than a factor of 96/95� 1.0105 [31].

Most approximation algorithms for the Steiner tree problem focus on results that consist of

a set of subtrees, each having k terminals at most, for some constant k. A solution for the Stei-

ner tree problem with this property is called a k-restricted Steiner tree. We call the value k the

restriction number of a Steiner tree. Borchers and Du [32] showed that restriction of the search

space to k-restricted Steiner trees does not change the approximation factor of an algorithm

too much. More specifically, if k = 2r + s where 0� s� 2r, the restriction to k-restricted Steiner

trees reduces the approximation ratio to

r2r þ s
ðr þ 1Þ2r þ s

3.5.2 Berman’s approximation algorithm for the Steiner tree problem. The Berman

et al.’s [24] approximation algorithm consists of three phases: examination, evaluation, and

application.

During the examination phase, the algorithm maintains a minimum spanning tree M on

the terminal set S. In this phase, the algorithm considers all the subsets K of the terminals with

a size of at most k (for some fixed constant k) and all the topologies τ for the trees with K as its

leaves. For each K and τ, the algorithm finds the best lineage tree t (i.e., the best sequences for

the internal nodes). This could be done through dynamic programming. By adding t to the

spanning tree, M will create (k − 1) cycles. The algorithm finds a subset of edges of M with

maximum cost to be removed from M + t to obtain a tree again. These edges are called bridges

β. A value gain is defined for t, which is equal to the amount of decrease in the resulting tree if

we decide to incorporate t, which is equal to cost(β) − cost(t), where the cost of a set of edges is

defined as the sum of the costs of its elements. If the the gain is greater than 1, the algorithm

adds t to a stack for the evaluation phase, it removes β from M, and adds some new edges to M
instead. For each edge e of β, the algorithm finds the vertices u and v from K which are going

to be disconnected after removing e. It adds the edge (v, u) to M with the cost cost(e) − gain.

At the end of the examination phase, we will have a stack of some trees and M.

In the evaluation phase, the algorithm pops the trees t one by one from the stack. It starts

with an initially empty set of edges M0. At each step it checks if t does not make a loop with M0.
If this is the case, the algorithm accepts t; otherwise, it rejects t. Finally, in the application

phase, the algorithm merges the accepted trees.

The run time of the algorithm for a general Steiner tree problem is

O n3 þ nkþ1
2 þ Nk� 2nk� 1

� �
, where N is the number of vertices in the graph. Note that n is the

number of terminal vertices S. The algorithm is an 11/6-approximation algorithm for the Stei-

ner tree problem, if we set k = 3. If we set k = 4, the algorithm would be a 16/9-approximation

algorithm. For larger values of k, we do not know a better approximation factor for the result

of the algorithm, but the results of the execution of the algorithm show that the performance

of the algorithm gets better as we increase the value of k [24].
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3.5.3 Modeling lineage tree reconstruction as a Steiner tree problem. The single-cell

lineage tree inference problem can be modeled in the following way. Let gi for 1� i� n be the

set of input sequences over some alphabet S + μ, where μ is a special character representing

the missing value. Each location on a sequence could be considered as a feature, which may be

a locus in the sequenced genomes or may represent a genomic aberration. We suppose that all

the sequences have the same length m. A cost function is defined for any potential lineage trees

to show how well a lineage tree is fitted to the data. Normally, the cost function assigns a cost

to each edge of the tree, and the cost of a tree is the sum of its edge costs. The lineage tree infer-

ence problem is the problem of finding a minimal cost lineage trees that contain all the input

sequences gi and potentially some other nodes. In the resulting tree, all non-input nodes are

assigned a label of length m from the alphabet S.

A general lineage tree inference problem that does not incorporate missing values could be

modeled as a Steiner tree problem as follows. Let G = (V, E, w) be the graph containing all

sequences of length m from the alphabet S that have edge weights derived from the tree cost

function. Thus, the lineage tree problem would be equivalent to finding a Steiner tree in this

graph with the input sequences as its terminal set S.

3.5.4 Incorporating an approximation algorithm for lineage tree reconstruction. We

showed how lineage tree reconstruction could be modeled as a Steiner tree problem in the pre-

vious section. However, through this method, the size of the graph is |S|m, which is exponen-

tial to the length of input of the lineage tree reconstruction problem. On the other hand, some

approximation algorithms do not consider all the vertices of graph G and they only work with

the best Steiner trees over certain subsets of terminals. Since we can solve the Steiner tree prob-

lem over a small subset of terminals, we can use these approximation approaches.

To apply Berman et al.’s algorithm for lineage tree reconstruction, as already suggested by

Alon et al. [23], for every subset S0 � S, with a of size at most k, we consider all the possible tree

topologies with k leaves at most. Since the number k is constant, the number of these tree

topologies would also be constant. Next, for the pair consisting of a subset S0 and a tree T, we

find the minimum-cost Steiner tree by dynamic programming. The rest is done by the Berman

[24] algorithm. This approach gives us an 11/6-approximation algorithm for the lineage tree

reconstruction problem with k = 3 and a 16/9-approximation algorithm for k = 4. The cost of

an edge between two nodes with the sequences gi[t] and gj[t] for 1� t�m is ∑t c(gi[t], gj[t]),
for some cost function c. In this work, we assign a cost of 1 to every mutation and a cost of

zero to non-mutated locations (i.e., c(x, x) = 0 for x 2 S and c(x, y) = 1 for x 6¼ y 2 S).

3.5.5 Support for missing values. To adapt the method to the single-cell setting, we

incorporate missing values into the algorithm. We can simply do this by extending the domain

of the character cost function c : S� S! R� to c : Sþ m� Sþ m! R�. To do so, we

should define c(μ, x) = c(x, μ) for x 2 S as well as c(μ, μ); c(μ, x) could be considered as the cost

of imputation for a locus. One may consider the assignment of c(μ, x) = c(μ, μ) = 0. However,

this assignment violates the triangle inequality for the graph G. To preserve the triangle

inequality between the edges’ weights, we may assign c(μ, x) = 0.5 + � for some small constant

� (e.g., 10−5). Furthermore, letting c(μ, μ) = 0 does not violate the triangle inequality any

longer.

3.5.6 Missing value imputation. The original approach of representing lineage tree

reconstruction as a Steiner tree problem does not consider the case of missing values in the

input sequences. However, for single-cell data, this is important. We therefore designed a

dynamic program that finds internal node sequences with non-missing values. As a result,

missing values may occur only in input sequences. The translation of the missing value impu-

tation task in our model would be the task of filling missing values with some characters from

the alphabet S to minimize the cost function. To impute missing values after finding the
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lineage tree, we replace each missing value in a node with the most abundant character found

within its neighbors.

Algorithm 1 Pseudocode of the main part of the Scelestial algorithm

Input: Samples gi for 1 ∙ i ∙ n. Every sample gi is a string of length m.
A character cost function c as defined in Section 3.5.5.
k: Degree of restriction of restricted Steiner trees.

Output: The lineage tree T = (VT ; ET ). A partial function seq : VT ! §m that assigns
sequences with length m to tree nodes.
M Ã Initialize(fg1; : : : ; gng)
stack Ã EnumerateRestrictedTrees(fg1; : : : ; gng, k, M)
T Ã ConstructTree(stack, M)
T Ã Impute(fg1; : : : ; gng, T )

c

c

Algorithm 2 Initialize function (part of the Scelestial algorithm)

function (̂a, b)
return

Pm
i=1 c(a[i]; b[i]).

end function
function Initialize(fg1; : : : ; gng)

Build a complete graph G on gi. Assign weight (̂gi; gj) to the edges of G.
Let M =MST(G).
Let cost(e) be the cost of edge e for e 2 EM .
return M

end function

Algorithm 3 EnumerateRestrictedTrees function (part of the Scelestial algorithm)

function EnumerateRestrictedTrees(fg1; : : : ; gng, k, M)
for all K ½ fg1; : : : ; gng with 3 ∙ jKj ∙ k do
for all tree topology ¿ on K as its leaves do

Fill internal nodes of ¿ with sequences minimizing cost of t.
Let cost(t) be the sum of the cost of the edges of t.
Let M 0 = M + t.
Let ¯ be the heaviest edges from M for which

if we remove them, there would be no cycle in M 0.
Let cost(¯) be the sum of costs of edges in ¯.
Let gain = cost(t)¡ cost(¯)
if gain > 0 then

Let Mrep = ;
for all edge e in t do

Find the vertices u and v such that
if we remove e from M 0 ¡ ¯ they will be disconnected.

Add edge (v; u) to Mrep with the new cost cost(e)¡ gain
end for
push (t; ¯;Mrep) to stack
Let M = M ¡ ¯ [Mrep

end if
end for

end for
return stack

end function
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Algorithm 4 ConstructTree function (part of the Scelestial algorithm)

function ConstructTree(stack, M)
Let T be an empty tree
for all gi do
Add vertex vi to T .

end for
Let seq to be a function with an empty domain.
Let E =M
while stack is not empty do
pop (t; ¯;Mnew) from stack
UpdateTree(T, E, M, t, ¯, Mnew)

end while
for all edges of M do
if adding e to T does not make a cycle then

add e to T
end if

end for
return T

end function
function UpdateTree(T, E, M, t, ¯, Mnew)
Let E = E [ ¯
if Mnew µM then

add t to T
extend seq function to internal nodes of t

else
Let E = E ¡Mnew

Let M =MST(E)
end if

end function

Algorithm 5 Impute function (part of the Scelestial algorithm)

function Impute(fg1; : : : ; gng, T )
for all sample gi do
Add vertex gi to T and add edge (gi; vi) to T .
find the minimum-cost sequence for vertex vi.

. This sequence serves as imputation for gi.
end for
return T

end function

4 Discussion and conclusions

Inference of a tumor’s evolutionary history is a crucial step towards understanding of the com-

mon patterns of cancer evolution. There are a range of methods available for phylogenetic

inference with single-cell datasets. For optimal performance, many of these probabilistic

approaches require substantial time for optimization (e.g., using MCMC). The increasing sam-

ple sizes of single-cell datasets emphasizes the need for fast and scalable methods in this

domain that also maintain high accuracy [33].

Here, we describe Scelestial, a computationally lightweight and accurate method for lineage

tree reconstruction from single-cell variant calls. The method is based on a Steiner tree
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algorithm with a known approximation guarantee, which we adapted to lineage tree reconstruc-

tion for single-cell data with missing values by using a variation of the Steiner tree problem

called the group Steiner tree. This problem is a special case of the group Steiner problem, in

which the groups are sub-hypercubes of the original graph. To obtain a fast algorithm, we fur-

ther adapted the group Steiner tree algorithm through modeling a hypercube corresponding to

the missing values with one representative vertex. To facilitate the use of Scelestial, we provide

an implementation as a freely available R package. From another point of view, Scelestial could

be considered as a generalization of the neighbor-joining method. At each step, the neighbor-

joining method finds the two most similar elements (samples) and merges them to build a tree.

A generalization of this idea may consider more than two samples for merging in each step.

Determining a good objective function for ranking three sample candidates is not trivial. Sceles-

tial, based on Berman’s algorithm [24], provides a generalized guaranteed neighbor-joining

method.

We evaluated Scelestial’s performance with a diverse set of test cases similar to modern sin-

gle-cell datasets. The datasets were generated with various ranges of clones, false positives, false

negatives, and missing values, all of which were derived from real single-cell datasets [25, 34].

The simulated data were produced by a tumor simulator emulating the process of tumor

growth via mutation and proliferation. In this way, data for different tumors with various

parameters were generated to assess computational methods over a wide range of data types.

To confirm that the results on these simulated datasets are in line with results on simulated

data commonly used in the field, we also incorporated evaluation on data sets generated with

the OncoNEM simulator [5].

On these benchmark datasets, we compared Scelestial with seven other state of the art phy-

logeny reconstruction methods, namely BitPhylogeny [4], OncoNEM [5], SCITE [6], SASC

[8], SCIPhI [10], SiFit [7], and SiCloneFit [11]. As the comparisons were not straightforward,

we excluded B-SCITE [12], which uses a combination of single-cell and bulk data, as well as

the approach of Kim and Simons [3], where the input is hard-coded, and PhISCS [13], as it

does not infer a lineage tree. Of the methods using the k-Dollo assumption, namely SASC [8],

which is based on simulated annealing, and SPhyR [9], which is based on integer program-

ming, we included SASC in the comparison. For the assessment of lineage tree quality, we

applied two commonly used metrics from population genetics and phylogenetics. In this com-

parison, Scelestial performed best at reconstructing the ground truth tree’s topology and also

the similarity of the inferred to the ground truth tree when branch lengths were considered.

When the methods were applied to real single-cell cancer data, only Scelestial and SiClone-

Fit inferred lineage trees that separated all cancer cells from normal cells for all three datasets,

except for a few cells. Among the other methods, OncoNEM was the only other method that

did not mix cancer and normal cells in one single clone, although it mixed cancer and normal

cells in the evolutionary tree. The run time analysis showed Scelestial to perform 4.5 times

faster than the other methods on average when the default settings were used. Scelestial per-

forms 24.6 times faster than all the other algorithms in some cases. This is particularly impor-

tant, as the number of single-cell genomes published in individual studies continues to be on

the rise, as are multi-dataset meta-studies, as in [1].

The Scelestial algorithm does not include a specific mechanism to handle irreversible evolu-

tionary events such as deletions. Consequently, Scelestial is not suitable for datasets with fre-

quent deletions, such as advanced metastatic tumors. On the other hand, Scelestial could be

considered as a maximum parsimony method, and any evolutionary event matrix could be

given to it as input. It could likely be adapted in practice to handle deletions by including an

asymmetric matrix with very high weights for reversing such events. Notably, the real datasets

analyzed in this manuscript (Sections 2.3 and 2.4), especially the metastatic colorectal cancer
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dataset, were solid tumor cases. The assessment of Scelestial and other methods on these data-

sets showed that Scelestial’s performance on these real datasets was generally similar to the

best performing other method, which was SiCloneFit, demonstrating that this property is not

essential for high quality tree inference with Scelestial from such data. In robustness analyses,

Scelestial showed good performance for missing value rates less than 40% (Figs 3 and 4). On

the computational side, Scelestial performed the calculation for 500 samples and 500 sites in

less than 24 hours on standard hardware. Thus data generated by single-cell sequencing tech-

niques, such as MDA, LIANTI, and MALBAC, and biological samples within these parameter

ranges can straightforwardly be analyzed using Scelestial. On the other hand, Scelestial is not a

good option for analyzing the data of low genome coverage methods such as DOP-PCR and

DLP.

Overall, Scelestial substantially improves lineage tree reconstruction from single-cell variant

calls across key criteria such as the scalability, run times, and accuracy of lineage tree recon-

struction on both real and simulated data. Cell lineage reconstructions based on diverse tumor

datasets in combination with massive data gathering, resulting from fast advancing technolo-

gies, provide a better understanding of the evolutionary landscape and the associated muta-

tions of tumors, as may also indicate the dependencies between them [35–37]. These factors

may make Scelestial instrumental in furthering our understanding of the mutational landscape

and the mechanisms of cancer formation and survival, as omics technologies continue to

thrive. Furthermore, the results of this paper can be seen as a case study for translating con-

cepts from theoretical computer science into advances in computational biology.

A future direction of improvement over Scelestial could be adding support for asymmetric

cost functions, such as the Dollo evolutionary model used by SASC and SPhyR. The core of

Scelestial consists of iterative improvements via considering maximum parsimony trees for all

k-subsets of samples. Considering a k-subset of samples, the maximum parsimony tree is

inherently undirected and unrooted. To support an asymmetric cost matrix, the core of Sceles-

tial could be changed by adding an outgroup to the tree and considering that in construction

of all the k-subsets maximum parsimony trees. For this, further consideration will have to be

given to the problem of merging k-subset trees and making a consensus tree, which could be a

direction for future improvement.
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