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Toxin-antitoxin (TA) systems are small genetic elements composed of a noxious toxin and
a counteracting cognate antitoxin. Although they are widespread in bacterial
chromosomes and in mobile genetic elements, their cellular functions and activation
mechanisms remain largely unknown. It has been proposed that toxin activation or
expression of the TA operon could rely on the degradation of generally less stable
antitoxins by cellular proteases. The resulting active toxin would then target essential
cellular processes and inhibit bacterial growth. Although interplay between proteases and
TA systems has been observed, evidences for such activation cycle are very limited.
Herein, we present an overview of the current knowledge on TA recognition by proteases
with a main focus on the major human pathogen Mycobacterium tuberculosis, which
harbours multiple TA systems (over 80), the essential AAA + stress proteases, ClpC1P1P2
and ClpXP1P2, and the Pup-proteasome system.
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GENERAL OVERVIEW OF TOXIN ANTITOXIN SYSTEMS IN M.
TUBERCULOSIS

The bacterium Mycobacterium tuberculosis, the causative agent of tuberculosis, is a major public
health problem accounting for over 1.5 million deaths per year. The emergence of multidrug resistant
(MDR) and extensively drug-resistant (XDR) Mtb strains has significantly challenged current
tuberculosis treatments and increase the need for new treatment strategies (WHO report 2018;
www.who.int/tb/data). The ability to sense and tolerate multiple host derived stresses, evade host
defenses and persist within infected hosts is central to the pathogenicity ofM. tuberculosis. Therefore,
deciphering molecular mechanisms underlying stress tolerance and sensing in M. tuberculosis is
critical for developing new strategies to fight tuberculosis.

M. tuberculosis strains possess a remarkably high number of toxin-antitoxin (TA) systems in their
genome (Ramage et al., 2009; Akarsu et al., 2019; Tandon et al., 2019). As an example, the most
studied laboratory strain H37Rv encodes for more than 80 TA systems and it has been proposed that
such systems could contribute to it pathogenesis (Sala et al., 2014). Classical TA systems are small
genetic modules composed of a deleterious toxin and an antitoxin that neutralizes the effects of the
toxin. TA systems are organized into operons and are widely distributed throughout the bacterial
genome (Van Melderen, 2010). Toxins generally target essential functions of the host bacterium,
such as translation, replication, membrane integrity or peptidoglycan synthesis, causing growth to
slow down and eventually leading to cell death (Page and Peti, 2016; Harms et al., 2018; Wilmaerts
et al., 2018). TA systems are often found on plasmids, for which they were designated as addiction
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modules since they are involved in their stabilization by inhibiting
growth of daughter cells that would not have inherited the
plasmid carrying the TA system (Ogura and Hiraga, 1983).
The roles of chromosomal TA systems remain largely
unknown. However, they have been associated with protection
against phage infection or stabilization of genomic regions
(Pecota and Wood, 1996; Fraikin et al., 2020; Peltier et al.,
2020). In addition, they also contribute to the virulence and
persistence of pathogenic bacteria in vivo in infection models
(Helaine et al., 2014; Lobato-Márquez et al., 2016; Agarwal et al.,
2020).

There are seven known classes of TA systems depending on
the nature of the antitoxin and its mode of action on the toxin,
with the toxin always being a protein. In Type I systems, the
antitoxin is a small anti-sense RNA that forms a duplex with the
toxin’s mRNA to inhibit toxin production (Brantl, 2012). Type III
antitoxins are RNAs that inactivate the toxin by forming a
complex (Blower et al., 2012). For type IV, the antitoxin
suppresses the toxicity of the toxin by stabilizing its targets
(Masuda et al., 2012), and Type V is represented by the
GhoT-GhoS system, in which the antitoxin inhibits the toxin
by specific cleavage of its mRNA (Wang et al., 2012). In the type
VI SocAB system of Caulobacter crescentus (Aakre et al., 2013),
the SocB toxin is responsible for the essentiality of the clpX and
clpP genes in this bacterium, and the SocA antitoxin serves as an
adaptor protein to address the SocB toxin to the ClpXP AAA+

protease. For the recently identified type VII, the antitoxin
neutralizes the toxin through post-translational modification of
the toxin such as phosphorylation or oligoAMPylation
(Songailiene et al., 2020; Yu et al., 2020). The most
characterized TA systems are type II systems (Xie et al., 2018).
In this case, the antitoxin is a protein that interacts with the toxin
to form a complex in which the toxin is inactive (Van Melderen,
2010). They generally are auto-repressor of their own
transcription, most often in complex with the toxin (Fraikin
et al., 2020).

TA systems present inM. tuberculosis genome are mostly type II
TA systems, including at least 51 VapBC systems, 10 MazEF, 1
PemIK, 2 RelBE, 1 YefM/YoeB, 3 HigBA, and 2 ParDE family
members, as well as several newly identified systems including
PezAT, PhoAT-PhoH2 and MbcTA. Besides, the DarTG system
is a hybrid typeII/IV system andMenTA3 a type VII (Cai et al., 2020;
Yu et al., 2020). M. tuberculosis TA systems are generally located
within regions of horizontal gene transfer together with genes
involved in virulence, dormancy, regulation or cell signaling
(Ramage et al., 2009; Sala et al., 2014; Wang et al., 2015),
suggesting that they could also contribute to the success of M.
tuberculosis as a human pathogen. A substantial number of M.
tuberculosis toxins have been cloned and showed toxicity when
expressed in E. coli or in mycobacteria (Ramage et al., 2009; Sala
et al., 2014; Agarwal et al., 2018; Akarsu et al., 2019). Besides,
transcription of several M. tuberculosis TA systems were shown
to be induced under various stress conditions including drug
exposure, hypoxia, heat-shock, DNA damages (Sala et al., 2014;
Tiwari et al., 2015; Gupta et al., 2017; Agarwal et al., 2018), and gene
deletion mutants ΔvapC22, ΔvapBC3/4/11 and ΔmazF3/6/9 are
strongly impaired in host infection (Tiwari et al., 2015; Agarwal

et al., 2018; Deep et al., 2018; Agarwal et al., 2020). Even though
transcriptional induction of TA systems does not necessarily reflect
toxin activation (LeRoux et al., 2020), these data suggest that toxins
could modulate bacterial growth depending on environmental
conditions, and thus contribute to M. tuberculosis physiology and
virulence (Sala et al., 2014). This also implies that their toxic
activity must be tightly regulated in order not to be detrimental
for bacterial survival. Since all the TA systems described so far in
M. tuberculosis encode protein toxins and antitoxins, one of the
main control mechanism that could enable a fast change of
Toxin/Antitoxin ratios in response to changing cellular
conditions is differential proteolysis (Jenal and Hengge-
Aronis, 2003; Molière and Turgay, 2013).

PROTEOLYTIC REGULATION OF TOXIN
ANTITOXIN SYSTEMS

In bacteria, protein turnover is mainly achieved by multi-subunit
machines known as AAA + proteases and the proteasome. It has
been proposed that under certain conditions, type II antitoxins
are degraded by AAA+ proteases Lon or Clp, which could result in
lifting the repression of the operon and activation of the toxin
(Van Melderen et al., 1994; Jensen and Gerdes, 1995; Koga et al.,
2011). Except for the recently described degradation of a ParE-
like antitoxin of Microcystis aeruginosa PCC 7806 by a caspase
homolog protease (Klemenčič et al., 2021), only AAA+ proteases
(ClpAP, ClpCP, ClpXP, Lon) have been involved in antitoxin
degradation in bacteria (Van Melderen et al., 1994; Lehnherr and
Yarmolinsky, 1995; Aizenman et al., 1996; Prysak et al., 2009;
Donegan et al., 2010; Diago-Navarro et al., 2013;
Muthuramalingam et al., 2016; Dubiel et al., 2018; Zhou et al.,
2021).

How antitoxins are targeted to degradation remains largely
unknown. Some appeared to be more susceptible to proteases due
to their hydrophobic or flexible C-termini or to the presence of
intrinsically disordered central regions (Yamaguchi et al., 2011).
In some cases, antitoxin degradation might be assisted by specific
adaptors, as it is the case for the Staphylococcus aureus adaptor
protein TrfA that assists ClpCP-mediated degradation of the
MazE antitoxin (Donegan et al., 2014), or even modulated by
DNA (Dubiel et al., 2018; LeRoux et al., 2020). Although
antitoxins are generally more sensitive to proteolysis than their
cognate toxins, it is not known whether an antitoxin within a
preformed TA complex can be directly targeted by proteases to
induce toxin activation in vivo. Although it was suggested in vitro
that an excess of the Lon protease could disrupt a preformed
DinJ-YafQ complex in vitro (Ruangprasert et al., 2017), there is
significant evidence showing that once a stable TA complex is
formed, the antitoxin is generally protected from degradation
(Dubiel et al., 2018; LeRoux et al., 2020; Lunge et al., 2020). Other
attractive possibilities would be that certain stress conditions or
alternative factors such as adaptors or chaperones would trigger
TA complex dissociation in order to proteases to get access to
their substrate antitoxin. In addition, cross-talks between
multiple endogenous antitoxins from the same family (as
found in M. tuberculosis) could also be involved in TA
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complex unstability. Indeed, non-cognate interactions between
TA systems could lead to the formation of less stable non-cognate
complexes with increased sensitivity to proteases, and potentially
affect the promoter binding activities of TA complexes.
Intriguingly, Leroux and colleagues (2020) recently showed for
several chromosomal TA systems of E. coli that antitoxin
degradation by different stresses led to the transcriptional de-
repression of their TA operon but in contrast, did not induce in
any detectable toxin activation, thus further raising questions
about how toxins can be activated and what is the role played by
proteases in this process.

MYCOBACTERIAL AAA+ PROTEASES

In M. tuberculosis, two cytosolic AAA + proteases have been
identified: ClpC1P1P2 and ClpXP1P2. AAA + proteases combine
a central ring-shaped peptidase ClpP, together with a regulatory
hexameric ring-shaped unfoldase (ClpX or ClpC1) to bind and
translocate the substrate to the central pore of the peptidase
(Sauer and Baker, 2011).M. tuberculosis is one of the few bacteria
that possess two essential clpP genes, which encode a hetero-
oligomeric peptidase from a pair of homo-heptameric rings
ClpP1P2 (Leodolter et al., 2015; Alhuwaider and Dougan,
2017; Vahidi et al., 2020). Interestingly, ClpX and ClpC1
unfoldases only interact with the ClpP2 ring surface (Leodolter
et al., 2015). M. tuberculosis also encodes the membrane-bound
AAA + protease FtsH that harbours peptidase and unfoldase
activities on one single polypeptide. Apart from the fact that it can
functionally complement some activities of E. coli FtsH
(Srinivasan et al., 2006), its function in M. tuberculosis is
poorly understood and transposon saturated mutagenesis did
not firmly established its essentiality (Sassetti et al., 2003; DeJesus
et al., 2017).

The Clp proteases of M. tuberculosis have been shown to be
induced by stress conditions such as starvation or streptomycin
exposure (Gupta et al., 2017). Moreover, clpC1 and clpP1P2
expression is directly activated under stress conditions by the
regulator ClgR, a stress regulator essential during macrophage
infection and the reaeration response (Estorninho et al., 2010;
Sherrid et al., 2010). Noticeably, ClgR is itself a substrate for
ClpP1P2 proteolytic activity, indicating that clp genes regulation
is tightly controlled in M. tuberculosis (Sherrid et al., 2010;
Yamada and Dick, 2017). Both AAA + unfoldases ClpX and
ClpC1 are essential for the growth of M. tuberculosis H37Rv
(DeJesus et al., 2017; Lunge et al., 2020; Kester et al., 2021). ClpX
has been shown to be involved in DNA replication and in cell
division in M. tuberculosis (Dziedzic et al., 2010; Kester et al.,
2021), and a global protein expression profiling following clpC1
gene silencing inM. tuberculosis showed that ClpC1P1P2 acts on
several essential proteins involved in central metabolism and cell
wall biosynthesis (Lunge et al., 2020). Similar to the ClpC1
homologue ClpA in E. coli, a small subset of ClpC1-sensitive
proteins harbour typical N-end degrons composed of four
residues (Tyr, Phe, Trp, and Leu) known to be recognized by
the ClpS adaptor in E. coli (Erbse et al., 2006). However, the vast
majority of ClpC1P1P2-regulated proteins in M. tuberculosis

have disorder-promoting residues (Pro, Arg, Gly, Gln, Ser,
Glu, Lys, and Ala) within their terminal 15-aa region, and it
was demonstrated that this is a critical feature for ClpC1P1P2
degradation of the small heat shock protein Hsp20 in M.
tuberculosis (Lunge et al., 2020). ClpC1 recognition can also
rely on the phosphorylation of an internal residue as shown
for the anti-sigma factor RseA (Barik et al., 2010).

Depletion or drug-dependent inhibition of ClpP1P2 in M.
tuberculosis identified four protein clients with putative degrons,
namely ClgR, tmRNA SsrA and the two regulators WhiB1 and
CarD, all four degradation signals located at the C-terminus and
enriched in hydrophobic residues (Raju et al., 2012; Yamada and
Dick, 2017). Comparison of their C-terminal with known E. coli
ClpX subtrates (Flynn et al., 2003) suggests that these substrates
(with the exception of WhiB1) might be recognized by ClpX
(Alhuwaider and Dougan, 2017). Other studies revealed that the
membrane-associated anti-σ factor RsdA ofM. tuberculosis was a
ClpXP1P2 substrate and its Val-Ala-Ala internal degron was
similar to the SsrA-tag (Jaiswal et al., 2013). More recently,
similar degron sequences were identified in the cytoplasmic
sequence of three other anti-σ factors of M. tuberculosis but
instead of leading to proteolysis, they affect the unfoldase activity
of ClpX to regulate the inactive σ/anti-σ complex and thus
modulate gene expression (Joshi et al., 2019). This is
reminiscent of ClpX interaction with FtsZ that does not lead
to altered intracellular levels of FtsZ but rather to an inhibition of
Z-ring assembly in M. tuberculosis (Dziedzic et al., 2010).

Interestingly, ClpC1 is the target of antimycobacterial peptides
such as cyclomarin A or lassomycin, and has emerged as an
promising drug target (Lupoli et al., 2018; Fraga et al., 2019;
Maurer et al., 2019). More generally, the activation, repression of
modification of ClpP mechanism of action has been the focus of
many studies to identify new antibiotics (Ye et al., 2016; Moreno-
Cinos et al., 2019). For instance, acyldepsipeptides (ADEPs) kill
M. tuberculosis by preventing the binding of AAA + regulatory
unfoldases to ClpP1P2 (Famulla et al., 2016), peptide boronates
prevent growth ofM. tuberculosis by inhibition of ClpP1P2 active
sites (Akopian et al., 2015) and pyrazinamide prodrug triggers
ClpC1P1P2 dependent degradation of the essential PanD protein
by modifying its oligomeric state (Gopal et al., 2020). To date, no
adaptor protein has been described for M. tuberculosis ClpX
(Alhuwaider and Dougan, 2017), although the essential DNA
maintenance protein Single-Stranded DNA Binding protein
(SSB) is able to activate ClpXP1P2 proteolytic activities (Kester
et al., 2021). The only adaptor described so far in mycobacteria,
ClpS, inhibits ClpC1-dependent unfolding and degradation of
substrate SsrA, but also enhances the degradation of an N-end
rule model substrate in vitro (Marsee et al., 2018; Ziemski et al.,
2020).

INTERPLAY BETWEEN AAA+ PROTEASES
AND TOXIN ANTITOXIN SYSTEMS

Several M. tuberculosis antitoxins have been demonstrated as
ClpXP1P2 or ClpC1P1P2 substrates. One of the first proteomic
study of ClpP1P2-dependent protein substrates inM. tuberculosis
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following depletion of endogenous ClpP1P2 identified 6
antitoxins as putative ClpP1P2 substrates, namely MazE10,
VapB22, VapB9, VapB41, Rv2017 and HigA1 (Raju et al.,
2014); Figure 1). Among these antitoxins, MazE10 was later
identified as a likely ClpC1P1P2 substrate in vivo, together with
VapB47 (Lunge et al., 2020); Figure 1). Note that both MazE10
and VapB47 antitoxins have disorder-promoting residues at their
C-terminal end, which was suggested to be important for ClpC1
recognition (Lunge et al., 2020). It is striking that when we

applied similar search for disordered C-terminal ends, we
found that more than 60% of the antitoxins of M. tuberculosis
possess this type of C-terminal region, thus suggesting that
disordered C-terminal ends could indeed contribute to
recognition by proteases. Note that a table presenting the
C-terminal ends of all known M. tuberculosis antitoxins can be
found in Texier and colleagues (Texier et al., 2021). The HigA1
antitoxin possesses a typical C-terminal ClpX degron with two
crucial hydrophobic last residues Val-Ala that were recently

FIGURE 1 | Proteolytic regulation and recognition of Toxin-Antitoxin systems inM. tuberculosis. TA families are indicated by different colors as followed: Orange for
VapBC, Green for ParDE, pink for PemIK, red for MazEF, dark blue for RelBE, purple for DarTG, bright blue for HigBA, brown for PhoAT-H2, yellow for ArsR-COG3832
and grey for unknown. Toxins and Antitoxins are indicated by filled and open rounded rectangles, respectively. Toxin and Antitoxin proteins are candidate substrates for
proteases, (A) ClpC1P1P2 (B) ClpXP1P2, (C) ClpP1P2 (the associated chaperone subunit, either ClpX or ClpC1 is to be determined), (D) the Mpa-proteasome.
Known degrons for ClpXP1P2 are indicated in (B) under brackets. Functional properties were indicated in the columns adjacent to the toxins and antitoxins, i.e., toxicity,
essentiality (essential), interaction, accumulation following protease depletion (depletion), in vitro degradation (in vitro) or pupylation. Toxicity: orange dots mean toxic
when overexpressed (Ramage et al., 2009; Sala et al., 2014; Agarwal et al., 2018; Akarsu et al., 2019) in at least one bacterial host (M. tuberculosis, M. smegmatis or
E. coli), grey dots nontoxic and black dot non tested. Essentiality (DeJesus et al., 2017): orange dots mean essential, green dots mean growth advantage whenmutated,
grey dots non-essential, black dots mean uncertain or non-tested. Interaction with chaperone subunit ClpC1 in vivo (Ziemski et al., 2020): orange dots mean interaction
and grey dots no interaction. Depletion of clpP1P2, clpP2 or clpC1 (Raju et al., 2014; Lunge et al., 2020): orange dots mean protein stabilization and grey dots mean no
detectable protein changes. In vitro degradation assays (Ziemski et al., 2020; Texier et al., 2021): orange dots mean degradation. Pupylation: orange dots mean
pupylated under routine culture conditions (Festa et al., 2010), red dots mean pupylated by reconstituted system in E. coli and/or in vitro (Chi et al., 2018).
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shown to be the recognition sequence of HigA1 by ClpX in M.
tuberculosis (Texier et al., 2021). Noticeably, the Rv2017 antitoxin
contains a ClpX-like degron with two hydrophobic residues
located at its extreme C-terminal part (Ala-Ile), suggesting that
it could also be recognized by ClpX. The last four ClpP1P2-
dependent antitoxins, namely VapB9, VapB22, VapB41 harbor
different C-terminal ends and no other common feature could be
detected (Raju et al., 2014). This suggests that the ClpXP1P2 and
ClpC1P1P2-dependent degradation signals are not restricted to
typical degrons, and that their degradation might rely on post-
translational modifications or on unknown adaptors (Trentini
et al., 2016).

In a recent CRISPRi study performed in M. tuberculosis, 4
antitoxins, namely VapB15, VapB38, VapB45 and DarG, were
found to be up-regulated upon ClpP2 depletion but not upon
ClpC1 depletion inM. tuberculosis (Lunge et al., 2020), suggesting
that these antitoxins might be ClpXP1P2 substrates. This is
particularly likely for VapB45, which contains a typical ClpX-
degron at its C-terminus (Ala-Ala). A systematic search for
ClpC1 interactors based on the bacterial adenylate cyclase
two-hybrid (BACTH) screen in E. coli showed that type II TA
systems of M. tuberculosis are one of the largest group of ClpC1
interacting partners (Ziemski et al., 2020). Members of the
VapBC, MazEF and ParDE TA families were identified, with
VapBC systems being the most abundant pairs found to be
interacting partners of the ClpC1P1P2 protease complex (20
out of the 51 known VapBC pairs; Figure 1). Both VapB20
and the RelB1 antitoxins were further confirmed to be specific
substrates for ClpC1P1P2 and not ClpXP1P2 using in vitro
degradation assays (Ziemski et al., 2020), thus suggesting that
ClpC1 and ClpX chaperones may not share substrate recognition
motifs. Note that VapC20 or RelE1 toxin form stable complexes
with their cognate antitoxin in which the antitoxin is protected
from degradation, further raising questions about how the toxin
could be freed from the antitoxin in order to be activated (see
above comments).

Interestingly, the HigA1 degron has been the only ClpX-
dependent recognition sequence identified so far for a
mycobacterial antitoxin (Texier et al., 2021). HigA1 is part
of the tripartite toxin-antitoxin-chaperone (TAC) system of
M. tuberculosis that includes a cognate SecB-like chaperone
(SecBTA). In most Gram-negative bacteria, SecB targets
presecretory proteins to the Sec translocon located at the
inner membrane (Bechtluft et al., 2010). In contrast with
classical two-component TA systems, the TAC toxin-
antitoxin pair is tightly controlled by SecBTA, through a
direct interaction between the chaperone and an unusual
aggregation-prone C-terminal extension of the antitoxin
HigA1, named ChAD (chaperone-addiction) (Bordes et al.,
2011; Bordes et al., 2016; Guillet et al., 2019). Binding of
SecBTA to the ChAD of the antitoxin protects HigA1 from
aggregation and degradation. Remarkably, both SecBTA

binding site and ClpX degron are located within the same
ChAD region of the antitoxin (with different residues being
involved). These data suggest that under certain stress
conditions, SecBTA could be hijacked by protein substrates
(either aggregated pre-proteins or specific exported proteins)

and the HigA1 antitoxin could be degraded by ClpXP1P2,
which could lead to a transient activation of the HigB1 toxin
until normal growth conditions resume.

The analysis of the amino acid sequence of M. tuberculosis
antitoxins suggests that only VapB19, VapB41, VapB44, VapB45,
Rv1990c, Rv2017 and HigA2 antitoxins possess a putative HigA1-
like degron sequence with at least two hydrophobic residues at
their extreme C-terminus (respectively, Leu-Ala, Ala-Ala-Leu,
Ala-Val, Ala-Ile-Ala-Ala, Val-Phe-Val, Ala-Ile and Leu-Ala).
These hydrophobic residues are mainly non-polar aliphatic
(Ala, Val, Leu, Ile) as usually observed in C-terminal ClpX
degrons, except for Rv1990c that presents an aromatic
phenylalanine. In addition, VapB41, VapB44, VapB45 and
Rv1990c also possess an acidic residue before the hydrophobic
end, as found in HigA1. This suggests that these antitoxins could
also be recognized by M. tuberculosis ClpX. In addition, five
poorly conserved VapB antitoxins (VapB19, VapB23, VapB28,
VapB30 and VapB34) share a highly similar extreme C-terminus,
with hydrophobic residues following an arginine (Arg-Gly-Leu-
Pro-Ala-Pro, Arg-Gly-Leu-Pro-Ala or Arg-Leu-Gly-Leu-Ala
motifs), suggesting that these antitoxins could share similar
degrons (Texier et al., 2021).

Remarkably, toxins were also identified as proteases targets or
putative substrates. Indeed, while only 6 VapB antitoxins were
identified as ClpC1 interactors in vivo, the remaining 14
interactors were VapC toxins (Lunge et al., 2020). These
intriguing results suggest that toxins might themselves be the
targets of proteases or in contrary, act as bona fide protease
adaptors for their cognate antitoxins and thus being actor of their
own activation. Moreover, the degradation of the toxin could also
be part of a bacterial strategy to resume growth after TA system
activation, as demonstrated for the type I toxin HokB in E. coli
(Wilmaerts et al., 2019). In this case, awakening of HokB-induced
persister cells was shown to require the degradation of HokB
monomers by the periplasmic stress protease DegQ. Whether
such mechanism exists in M. tuberculosis remains to be
determined.

POSSIBLE LINK BETWEEN TOXIN
ANTITOXIN AND THE PUP-PROTEASOME
SYSTEM
Another peculiarity of Actinomycetes is to possess a eukaryotic-
like proteasome (Festa et al., 2010; Müller andWeber-Ban, 2019).
The mycobacterial proteasome consists of a highly conserved
central peptidase core particle (20S CP) composed of 28 subunits
(2 heptameric inner rings composed of PcrB subunits, and 2
heptameric outer rings composed of PcrA subunits), which is
gated and interact with ring-shaped activators to form a fully
active protease capable of degrading specific sets of cellular
substrates (Figure 1). With the mycobacterial proteasomal
AAA + Mpa, the proteasome targets substrates that have been
post-translationally modified with Pup (prokaryotic ubiquitin-
like protein) by a dedicated ligase PafA (Pearce et al., 2008; Burns
et al., 2009). Hundreds of M. tuberculosis pupylated proteins,
which include Mpa and PafA, have been identified by proteomics
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studies, even though many of them are not degraded under
normal growth conditions (Festa et al., 2010; Müller and
Weber-Ban, 2019). This could be reminiscent of the Pup
degradation-independent regulatory role in several bacterial
species (Elharar et al., 2014; Küberl et al., 2016).

In mycobacteria, Pup goes through a deamidation step by the
Dop enzyme before it can be attached to a target by PafA, and Pup
can also be removed from tagged substrates by Dop, as well or
transferred between substrates by PafA (Burns et al., 2010;
Imkamp et al., 2010; Zhang et al., 2017). These enzymatic
activities must be tightly regulated in order to avoid useless
cycles of pupylation/depupylation and even though little is
known about these regulations, it was shown that Pup-free
Dop is depleted under stress conditions leading to accelerated
proteasomal degradation (Elharar et al., 2016) and that the AAA
+ protease ClpC1P1P2 is responsible for the depletion of Pup-free
Dop under starvation conditions (Hecht et al., 2020). Dop, PafA,
Pup, Mpa, and 20S CPs constitute the core “Pup-proteasome
system” (PPS). Two other partners of the 20S CP have been
described in M. tuberculosis: The non-ATPase activator Bpa (also
known as PafE) could address unstructured substrates to
proteasomal degradation (Delley et al., 2014; Jastrab et al., 2015),
and the AAA + Cpa (a Cdc48-like protein), that interacts with the
20S core but for which no degradation substrate has been identified
yet (Ziemski et al., 2018). PPS mutants of M. tuberculosis are viable
but are highly attenuated in a mouse infection model (Darwin et al.,
2003; Gandotra et al., 2007), are highly sensitive to NO due to the
failure to degrade a single pupylated substrate, Log (MacMicking
et al., 1997; Samanovic et al., 2015) and are unable to use nitrate as a
nitrogen source (Becker et al., 2019). Moreover, a bpa mutant
displays a slow growth in vitro and in mice and is hypersensitive
to heat shock (Jastrab et al., 2015). Anti-TB drugs targeting the
mycobacterial proteasome are promising but they face the challenge
of being highly selective in order not to inhibit the human
proteasome (Lin et al., 2013; Bibo-Verdugo et al., 2017; Zhan
et al., 2019).

Although AAA+ proteases are the main proteases shown to be
involved in antitoxin degradation (Muthuramalingam et al.,
2016), several studies suggest that the PPS could also be
involved in the regulation of TA systems. Indeed five toxins,
namely Rv2035, DarT, PhoH2, VapC17 and VapC31, and the
VapB51 antitoxin are part of theM. tuberculosis pupylome under
standard laboratory growth conditions culture conditions (Festa
et al., 2010). Note that it remains to be determined whether these
proteins are directly pupylated and if pupylation leads to their
degradation by the PPS. In addition, the reconstitution of a
pupylation system in E. coli and in vitro showed that the
VapC4 and PemK toxins, and the MazE9 antitoxin could also
be pupylated (Chi et al., 2018). Intriguingly, PhoH2 is the only
toxin potentially regulated both by the proteasome and
ClpC1P1P2 (Figure 1), possibly to ensure low toxin level. The
fact that there are more potentially pupylated toxins than
antitoxins is striking and suggests that some toxins might be
differently regulated by proteasomal degradation and antitoxin
inhibition (Burns et al., 2010). Yet, theM. tuberculosis pupylome
was performed under standard laboratory growth conditions and
we cannot exclude that more antitoxins could be pupylated under

certain stresses, as growth conditions were shown to modify the
abundance of pupylated proteins (Becker et al., 2019). The fact
that Bpa could drive proteasomal degradation of partially or
totally unfolded proteins, which is a property of many antitoxins,
suggests that other proteasome activators could be involved in TA
proteins turnover (Jastrab et al., 2015). Finally, there could also be
a link between the master regulator PafBC, which is encoded
within the PPS gene locus and the regulation of TA systems, as the
VapB antitoxin of M. smegmatis was shown to be part of the
pafBC regulon (Müller et al., 2018).

CONCLUDING REMARKS

A substantial number of M. tuberculosis antitoxins are bona
fide substrates of AAA+ proteases, both in vivo and in vitro
(Figure 1). Yet, there is very little knowledge about recognition
signals within antitoxins and degron sequences are just
beginning to emerge. In addition, it is not known whether
proteases directly play a role in toxin activation in vivo and, if
they do, at which stage of the TA activation cycle such a
regulation would occur (Sala et al., 2017; LeRoux et al., 2020).
Similarly, it remains to be determined whether or not the
control of TA systems by proteolysis relies on a specific
activation or induction of proteases (Ramisetty, 2020).
Moreover, there is a clear lack of data concerning additional
factors such as stress-induced protease adaptors and
chaperones, or specific environmental stimuli (or perhaps
cell cycle events and other host factors) that might trigger
antitoxin degradation and the subsequent toxin activation
and/or expression of the TA operon.

Many toxins of M. tuberculosis have been cloned,
overexpressed and shown to be toxic (Ramage et al., 2009;
Sala et al., 2014; Agarwal et al., 2018; Akarsu et al., 2019).
Remarkably, several of these toxins were capable of efficiently
inducing cell death and their respective antitoxins were essential
for M. tuberculosis growth (Fivian-Hughes and Davis, 2010;
Schuessler et al., 2013; DeJesus et al., 2017; Freire et al., 2019;
Cai et al., 2020; Zaveri et al., 2020). This suggests that proteolysis
has to be tightly regulated in order to avoid unwanted proteolysis
of antitoxins, which could be detrimental for M. tuberculosis
growth. Yet, under certain conditions, a transient growth
inhibition might be beneficial for the pathogen, especially for
the entry into a persistent mode.

Finally, the fact that a significant number of toxins were shown
to interact with proteases (both ClpC1/P1P2 and the proteasome)
suggests that proteolysis could ensure that deleterious toxins do
not accumulate. Most of these toxins are part of type 2 TA
systems, suggesting that that under certain conditions,
inhibition by their cognate antitoxins might not be robust
enough without additional control of the toxin by proteolysis.
Although new drug discovery strategies that focus on inhibiting
mycobacterial proteases seem promising (Lupoli et al., 2018), it is
important to note here that such a potentially dual role of
proteases on toxin activation or inhibition in M. tuberculosis
could lead to unwanted toxin activation and the subsequent entry
into a persistent mode. Intriguingly, we also noticed that except
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for DarTG, none of the toxins and antitoxins that interact with
proteases are part of the same TA pairs (Figure 1), suggesting a
highly complex network of interactions and antagonistic effects
that could impact growth of the pathogen in respond to specific
signals. More work is needed to uncover such a complex reservoir
of interactions involving highly conserved proteolysis pathways
and the multiple stress-responsive TA systems ofM. tuberculosis.
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