
The Risk of Virologic Failure Decreases with Duration of
HIV Suppression, at Greater than 50% Adherence to
Antiretroviral Therapy
Michael Rosenblum1, Steven G. Deeks1, Mark van der Laan2, David R. Bangsberg3*

1 Department of Medicine, University of California San Francisco, San Francisco, California, United States of America, 2 Division of Biostatistics, School of Public Health,

University of California, Berkeley, California, United States of America, 3 Massachusetts General Hospital Center for Global Health, Harvard Medical School, Harvard

Initiative for Global Health, Boston, Massachusetts, United States of America

Abstract

Background: We hypothesized that the percent adherence to antiretroviral therapy necessary to maintain HIV suppression
would decrease with longer duration of viral suppression.

Methodology: Eligible participants were identified from the REACH cohort of marginally housed HIV infected adults in San
Francisco. Adherence to antiretroviral therapy was measured through pill counts obtained at unannounced visits by
research staff to each participant’s usual place of residence. Marginal structural models and targeted maximum likelihood
estimation methodologies were used to determine the effect of adherence to antiretroviral therapy on the probability of
virologic failure during early and late viral suppression.

Principal Findings: A total of 221 subjects were studied (median age 44.1 years; median CD4+ T cell nadir 206 cells/mm3).
Most subjects were taking the following types of antiretroviral regimens: non-nucleoside reverse transcriptase inhibitor
based (37%), ritonavir boosted protease inhibitor based (28%), or unboosted protease inhibitor based (25%). Comparing the
probability of failure just after achieving suppression vs. after 12 consecutive months of suppression, there was a statistically
significant decrease in the probability of virologic failure for each range of adherence proportions we considered, as long as
adherence was greater than 50%. The estimated risk difference, comparing the probability of virologic failure after 1 month
vs. after 12 months of continuous viral suppression was 0.47 (95% CI 0.23–0.63) at 50–74% adherence, 0.29 (CI 0.03–0.50) at
75–89% adherence, and 0.36 (CI 0.23–0.48) at 90–100% adherence.

Conclusions: The risk of virologic failure for adherence greater than 50% declines with longer duration of continuous
suppression. While high adherence is required to maximize the probability of durable viral suppression, the range of
adherence capable of sustaining viral suppression is wider after prolonged periods of viral suppression.
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Introduction

Medication adherence is the most important predictor of viral

suppression among HIV infected patients receiving combination

antiretroviral therapy [1–3]. The adherence threshold required to

achieve durable viral suppression has declined with more potent

regimens, such that the majority of patients in clinical practice are now

able to maintain undetectable viral loads at adherence proportions as

low as 70% [4–7]. Although the relationship between adherence and

the short-term virologic response to therapy has been well described,

the impact of successful treatment duration on the relationship between

adherence and viral suppression remains unexamined.

Several independent observations suggest that the degree of

drug pressure necessary to initially achieve viral suppression may

be higher than that needed to maintain viral suppression. During

effective antiretroviral therapy, plasma HIV RNA levels decline in

a characteristic multi-phasic manner. The rapid first phase decay

likely reflects the death of actively turning over, short-lived CD4+
T cells, while each subsequent phase likely reflects the death of

longer lived cellular reservoirs [8]. After a period of 2 to 5 years,

most patients reach a new steady-state in which the long-lived

reservoir (presumed to be resting CD4+ T cells) continues to

produce a steady-state level of viremia [9,10]. Since the size of the

reservoir containing replication competent virus declines over time

[11], it is reasonable to postulate that the amount of virus that is

able to initiate new rounds of replication also declines, as does the

reservoir of pre-existing drug-resistant variants. Long-term

HAART (highly active antiretroviral therapy) is also associated
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with decline in the number of activated and/or proliferating

CD4+ T cells [12,13]. Since these cells are the primary target cells

for virus production, it is likely that the ability of virus to escape

drug pressure declines proportionally with the decline in these cells

[14]. These observations have been used as a rationale for a series

of induction-maintenance clinical trials, in which patients are

initially treated with more potent regimens and then later switched

to a better tolerated, less potent regimen. Although many of the

earlier trials failed [15,16], more recent studies using longer

induction periods and/or better maintenance regimens have

provided some support for this approach [17,18].

Based on these theoretical considerations, we hypothesized that

the impact of adherence on the probability of virologic failure

would differ depending on how long a subject had maintained

virologic suppression. To test this hypothesis, we examined the

effect of adherence on viral load after different durations of viral

suppression. Subjects for this study were enrolled in a systematic

community-based sample of HIV infected urban poor individuals

living in San Francisco (the REACH cohort) [19]. Adherence was

measured using unannounced pill counts at the participant’s usual

place of residence, as previously described [20]. This method has

a close association with concurrent viral load [2], electronic pill

cap adherence assessment [20], development of resistance

[21,22], and progression to AIDS [23]. We used marginal

structural models [24–26] and targeted maximum likelihood

estimation [27] to adjust for potential confounders of adherence

and viral suppression.

Methods

Ethics statement
The University of California San Francisco and Committee on

Human Subjects Research and the Partner’s Human Research

Committee approved all procedures.

Study design and subject recruitment
Participants enrolled in the REACH cohort were invited to

participate in a substudy focused on intensive adherence

monitoring, as previously described [25,28,29]. Briefly, subjects

had unannounced visits by research staff at their usual place of

residence every three to six weeks, over a one year period. Percent

adherence was determined from the number of remaining or

unused antiretroviral pills and number of pills refilled between

visits [2]. Three hundred and fifty seven HIV-positive subjects

were monitored for medication adherence. The earliest monitor-

ing period started in March 1998 and the latest monitoring date

was in October 2007.

Confounding variable assessment
Confounders of the effect of current adherence on virologic

failure included the following: prior adherence, prior duration of

HAART, prior exposure to mono/dual nucleoside therapy, recent

CD4+ T cell count (lagged 2 months), CD4+ T cell nadir (lagged 2

months), demographics (sex, ethnicity, age), years of education,

past and current antiretroviral treatment characteristics, crack

cocaine and alcohol use, calendar time, and homelessness. Current

antiretroviral treatment was classified as one of five potential

regimens: ritonavir boosted protease inhibitor containing regimen,

unboosted protease inhibitor containing regimen, non-nucleoside

reverse transcriptase inhibitor containing regimen (NNRTI),

combined non-nucleoside reverse transcriptase inhibitor-protease

inhibitor containing regimen (PI/NNRTI), and nucleoside reverse

transcriptase inhibitor (NRTI) only containing regimen.

Specimen collection
Blood was drawn monthly for HIV RNA levels (viral loads) and

quarterly for CD4+ T cell levels. HIV-1 viral load was performed

using the HIV-1 Amplicor Monitor Version 1.0 ultra sensitive

assay (Roche Molecular Systems, Alameda, CA).

Statistical analyses
For every month of observation, each REACH cohort

participant was classified as experiencing either virologic suppres-

sion (defined as HIV RNA less than 50 copies/ml) or virologic

failure (defined as HIV RNA at least 50 copies/ml). Each

participant in the REACH cohort who was suppressed for at

least two consecutive months during adherence monitoring

contributed data to the analysis; there were 221 participants

who met this criterion. For each such participant, his/her data was

included starting at the first month of viral suppression during

adherence monitoring and continuing until virologic failure

occurred or the adherence monitoring period ended.

Duration of suppression at any month was defined as the

number of prior consecutive months of viral suppression. In

calculating the duration of viral suppression, we used data on viral

loads prior to the initiation of adherence monitoring.

We used marginal structural models to estimate the effect of

adherence during a given month on the probability of virologic

failure at the end of that month. These effects were estimated within

subpopulations defined by duration of prior viral suppression. For

example, among participants who had maintained viral suppression

for exactly 4 consecutive months, we estimated the effect of

adherence during month 5 on the probability of virologic failure at

the end of month 5. For our primary analysis, adherence was

stratified into the following four categories: 0249%, 50274%,

75289%, or 902100% pills taken. The marginal structural model

was fit using a targeted maximum likelihood estimator (TMLE)

[27], in order to adjust for the potential confounders listed above.

The TMLE, in this application, relies on 1) a multinomial logistic

regression model for predicting medication adherence given

potential confounders and number of consecutive months virally

suppressed and 2) a logistic regression model for the probability of

virologic failure given adherence, confounders, and number of

consecutive months virally suppressed. The TMLE is robust to

model misspecification, in that it gives asymptotically unbiased

estimates whenever at least one of the models (1) or (2) is correct. It

also has several advantages over alternative estimation techniques,

such as inverse probability of treatment weighting [30], g-

computation [31,32], and doubly robust estimators [33–36]; these

advantages have been previously described [27].

Based on the marginal structural model fit using targeted

maximum likelihood estimation, we estimated the probabilities of

virologic failure at each set stratum of adherence, for duration of

continuous suppression ranging from 1 to 12 months. Confidence

intervals for the difference between the probability of failure after

1 month of continuous suppression and the probability of failure

after 12 months of continuous suppression, at each adherence

stratum, were calculated using 10,000 iterations of the nonpara-

metric bootstrap (BCa method) [37].

We tested for effect modification based on the estimated

coefficients of the marginal structural models. More precisely, we

tested whether the effect of the proportion of medication taken on

the probability of virologic failure in the current month, is

impacted by the number of consecutive months one has been

virally suppressed. This test involved first computing the logarithm

of the causal relative risk of virologic failure, comparing high

adherence (90–100%) vs. low adherence (0–49%), conditional on

number of consecutive months virally suppressed. This causal

Risk of Virologic Failure
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relative risk was based on the fit of the marginal structural model

discussed above. Next, we used a linear regression model to test

the null hypothesis that the causal relative risk does not depend on

the number of consecutive months virally suppressed. Standard

errors were computed using the nonparametric bootstrap as

above.

Time-lagged confounder measurements were used to ensure that

confounders occurred before, and thus could not be influenced by,

medication adherence. We imputed missing confounder values by

carrying the most recent observation forward. Because subjects

could contribute data at multiple time points, bootstrap resampling

was based on subject rather than data-point.

Results

Participant characteristics
Of the 357 subjects in the REACH cohort who received

unannounced pill counts, 221 met our criteria for inclusion in the

analysis. The median age at start of adherence monitoring was 44.1

years (IQR 10.5). The median CD4+ T cell count was 390 cells/

mm3 and the median CD4+ T cell nadir was 206 cells/mm3. Fifty-

six of the 221 participants (25%) were receiving an unboosted

protease inhibitor based regimen. The mean observed duration of

continuous viral suppression was 6.7 months. Of the 1201 subject-

months of observation, 95 (8%) were missing adherence measure-

ments and 159 (13%) were missing viral load measurements. See

Tables 1 and 2 for a more extensive list of participant characteristics.

Adherence over time
Unannounced pill count adherence ranged from 0 to 100%,

with a median of 92%. In univariate analyses, higher adherence

was associated with higher past adherence, longer duration of viral

suppression, higher CD4+ nadir, and white/Caucasian ethnicity,

while lower adherence was associated with use of crack,

intravenous drug use, and Black/African American ethnicity.

Comparing observed adherence proportions among subjects who

maintained viral suppression for different durations of time, there

was a gradual decrease in the proportion with 0–49% adherence

Table 1. Participant Characteristics at Start of Adherence Monitoring.

Characteristic
Among Subjects Achieving Viral Suppression
During Adherence Monitoring (n = 221) Missing (%)

Non-Caucasian (%) 130 (59%) 3 (1%)

Male (%) 149 (67%) 10 (5%)

Median age (IQR) 44.1 (10.5) 0

Antiretroviral Treatment

PIbased (%) 56 (25%) 0

NNRTI -based (%) 81 (37%) 0

PI-NNRTI-based (%) 15 (7%) 0

NRTI-only (%) 7 (3%) 0

Ritonavir boosted protease inhibitor based 62 (28%) 0

Once daily therapy (%) 81 (37%) 0

Median months on current regimen (IQR) 7 (13) 0

Median number of ARV regimens experienced (IQR) 2 (2) 2 (,1%)

ARV naı̈ve (%) 100 (46%) 2 (,1%)

Mono or dual nucleoside exposure (%) 81 (37%) 2 (,1%)

doi:10.1371/journal.pone.0007196.t001

Table 2. Participant Characteristics During Follow-up.

Characteristic
Among Subjects Achieving Viral
Suppression (n = 221) Missing (%)

Intravenous drug use reported in last 30 days at least once during follow-up (%) 34 (15%) 31 (14%)

Crack use (%) 44 (20%) 31 (14%)

Slept on street or in shelter (%) 12 (5%) 36 (16%)

Mean days intoxicated in past month (SD) 3.5 (7.2) 31 (14%)

Median nadir CD4+/ml (IQR) 206 (279) 30 (14%)

Median CD4+/ml (IQR) 390 (338) 5 (2%)

Person-months with pill box organizer use, excluding subject-months with missing data (%) 274 (45%) 0 (0%)

Mean duration of continuous viral suppression in months (SD) 6.7 (4.3) 0 (0%)

Mean viral load at month of failure, in log copies/ml (IQR) 2.7 (1.0) 0 (0%)

Median pill count adherence (IQR) 0.92 (0.25) 95 (8%)

doi:10.1371/journal.pone.0007196.t002
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(from 11% of subject-months at 1 month of suppression to 5% of

subject-months at 12 months of continuous suppression) and 50–

74% adherence (from 19% of subject-months at 1 month of

suppression to 15% of subject-months at 12 months of continuous

suppression). There was a corresponding gradual increase in the

proportion with 75–89% adherence (from 19% of subject-months

at 1 month of suppression to 25% of subject-months at 12 months

of continuous suppression) and 90–100% adherence (from 50% of

subject-months at 1 month of suppression to 55% of subject-

months at 12 months of continuous suppression). None of these

changes in the proportion of participants at a given adherence

level was statistically significant at the 0.05 level.

Duration of viral suppression and incidence of virologic
failure

Of the 221 participants who achieved viral suppression during

adherence monitoring, 108 (49%) subsequently experienced

virologic failure during adherence monitoring. Based on univariate

regression analyses, participants who had longer duration of

suppression also had higher CD4+ counts, higher CD4+ nadir,

and higher cumulative average adherence proportions. Partici-

pants who had longer duration of suppression were also more

likely to be on an NNRTI or PI/NNRTI regimen than an

unboosted protease inhibitor regimen. Virologic failure (defined as

a plasma HIV RNA greater than 50 copies/ml) was associated

with low recent CD4+ T cell count, low past adherence, shorter

duration of prior suppression, and intravenous drug use.

A logistic regression of the probability of virologic failure on

adherence, confounders, and number of months since initial

suppression was used in the targeted maximum likelihood analysis

(see Table 3). Based on this logistic regression, a lower risk of

virologic failure was associated with longer duration of continuous

suppression, lower past viral load, and being on an NNRTI-based

regimen.

Table 3. Multivariate Regression of Virologic Failure on Adherence, Duration of Continuous Suppression, and Confounders.

Term in Multivariate Linear Regression Model Coefficient 95% CI Lower Limit 95% CI Upper Limit

Indicator of Adherence 0–49% 0.51 21.02 1.76

Indicator of Adherence 50–74% 0.72 20.48 1.76

Indicator of Adherence 75–89% 20.06 21.44 1.1

Months of Continuous Suppression 20.27 20.53 20.11

Indicator of Interaction: Adherence 0–49% x Months of Continuous Suppression 0.24 20.03 0.54

Indicator of Interaction: Adherence 50–74% x Months of Continuous Suppression 0.04 20.24 0.33

Indicator of Interaction: Adherence 75–89% x Months of Continuous Suppression 0.18 20.09 0.46

Once daily therapy 0.29 20.61 1.07

Pillbox Use 0.33 20.59 1.19

CD4 T cell count (2 months prior) (per 100 cells) 20.01 20.01 0

Nadir CD4 T cell count (2 months prior) (per 100 cells) 0 20.01 0

Viral load (2 months prior) (per 100,000 copies) 0.57 0.13 1.06

Calendar month (per 30 days) 20.01 20.03 0

Months on current regimen (per 30 days) 20.01 20.02 0

Age (per year) 20.01 20.05 0.03

Number of days intoxicated (in past month) 20.02 20.07 0.02

Intravenous drug use 0.39 20.6 1.27

Slept on street or in shelter 1.21 20.59 2.49

Crack use 0.2 20.82 1.01

Man 0.17 20.61 0.9

Black/African-American (Ethnicity Response ‘‘Other’’ used as baseline) 0.95 20.04 1.88

Hispanic/Latino 0.71 20.96 2.06

White/Causasian 0.58 20.48 1.46

Mono or dual nucleoside exposure 0.58 20.35 1.35

Unboosted PI-based regimen 0.05 20.93 1

NNRTI-based regimen 20.99 21.68 20.07

PI-NNRTI-based regimen 21.24 22.88 0.37

NRTI only regimen 20.13 24.14 2.21

Number of regimens experienced 20.17 20.35 0.04

Depression (BDI.14) 0.61 20.31 1.29

Years of Education 0.08 20.06 0.23

Adherence lagged 1 month 20.02 21.97 2.27

Cumulative mean adherence lagged 1 month 0.71 22.33 3.5

doi:10.1371/journal.pone.0007196.t003
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Duration of viral suppression modifies the effect of
adherence on virologic failure

We first estimated the causal effect of different adherence

proportions on the probability of virologic failure, conditioned on

duration of continuous viral suppression (Figure 1). We stratified

subject-months by corresponding duration of suppression and then

estimated the probability of virologic failure setting the adherence

proportion to be in the ranges (0–49%, 50–74%, 75–89%, and

90–100%). Because adherence proportion cannot be randomly

assigned as an intervention, we relied on a marginal structural

model and targeted maximum likelihood estimation of the causal

effects of adherence on viral suppression at each time point.

  

  

Figure 1. Estimates and 95% Confidence Intervals for the Risk of Virologic Failure, at Four Ranges of Adherence, Given Duration of
Continuous Viral Suppression.
doi:10.1371/journal.pone.0007196.g001
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At one month of suppression, the estimated probabilities of

virologic failure at all four adherence categories were relatively

high: 0.36 for 0–49% adherence, 0.49 for 50–74% adherence,

0.34 for 75–89% adherence, and 0.37 for 90–100%. The widths of

the confidence intervals for these estimates were large (ranging

from 0.24 to 0.43), and there was a substantial region of mutual

overlap among all four confidence intervals.

The point estimates for the probability of virologic failure

decreased with longer duration of suppression (Figure 1). The

probabilities of virologic failure after 12 months of viral

suppression were 0.24, 0.02, 0.06, and 0.01 for adherence

categories of 0–49%, 50–74%, 75–89%, and 90–100%, respec-

tively. Comparing the probability of failure just after achieving

suppression versus after 12 consecutive months of suppression,

there was a statistically significant decrease in the probability of

virologic failure for adherence set above 50%. The estimated risk

difference, comparing the probability of virologic failure after 1

month vs. after 12 months of continuous viral suppression was

0.47 (95% CI 0.23–0.63) for the 50–74% adherence stratum, 0.29

(95% CI 0.03–0.50) for 75–90% adherence stratum, and 0.36

(95% CI 0.23–0.48) for the 90–100% adherence stratum. The

estimated risk of failure decreased by only 0.13 (95% CI 20.74–

0.39) for the 0–49% adherence stratum, which was not statistically

significant at the 0.05 level.

We carried out a test for effect modification by number of

consecutive months virally suppressed. We considered the causal

relative risk, comparing the effect of different adherence

proportions on the probability of virologic failure. This causal

relative risk was calculated conditioning on the number of months

of viral suppression, using a marginal structural model. The null

hypothesis that this causal relative risk does not depend on the

number of consecutive months virally suppressed was rejected (p-

value 0.001). Thus, the data provide evidence for duration of

suppression being an effect modifier of the adherence-suppression

relationship.

Discussion

Treatment adherence is widely accepted as the primary

determinant of long-term virologic outcomes among antiretrovi-

ral-treated patients. These data suggest that for adherence

proportions greater than 50%, the probability of virologic failure

decreases with longer duration of viral suppression. For example,

we estimated the risk of virologic failure for adherence between

75–89% (which is the most common adherence range in most

chronic diseases) to be 0.31 after 1 month of suppression. In

contrast, we estimated the risk of virologic failure for adherence

between 75–89% to be 0.06 after 12 months of suppression.

Similar trends were observed in those with adherence in the ranges

50 to 74%, and 90 to 100%.

Consistent with our finding that the impact of adherence on

viral suppression is modified by history of successful treatment are

a number recent induction-maintenance studies. For example,

lopinavir-ritonavir monotherapy leads to higher rates of viral

suppression once patients achieve suppression on standard

regimens than when lopinvavir-ritonavir monotherapy is used as

de novo [38,39]. Similarly, the use of a triple nucleoside reverse

transcriptase inhibitor appears to be more effective after viral

suppression is achieved than when the regimen is used as an initial

regimen [17,40].

One important limitation in our analysis is the potential role of

selection bias in explaining the decrease in probability of virologic

failure among those with longer duration of suppression. That is,

those susceptible to virologic failure may have been selected out at

earlier months, leaving a group with lower probability of failure at

later months. Thus, we cannot exclude selection bias as a potential

explanation for these findings.

There are several other limitations that deserve comment.

While we did have extensive and systematic adherence data, we

did not have as extensive virologic suppression data on all

individuals, since some people entered the cohort already on

treatment. These individuals may have had additional periods of

viral suppression that were not included in this analysis. The

estimation method we used relied on having included all

confounders of adherence and virologic failure in our analyses,

and on our marginal structural model and other models used

being correctly specified. While we included many of the known

predictors of adherence and virologic failure, unmeasured

confounders may lead to bias in our estimates. Finally we studied

patients on a wide range of antiretroviral therapy and some

regimens we studied are no longer commonly used. We did not

have the statistical power to limit analyses to just individuals on

NNRTI or ritonavir boosted protease inhibitor based regimens.

While the adherence proportion required to sustain viral

suppression may decline over time, the goal of near perfect

adherence should remain unchanged. While both more potent

therapy and sustained viral suppression may lessen the virologic

consequences of missed doses, improving adherence will increase

the probability of durable and sustained viral suppression [7,41].
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