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Abstract

Introduction: Research and continuous quality improvement in pediatric rehabilita-

tion settings require standardized data and a systematic approach to use these data.

Methods: We systematically examined pediatric data concepts from a pediatric learn-

ing network to determine capacity for capturing gross motor function (GMF) for chil-

dren with Cerebral Palsy (CP) as a demonstration for enabling infrastructure for

research and quality improvement activities of an LHS. We used an iterative

approach to construct phenotype models of GMF from standardized data element

concepts based on case definitions from the Gross Motor Function Classification

System (GMFCS). Data concepts were selected using a theory and expert-informed

process and resulted in the construction of four phenotype models of GMF: an over-

all model and three classes corresponding to deviations in GMF for CP populations.

Results: Sixty five data element concepts were identified for the overall GMF pheno-

type model. The 65 data elements correspond to 20 variables and logic statements

that instantiate membership into one of three clinically meaningful classes of GMF.

Data element concepts and variables are organized into five domains relevant to

modeling GMF: Neurologic Function, Mobility Performance, Activity Performance,

Motor Performance, and Device Use.

Conclusion: Our experience provides an approach for organizations to leverage exis-

ting data for care improvement and research in other conditions. This is the first

consensus-based and theory-driven specification of data elements and logic to sup-

port identification and labeling of GMF in patients for measuring improvements in

care or the impact of new treatments. More research is needed to validate this phe-

notype model and the extent that these data differentiate between classes of GMF

to support various LHS activities.
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1 | BACKGROUND

The re-purposing of patient health data collected during routine

patient care from the electronic health record (EHR) is more common

over the past decade and can advance and support the formulation of

real-world knowledge, a key area of Learning Health Systems (LHS).1-3

Pediatric rehabilitation relies on EHR data to support clinical decision-

making of the interprofessional care team as well as LHS research and

learning efforts to improve care delivery for patients with physical dis-

ability and deviations in functional performance. However, there is a

paucity of systematic approaches to leverage EHR data in pediatric

rehabilitation. Recent strategic plans by the National Institutes of

Health (NIH) and National Institute for Child Health and Human

Development (NICHD) emphasize building better rehabilitation

research and learning infrastructure.4,5 The re-use of EHR data to

characterize the range of patient functional performance through con-

ceptual and digital phenotyping can support the evaluation of new

and existing rehabilitative treatments and is of great value in rehabili-

tation settings. LHS infrastructure is designed to meet such needs

across a broad range of health settings. However, in pediatric Cerebral

Palsy (CP), there is no existing application, or systematic approach, for

using EHR data to model complexity and deviations in physical func-

tioning to support patient cohort identification.

Currently, few reports in the literature use analytic methods to

“phenotype” patient cohorts in pediatric rehabilitation research, and

only limited studies exist that develop or use typologies such as “phe-
notype models” from health data to characterize patient function in

other settings.6-9 A phenotype model contrasts a computable pheno-

type or phenotype algorithm, which are traditionally designed from

EHR data elements and values and have computable rules dictated by

patient data. Although a model is an informative representation of a

system or person, a phenotype model is an informative representation

of important and relevant data concepts that exist in an EHR. Fried

et al6 describe a phenotype model in the context of frailty as a group

of patient characteristics that, if present together, may represent a

patient's level of frailty. Their model included variables for ambulation

quality, reduced strength, unintentional weight loss, and reduced

activity tolerance that were collected on patients aged 65 years or

older in an observational cohort study.6,10 Others have recently used

the frailty phenotype model for a variety of applications, such as to

support the construction of a frailty index based on the accumulation

of deficits documented in an EHR to evaluate the extent of frailty in

geriatric inpatients.6-9 However, the absence of literature on

phenotyping in rehabilitation research makes designing phenotype

algorithms difficult because of the complexity of physical functioning.

Hence, a phenotype model for functional performance is a critical

infrastructure for LHSs in pediatric rehabilitation. Phenotyping

approaches, such as Mo et al's desiderata for computable phenotyping

using EHR data11 and others,12-15 can be adapted to develop pheno-

type models of physical functioning from EHR data sources.

In the present study, a phenotype model structures key data con-

cepts and value sets available in an EHR to characterize theoretical

patient cohorts by deviations in functional performance, irrespective

of the EHR data values. Analytical strategies, including phenotyping

algorithms, to improve the identification of cohorts related to physical

function would be a great benefit to research, quality improvement,

and clinical practice in pediatric rehabilitation settings. Therefore, our

work in developing a phenotype model of gross motor function (GMF)

built on EHR data standards and architectures is more exploratory and

conceptual and serves as a foundation for future phenotyping algo-

rithms to define functional classes broadly from existing data sources.

1.1 | Gross motor function classification system

Many clinicians (eg, orthopedic surgeons, physiatrists, occupational

therapists (OT), physical therapists (PT), and nurse practitioners) use

the Gross Motor Function Classification System (GMFCS) level to

classify physical function during routine care for patients with CP. The

GMFCS is a five-level ordinal classification structure (ie, I, II, III, IV, V)

and a standard screening tool used to classify deviations in the perfor-

mance of GMF activities for children with CP.16,17 Palisano et al17

illustrates these deviations and includes corresponding definitions.

These deviations are frequently used in hip surveillance programs that

focus on monitoring children with CP who may develop a hip dyspla-

sia and subsequent displacement and dislocation.18-23 However, the

GMFCS is not always documented as a discrete data element in the

EHR. Rather, it is often embedded in free-text and dictated clinical

notes using variations in terminologies, making EHR-driven and auto-

mated cohort identification by functional performance levels more

difficult.

GMFCS levels describe performance and participation rather than

CP-related physical impairment and body region involved (spastic

hemiplegia, diplegia, tetraplegia, and quadriplegia).18 The GMFCS level

definitions illustrate current functional status and have predictive

value for a child's future functioning level with CP.16,17,24,25 On one

end, patients at GMFCS I are independent in all mobility activities and

can run, jump, and play without physical limitations, and do not

require the use of external devices. On the other end, patients at

GMFCS V require total physical assistance to perform all activities, are

unable to propel their own wheelchair, and require a manual wheel-

chair that is propelled by family or caregiver. The GMFCS is also

divided into age-ranges that reflect age-related gross motor develop-

ment and mobility skills (birth-2, 2-4, 4-6, 6-12, and 12-18). These

age-range specific GMFCSs address similar underlying concepts in

each case definition but are modified to reflect age-appropriate activi-

ties. Although GMFCS level is considered stable after 2 years

old,16,17,25 children generally achieve major gross motor developmen-

tal milestones by age 5.

1.2 | Pediatric learning networks

In the past decade, federal funding and non-profit organizations

supported establishing LHS in pediatrics by developing several

national clinical data research networks.26-34 PEDSnet, a Patient
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Centered Outcomes Research Institute (PCORI) funded effort, is one

example of a general pediatric care learning network being used to

support LHS activities.29,30 The Shriners Hospitals for Children (SHC)

Health Outcomes Network (SHOnet) is another learning network, one

that is specific to the SHC system.35 SHOnet is the exemplary learning

network for this use-case and adapts the existing pediatric-specific

common data model (CDM) for PEDSnet built based on the Observa-

tional Medical Outcomes Partnership (OMOP) structure.29,30,36,37

SHOnet harmonizes EHR data elements across 20 pediatric specialty

hospitals in the SHC System. In addition to the OMOP concepts

mapped in PEDSnet, the SHOnet CDM includes extensive mappings

to EHR data elements for PT and OT observational discrete data ele-

ments. All SHOnet data elements for observational data and medica-

tions are stored as OMOP and RxNorm concept codes, respectively.

This data infrastructure allows SHOnet to address many important

treatment and research questions. In terms of the GMFCS values in

SHOnet, due to EHR documentation practices at the clinician level,

the GMFCS as a discrete data element has low completeness.35 The

development of a phenotype model of GMF would build capacity to

address questions related to functional outcomes stratified by func-

tional performance levels.

2 | STUDY OBJECTIVES

The overall aim of this study was to develop a methodology to build

conceptual classification models of functional performance phenotypes

from EHR data concepts in pediatric learning networks. Objective 1 of

this aim was to construct a phenotype model of GMF using a theory

and expert-informed approach based on SHOnet CDM discrete data

element concepts and using existing case definitions for each GMFCS

level as gold-standard phenotype definitions. Objective 2 of this aim

was to define three clinically meaningful classes of GMF that were

derived from an expert-panel review of a set of data element concepts

and corresponding value sets available in a pediatric EHR.

3 | MATERIALS AND METHODS

3.1 | Procedure

The use of functional performance data elements to build patient

cohorts for research or quality improvement is challenging because

different clinicians observe and record physical functioning differently

and this is not captured discretely or consistently by providers. Func-

tional status can also represent a challenge because of the range of

states (high functioning to low functioning), and it manifests differ-

ently in different patients. For this research, we designed a stepped

and iterative process based on consensus expert review38 and

adapted several methodologies11-15 to develop a phenotype model

and corresponding subgroups, or classes, of GMF that uses theoretical

data concepts from the SHOnet CDM. Figure 1 provides a flow dia-

gram of our procedure to develop the GMF phenotype model

(GMFPM).

Given this initial effort in what may be a more difficult classifica-

tion, function across multiple subgroups rather than presence or

absence of a condition on binary terms, for this study, the GMFCS

was collapsed from five levels into three distinct classes of GMF. The

three classes are largely consistent with major functioning levels:

GMF Phenotype Class 1 includes GMFCS I and II, those who ambulate

without assistive devices; GMF Phenotype Class 2 corresponds to

GMFCS III, those individuals who use assistive devices including

wheelchairs; GMF Phenotype Class 3 includes GMFCS IV and V,

those individuals who have significant ambulatory limitations. Further-

more, all phenotype models in this study corresponded to patients

aged 6-18 years old because this is the largest age-band of the

GMFCS that overlaps with the school setting and clinical practice (eg,

hip surveillance) guidelines and 6-18-year-olds are expected to have

stable GMFCS levels. The construction of the GMFPM and classes

proceeded through four phases. As this model is foundational and is

not a computable phenotype using real patient data, the validation of

such a model is beyond the scope of this paper.

3.2 | Four phases design process

In Phase 1, two SHOnet clinical domain experts, an OT and PT with

experience treating patients with motor dysfunction, systematically

selected data element concepts and value sets for panel review. These

domain experts reviewed and scrutinized 10 000+ observational dis-

crete data element concepts in the SHOnet CDM to be included for

panel review. The initial set of data concepts were selected based on

existing knowledge of routine care, evaluation, and treatment of

patients with CP by SHC OTs, PTs, and nurses and if the concepts

were thought to align with and deviate across GMFCS levels. For

example, the data concept “Ambulation Level” had six possible values

F IGURE 1 Flow diagram of the Gross Motor Function Phenotype Model development
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of mobility performance that demonstrate significant visible devia-

tions between GMFCS levels and is known to be collected by OT and

PT. Muscle tone and motor control dysfunction are common problems

in patients with CP; therefore, data concepts for “Drooling” relates to
oral motor control and concepts for “Elbow Tone” and “Ankle Tone”
are known to deviate between GMFCS levels. Those not selected

included data concepts for manual muscle testing of specific muscles

and concepts on lab values that may be indeterminate of GMFCS

levels. The initial set comprised 540 data element concepts. Domain

experts then convened to review the initial selection of data concepts

and removed those that were redundant or extraneous to functional

performance. This resulted in a final selection of 89 data element

concepts.

In Phase 2, the final set of data element concepts were consoli-

dated into 31 unique and derived variables for use in the expert-panel

review exercise to assign and rate variables. A unique variable corre-

sponds to one data element concept. A derived variable corresponds

to many data element concepts that could be collapsed into one vari-

able due to similarity in concept and value set. This also simplified the

expert-review process. For example, multiple data element concepts

correspond to different types of assistive devices a patient may use

with the same yes/no value set, so the concepts were combined to

form the derived variable “Assistive Devices Used.” This contrasts the
“Ambulation Level” variable, which is a single data element concept

that maintains a standard 6-level value set spanning “Independent” to
“Dependent” performance. The 31 variables included 14 unique vari-

ables, 17 derived variables, and corresponding value sets. Variables

and GMF classes formed a two-step grid-like exercise for expert-panel

review and completion.

In Phase 3, we convened a panel of four new domain experts to

support the design of the overall phenotype model and classes. The

panel included four licensed clinicians and mobility researchers (three

PTs and one OT) from three different SHCs with extensive knowledge

of CP and an average of over 20 years of clinical experience. Panelists

independently completed an evaluation exercise for the 31 variables

by each GMF class. Figures 2 and 3 provide examples of the two-step

evaluation exercise (denoted EX1 and EX2). In EX1, panelists exam-

ined the extent that each of the 31 variables differentiated between

the three GMF classes for patients 6 to 18 years old. For each GMF

class, panelists assigned available performance values to each of the

31 variables, therefore each panelist completed 93 distinct classifica-

tions. If warranted, panelists assigned multiple values for each vari-

able. In EX2, panelists rated their perception of how well variables

distinguished between the three GMF classes by applying a 5-point

rating scale (1- does not distinguish at all, 3 - distinguishes moderately,

5 - distinguishes very well) to each variable. At the end of the exercise,

panelists recommended additional variables they felt may distinguish

between classes.

In Phase 4, we stratified the overall phenotype model by the

three GMF classes based on the deviations in how panelists allocated

performance values for all variables in EX1. The deviations in assigned

values informed the construction of logic statements and rules for var-

iable value sets to instantiate membership to one of the three GMF

classes. Each statement contains human-readable text and includes a

stem, rule, and qualifier that is stratified by value sets for each vari-

able. Two PhD trained, licensed PTs, on the SHOnet team with infor-

matics and clinical domain expertise reviewed the structured rules,

value assignments, and logical operators for variables in each GMF

class for content validity.

3.3 | Data analysis

The expert panel responses to the two-step evaluation exercise were

analyzed in three-phases. First, we reviewed the values in EX1 that

individual panelists assigned to the 31 variables across each GMF

class and assigned an overall value per GMF class based on one of

three results: (a) One variable value received panel consensus. (b) If

panelists assigned multiple values to a variable or there was a tie in

values, then both values comprised the final value for a GMF class

F IGURE 2 Example from EX1: Process for applying performance values for variables by each GMF class
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(the inclusion of multiple values accounts for deviation in patient per-

formance within a GMF class). (c) If the result in (a) or (b) did not

occur, then the respective GMF classes included all values assigned by

panelists.

Next, we analyzed the panel ratings in EX2 regarding the extent

to which variables differentiated between the three GMF classes. The

variables were analyzed for one of two criteria to be included in all

GMF classes: (a) if a consensus of panelists rated the variable ≥3, or

(b) if the panel responses for a variable were split, for example, if the

variable received two ratings of ≤2 and two ratings of ≥3. Further-

more, the models did not include variables that received a consensus

rating of ≤2.

In the final phase, we conducted a quality control check by ana-

lyzing the conformance between how panelists assigned values for

each GMF class and how panelists rated the differentiation between

GMF classes. Instances of conformance occurred when assigned vari-

able values deviated across all GMF classes in EX1 and panelists rated

the variable differentiation ≥3 in EX2. If the responses did not con-

form, then the variable was not included in the model. Microsoft Excel

was used to complete all analyses.

4 | RESULTS

The overall GMFPM and three GMF classes included 20 variables that

correspond to 65 performance-related data elements that were iden-

tified by the expert panel. Table 1 provides a list of the 20 variables

and 65 data elements and value sets in the overall phenotype model.

Figure 4 provides a breakdown of the results for the overall pheno-

type model. The panel initially rated 23 of 31 variables to at least

moderately (≥3) differentiate between GMF Phenotype classes; there-

fore, they agreed with approximately 73% of data element concepts

selected by the SHOnet team. After the final analysis, three variables

were added to existing variables to reduce negation in verbiage and

redundancy and resulted in a total of 20 variables.

Variables were grouped into five performance-related domains

(Table 1) to organize and present the data concepts based on

characteristics in the GMFCS definitions and components of Body

Structures and Function, Activity, and Participation in the World

Health Organization International Classification of Functioning, Dis-

ability and Health.39 The five domains include: Neurologic Function,

Mobility Performance, Activity Performance, Motor Performance, and

Device Use. In post-exercise discussions, two panelists recommended

additional data elements for gastrointestinal and anti-epileptic/muscle

relaxant medications because these medication types may help distin-

guish between high and low GMFCS levels. These corresponding

RxNorm data concepts were not added to the model in this study.

Each GMF class comprised human readable logic statements and

rules for each variable to instantiate membership to that respective

GMF class. As an exemplar, Table 2 provides a matrix view of the

Activity Performance domain and includes rules, variables, data ele-

ment concepts, and value sets stratified by each GMF class. Figure 5

includes an example logic statement for the “Ambulation Level” vari-

able to differentiate between GMF classes. The structured rules and

logic statements for variables in each GMF class are included as Data

S1. These statements include OMOP custom concept codes for data

elements and value sets to encourage generalizability with other pedi-

atric health system data warehouses, networks, and registries built

using OMOP. The compilation of the structured rules provides an

opportunity to study more granular deviations in physical functioning

between GMFCS levels.

4.1 | Analysis of conformance

The analysis of conformance revealed inconsistencies for two vari-

ables. The first variable was “General Lower Extremity Muscle Tone”.
Although panelists perceived that this variable moderately differenti-

ated (≥3) between GMF classes, the panelists all assigned the same

performance value to each GMF class. Due to the inconsistency, this

variable was not included in the overall model. This may have

occurred due to the decreased granularity in the value set for this var-

iable. Fortunately, the panel also selected two other lower extremity

derived variables that were joint-specific and had more granular value

F IGURE 3 Example from
EX2: Process for rating (on 5-level
scale) how well each variable
differentiates between GMF
classes
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sets: “Knee Tone” and “Ankle Tone.” These variables included both

flexor and extensor tone data elements and are scored using the Mod-

ified Ashworth Scale (MAS). The MAS is a standardized 6-level ordinal

scale (ie, 0, 1, +1, 2, 3, 4) of muscle tone and better deviates between

GMF classes compared to variables for presence of general tone with

yes/no value sets.

The second inconsistency occurred for the variable “Elbow Tone.”
On the 5-level rating of differentiation between GMF classes, two

panelists rated “Elbow Tone” ≤2, one panelist declined to rate the var-

iable, and another rated the variable a 3. The overall performance

values applied to “Elbow Tone” using the MAS followed a clear grada-

tion across each GMF class [(MAS scores: GMF Class 1:0,1,1+; GMF

TABLE 1 Variables, data element concepts and value sets for each gross motor function domain

Domain Variables Data elements Value set

Motor

Performance

Drooling Drooling; Drooling oral motor function Yes/No

Sitting Balance Sitting balance Intact; Impaired

Knee Tone Knee extensor tone; Knee flexor tone 0, 1, 1.5, 2, 3, 4

Ankle Tone Ankle dorsiflexor tone; Plantar flexor tone 0, 1, 1.5, 2, 3, 4

Elbow Tone Elbow Extensor Tone; Elbow flexor tone 0, 1, 1.5, 2, 3, 4

Neck Strength Neck Strength WFL; Limited

Neurologic

Function

Cognitive Concerns Cognitive deficits; Speech deficit Yes/No

Communication

Concerns

Language delay; Language impairment; Speech

delay; Speech impairment

Yes/No

Devices Used Assistive Devices Used Walker; Cane; Crutches Yes/No

Mobility Device Used Wheelchair independently; Manual wheelchair;

Unable to propel own wheelchair; Power

wheelchair

Yes/No

Ambulation Device

Used

Gait trainer; Swivel walker; Walker pickup;

Walker reverse; Walker wheeled; Crutches

forearm; Cane, quad; Cane, single point; Cane,

tripod; Crutches axillary; Stander, None

Yes/No

Stair Railings Stair Railings Bilateral; Rail on left going up; Rail on right

going up; None

Activity

Performance

Current Home

Treatments

Respiratory support; Trach care; Tube feeding;

Urinary catheterization

Yes/No

Fine Motor Concerns Dressing; Feeding; Grooming; Bathing Yes/No

Toileting Habits Toilet trained; Diaper at night Yes/No

Feeding Ability Feeds self; Complete independence; Modified

independence; Supervision; Minimal

assistance; Moderate Assistance; Maximal

assistance; No oral feedings; Total assistance

Yes/No

Mobility

Performance

Gross Motor Concerns Ambulatory with assistance; Assistive devices

needed; Household ambulation; Tires easily;

Trips/falls frequently; Unable to sit

independently; Non-ambulatory

Yes/No

Ambulation Level Ambulation Level Independent; Stand-by assistance; Minimal

assistance; Moderate assistance; Maximum

assistance; Dependent

Stairs Assistance Stairs Assistance Complete independence; Standby assistance;

Contact guard assistance; Minimal assistance;

Moderate assistance; Maximal assistance;

Dependent

Primary Mobility Primary Mobility Independent wheelchair –manual; Independent

wheelchair –power; Ambulation with device;

Ambulation without device; Dependent

wheelchair mobility; Other
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F IGURE 4 Results of
evaluation of variables in the
Gross Motor Function Phenotype
Model

TABLE 2 Example: activity performance domain

Variable Data Element Concepts GMF Class 1 GMF Class 2 GMF Class 3

Current Home

Treatments

Respiratory support (2500010257) No treatments No treatments Any one treatment

Trach care (2500010258)

Tube feeding (2500010259)

Urinary catheterization

(2500010260)

Fine Motor

Concerns

Dressing (2500010181) No fine motor

concerns

Concerns with any

one fine motor

activity

More than one fine motor concern

Feeding (2500010178)

Grooming (2500010182)

Bathing (2500010180)

Toileting Habits Toilet trained (2500000137) Toilet Trained Toilet trained or

diaper/assistance

Diaper at night, assistance needed

Diaper at night (2500000135)

Feeding Ability Feeds self (2500000144) Feeds self,

Independence

Feeds self,

Independence,

Supervision,

Minimum to

Maximum

Assistance

Minimum to Total Assist, or No Oral

Feedings

Complete Independence

(2500000143)

Modified independence

(2500000148)

Supervision (2500000150)

Minimal Assistance (2500000146)

Moderate Assistance (2500000147)

Maximal Assistance (2500000145)

No oral feedings (2500000149)

Total assistance (2500000151)
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Class 2:1,1+, 2,3; GMF Class 3:2,3,4)]. At the discretion of SHOnet

domain experts, “Elbow Tone” was included in all models.

5 | DISCUSSION

In this study, we developed a standards-based, expert-informed

GMFPM that also offers flexibility across three clinically meaningful

classes aligned with the GMFCS. This is the first instance where CDM

data concepts are organized into a phenotype model of functional

performance specifically for pediatric rehabilitation. The findings illus-

trate that GMF for initial cohort identification activities in pediatric

rehabilitation can be represented through phenotypes of discrete data

elements within standardized database models used widely in CDMs

for learning networks, data registries, and data warehouses. This study

also underscores the complexity of modeling functional performance

using standardized data elements and the rigor necessary to develop

similar typologies of functional performance in the future; therefore,

our methods should be informative, nonetheless.

The work supports future infrastructure by exploring what data

are available that fit into a conceptual model (GMFPM) that the CP

community has already decided are important. These data element

concepts can later be leveraged for different applications, including

the development of a phenotype algorithm that can be deployed and

validated on existing data for a given purpose. Our phenotype model

will undergo additional study and validation to determine its perfor-

mance in differentiating between GMF classes. In addition, this phe-

notype model serves as a measurement instrument to determine the

documentation and value of these EHR data elements.

The rigorous approach to construct the phenotype model and

classes was contextualized by the desiderata for computable

phenotyping and information modeling work by Westra et al.11,38

Westra et al38 developed an information model of structured flo-

wsheet data elements to support secondary data use in health

systems research. However, their work uses a data-driven consensus

process informed by the available structured data values across a large

hospital system. This contrasts our study which used an initial theory-

driven approach to compile data element concepts that support

semantic interoperability, followed by an expert-informed consensus-

based review and analysis of conformance.38 In addition, Morley

et al12 demonstrate the use of expert-panel review for developing

phenotyping algorithms; however, our focus on physical function and

a multi-step rating process by the panel highlights significant differ-

ences between phenotyping algorithms and developing conceptual

phenotype models using CDM data concepts. Much like Westra, the

design of this phenotype model helps simplify the representation of

CDM data concepts for specific research and evaluation purposes that

use EHR data.38 However, though pragmatic, the drawback in using

the data element values that providers document in the EHR to con-

struct typologies such as ours is that these data perpetuate bias from

clinical documentation practices and the selection of data elements

providers use for clinical documentation.40

The methods described in this paper support the theory-based

selection of data elements and corresponding interface terminologies

to design the logic statements and rules capable of classifying cohorts

of patients by deviations in GMF. The underlying rationales for pro-

vider documentation are unknown, but discrete data are likely docu-

mented for billing and administrative purposes, while diagnostic

reasoning, including GMFCS levels and other information used to

form these clinical phenotypes, is included in narrative documenta-

tion. Nevertheless, our findings demonstrate the inherent value of

designing function-based mechanisms around discrete data elements

readily available in an EHR and learning network and emphasizes the

need for improved capture of meaningful and usable clinical data. The

benefit of using a theory-driven, expert-informed approach is that the

typologies are not constrained by what data are collected. Instead, the

typologies may be interoperable with other standards-based pediatric

data resources and foregrounds what data should be collected by

F IGURE 5 Logic statement
and rule for Ambulation Level
variable in GMF Class 2
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clinicians and systems to classify clinically sensible classes of GMF.

Moreover, the iterative approach we used demonstrates the utility of

stretching existing methodologies into developing “functional” pheno-
types for pediatric rehabilitation.

This expert-informed GMFPM may support future predictive ana-

lytics of GMFCS for research; however, this study has strengths and

limitations. The primary limitation of this study is its generalizability.

Since SHC is a specialty pediatric healthcare system, the documenta-

tion of many of these data elements and their inclusion in SHOnet

may be different from other systems. Other pediatric healthcare sys-

tems that manage general pediatric disorders may not prioritize, docu-

ment, or have fields in the EHR for many of the data elements in the

phenotype model.

In terms of strengths, our study devised and applied a founda-

tional methodological approach to phenotyping that could very easily

be adapted to any other use cases, particularly in the field of medical

rehabilitation. Evidence demonstrates that the re-use of EHR data

improves patient cohort identification and may be essential to support

pragmatic prospective cohort studies with the economy of

scale.6-9,41-44 However, the discrepancy between derived definitions

and the performance and use of phenotypes in practice points to a

need to improve the identification and agreement of clinical charac-

teristics in EHR-based phenotypes.41 The methodological approach

and use of data concepts from a CDM described in this study helps fill

this gap. A significant strength of the study was that it used data ele-

ment concepts based on a standardized terminology of medical con-

cepts (ie, OMOP). OMOP includes widely accepted reference

terminology standards and publicly available concept codes which fur-

ther supports opportunities for generalized use. Another strength of

this study was the investigator blinding to completeness or availability

of patient EHR data in the initial review and selection process because

this knowledge could have biased the theory-based selection of data

element concepts. Lastly, panelists all worked at three regionally dif-

ferent SHCs; therefore, the regional variation and priorities in practice

may mitigate potential biases in their ratings.

The GMFPM, although not operational in an EHR, builds infra-

structure from a CDM to identify pediatric patient cohorts by distinct

categories of GMF for research and quality improvement. Our findings

can also inform other multi-site research and learning networks that

support pediatric populations (ie, PEDSnet, ImproveCareNow) of the

opportunities afforded by building out their data elements for mea-

surement infrastructure to conduct critical LHS research in rehabilita-

tion. Future work should analyze data quality dimensions of the

phenotype model, the extent that the typologies can validly differenti-

ate between GMF classes, and its utility in applications such as CP hip

surveillance efforts. More use-cases of phenotypes for characterizing

functional performance and care processes are needed to build a com-

putable measurement library with economy of scale and scope for

pediatric rehabilitation.
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