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Objective: Focal epilepsy is the most common subtype of epilepsies in which the

influence of underlying genetic factors is emerging but remains largely uncharacterized.

The purpose of this study is to determine the contribution of currently known

disease-causing genes in a large cohort (n= 593) of common focal non-lesional epilepsy

patients.

Methods: The customized focal epilepsy gene panel (21 genes) was based on multiplex

polymerase chain reaction (PCR) and sequenced by Illumina MiSeq platform.

Results: Eleven variants (1.85%) were considered as pathogenic or likely pathogenic,

including seven novel mutations. There were three SCN1A (p.Leu890Pro, p.Arg1636Ter,

and p.Met1714Val), three PRRT2 (two p.Arg217Profs∗8 and p.Leu298Pro), twoCHRNA4

(p.Ser284Leu, p.Ile321Asn), one DEPDC5 (p.Val516Ter), one PCDH19 (p.Asp233Asn),

and one SLC2A1 (p.Ser414Ter) variants. Additionally, 16 other rare variants were

classified as unknown significance due to inconsistent phenotype or lack of segregation

data.

Conclusion: Currently known focal epilepsy genes only explained a very small subset

of focal epilepsy patients. This indicates that the underlying genetic architecture of focal

epilepsies is very heterogeneous and more novel genes are likely to be discovered. Our

study highlights the usefulness, challenges and limitations of using the multi-gene panel

as a diagnostic test in routine clinical practice in patients with focal epilepsy.

Keywords: focal epilepsy, multigene panel, targeted resequencing, NGS, multiplex PCR

INTRODUCTION

Focal epilepsy constitutes for about 60% of all epilepsies, which is the commonest phenotypic
group of epilepsies (1). The etiology of more than half of the focal epilepsies remains uncertain
despite high-quality neuroimaging studies (2–4). Some of these unsolved focal epilepsy patients
may have a genetic etiology. Recently, patients with focal structural epilepsies were also found to
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have a genetic cause, such as mTOR pathway genes mutations
in focal cortical dysplasia (5, 6). Several disease-causing genes
were identified in patients presented with focal seizures as part
of their phenotypic spectrums through studies of large families
(7–12). For examples, LGI1 in familial lateral temporal epilepsies
(13), DEPDC5 in familial focal epilepsy with various foci (9, 10),
SCN1A in genetic epilepsy with febrile seizure plus (GEFS+) (14,
15) and CHRNA2, CHRNAB2, CHRNA4, KCNT1 in sleep related
hypermotor epilepsies (16–19). A better understanding of the
contribution of these genes in common focal epilepsies patients
can be helpful in guiding appropriate tests and treatments in
routine clinical care.

Recent advances in genomic medicine have significantly
unveiled the influence of genetic factors in epilepsy. The
targeted gene panel approach has been successfully used in
specific syndromes and severe epilepsies, such as epileptic
encephalopathies and familial epilepsies.(20–27) Hitherto, only
two studies have addressed focal epilepsy specifically using
targeted gene panel or whole exome sequencing (WES) with
targeted gene analysis (28, 29). Here, we developed a more
comprehensive focal epilepsy gene panel, with 21 genes, using
multiplex polymerase chain reaction (PCR) based technique
followed by massively parallel sequencing to study a large cohort
of patients with focal epilepsies. We aim to better understand the
contribution of currently known disease-causing genes to focal
epilepsy and the utility of multi-gene panel in real-world clinical
setting.

METHODS

Patients and Phenotyping
Patients with focal epilepsies were recruited for the
Department of Neurology, Kaohsiung Chang Gung Memorial
Hospital, Taiwan and the Neurology clinic, University of
Malaya Medical Center, Malaysia. The clinical information,
electroencephalography (EEG) and neuroimaging results were
obtained from a direct interview or review of medical records.
Most (506/593, 85.3%) of them underwent 3T or 1.5T brain
MRI, the remaining 87 had brain CT scans. Patients who had
focal structural epilepsy due to stroke, trauma, brain tumor, or
focal cortical dysplasia were excluded. Patients with isolated
generalized epilepsies were also excluded, but those who have
both generalized and focal seizures were still included because
some of the genes included in the panel were known to have
both presentations. Positive family history was defined as the
presence of epilepsy or seizures in the first or second-degree
relatives. All of them were recruited regardless of family history
and none had received prior genetic testing. All available family
members were included for segregation analysis. This study was
approved by the local human research ethics committees and
written consents were obtained from all subjects. In minors and
those with intellectual disabilities, consents were obtained from
their legal guardian.

Focal Epilepsy Gene Panel
Venous blood was obtained and genomic DNA was
extracted from peripheral blood leukocytes using QIAGEN

DNA extraction kits (Qiagen, Germany), according to the
manufacturer instructions (30). A customized focal epilepsy gene
panel was used, including 21 genes: SCN1A, SCN1B, SCN2A,
SCN9A, DEPDC5, GRIN2A, GRIN2B, PRRT2, SLC2A1, PCDH19,
KCNT1, KCNQ2, KCNQ3, KCNA2, CHRNA4, CHRNB2,
CHRNA2, LGI1, GABRG2, HCN1, CHD2. All coding exons and
at least 10 base pair (bp) flanking sequences of the intron/exon
boundaries were amplified using targeted specific primers,
with a total 69,787 bp region. The amplicon sizes ranged from
204 to 432 bp with an average of 315 bp. Universal primer
sequences, 5′-ACACTGACGACATGGTTCTACA-3′ and 5′-
TACGGTAGCAGAGACTTGGTCT-3′ were added to the 5’ end
of all target-specific forward and reverse primers, respectively.
Primers were pooled to generate six-plex primer pools per PCR
with a final concentration of 1 uM. Libraries were prepared
by using the Fluidigm Access 48.48 Array platform (Fluidigm,
South San Francisco, California). Harvested amplicon pools
underwent another PCR step to barcode the products according
to the manufacturer’s protocol. Barcoded PCR products were
pooled and submitted to an Illumina MiSeq using 2 x 300 bp
paired-end runs.

Bioinformatics Analysis
Raw read data was processed with FastQC, FastQ groomer,
Trimmomatics to remove primer sequences, and then mapped
to human reference genome (version GRCh37) with Burrows-
Wheeler Aligner (BWA-MEM, version 0.7.15, http://bio-bwa.
sourceforge.net/) (31, 32). The aligned BAM file was processed
with SAM tool (http://www.htslib.org/) and Picard (http://
picard.sourceforge.net/) to remove low quality mapped reads
as well as duplicate reads. Indel realignment was performed
using GATK tool as recommended by the Broad Institute GATK
Best Practice (33, 34). Single nucleotide variants and small
indels were called using FreeBayes (35). The read depth and
coverage of each BAM files were calculated using BEDtools
(36). Variants that did not adhere to the following criteria
were excluded from further analysis: mapping quality<30,
base quality<20, coverage<20, variants with strand bias and
clustered variants. The variant calling was performed using the
Galaxy platform (http://usegalaxy.org). Variants were annotated
with wANNOVAR (http://wannovar.wglab.org). Only nonsense,
nonsynonymous, splice-site and frameshift variants were further
evaluated. Variants presented in the Thousand Genome Project
(TGP, http://www.internationalgenome.org/), the Exome Variant
Server (EVS, http://evs.gs.washington.edu/EVS/), more than 1
hit in the Board Institute Exome Aggregation Consortium
(ExAC, http://exac.broadinstitute.org), and more than five
hits in the Genome Aggregation Database (gnomAD, http://
gnomad.broadinstitute.org) were excluded (37). Four prediction
programs, including SIFT (v1.03) (38), PolyPhen-2 (v2.2.2
build r394) (39), MutationTaster 2 (40), and Combined
Annotation Dependent Depletion (CADD v1.2)(41) were used
to prioritize variants. The cutoff value of CADD was set at
20. Only variants predicted probably damaging by more than
three in silico programs were further validated by Sanger
sequencing.
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Criteria for Pathogenicity of Filtered
Variants
The confirmed rare variants were classified into pathogenic,
likely pathogenic, and variants of unknown significance (VUS)
modified from previous guidelines (42, 43). Variants presented in
the disease databases (HGMD, http://www.hgmd.org/; ClinVar,
https://www.ncbi.nlm.nih.gov/clinvar/; LOVD, http://www.lovd.
nl/) were classified as being known pathogenic. Null variants
(including frameshift mutations, nonsense mutations, obligatory
splicing sites mutations, and mutations affecting the initial
codon) identified in known epilepsy genes, where loss of function
is a known disease mechanism, were also considered to be
pathogenic.

Ultra-rare missense variants (not present in TGP, EVS, ≤1
in ExAc and ≤5 in gnomAD) predicted to be deleterious or
damaging by more than three of the four prediction programs
were classified as likely pathogenic if their phenotypes correlate
with the reported literature. If available, functional data and
segregation analysis were taken into consideration. Variants
that passed in silico prediction but the patient’s phenotype
was not previously associated with the gene were classified as
VUS.

Statistical Analysis
Fisher exact test was used for comparison of categorical data. The
statistical analysis was performed with R software, version 3.2.1
(44).

RESULTS

Patient Characteristics
Five hundred and ninety-three patients, including 298 (50.3%)
Taiwanese and 295 (49.7%) Malaysian patients, were recruited
and underwent customized focal epilepsy gene panel screening.
Among them, 315 (53.1%) had temporal lobe epilepsies,
153 (25.8%) frontal lobe epilepsies, 26 (4.4%) occipital lobe
epilepsies, 11 parietal lobe epilepsies (1.8%), 13 (2.2%) benign
childhood epilepsy with centrotemporal spikes, and 20 (3.4%)
had other syndromes with focal seizures, including 12 Dravet
syndrome, 5 Lennox-Gastaut syndrome, 2 epilepsy aphasia
spectrum disorders and one genetic epilepsy with febrile
seizure plus (GEFS+). The localization was undefined in 55
(9.3%) patients. There were 99 (16.7%) patients had a positive
family history and the remaining 494 (83.3%) were sporadic
cases.

Customized Focal Gene Panel Study
Total 593 patients were screened with the focal epilepsy gene
panel with a mean read depth of 142.4x, and 83.8% coverage of
the target region for at least 20 reads.

A total of 27 variants were confirmed by Sanger sequencing
in 25 individuals (4.2%), where two individuals had two
different variants. Eleven variants (1.85%) were considered as
pathogenic or likely pathogenic, including 4 reported and 7
novel mutations (Table 1); the remaining 16 variants were
classified as VUS (Supplemental Table 1). Pathogenic and
likely pathogenic variants were found in SCN1A (3 patients),
PRRT2 (3 patients), CHRNA4 (2 patients), followed by one

patient each in DEPDC5, PCDH19, and SLC2A1 (Table 1). The
pedigrees, clinical phenotypes, and characteristics of patients
with pathogenic or likely pathogenic variants were summarized
in Figure 1, Table 2 and detailed in below. The clinical
phenotypes, and characteristics of patients with variants of
unknown significance were summarized in Supplemental Table
2. Pathogenic or likely pathogenic variants were found in
4 out of 99 focal epilepsy patients with a positive family
history (4%) compared to 7 out of 494 sporadic focal epilepsy
patients (1.4%, p = 0.094). We further divided our cohort
into patients with specific syndromes and focal epilepsies with
intellectual disabilities vs. “non-syndromic” focal epilepsies,
the diagnostic rate was higher 12.8% (5/39) in syndromic/ID
group than in “non-syndromic” group, which was 1.26%
(7/554).

SCN1A
Three variant were found in SCN1A, including two patients
with Dravet syndromes (p.Leu890Pro, p.Arg1636Ter) and one
family with genetic epilepsy with febrile seizure plus (GEFS+)
(p.Met1714Val, Figure 1). The missense mutation p.Leu890Pro
is de novo and located in the pore-forming transmembrane S5
domain, while the inherited missense mutation in GEFS+ family
(p.Met1714Val) is located in the pore-forming loop between
S5 and S6 domain. Both are novel mutations and located in
the hot-spot for disease-related missense mutations (45). The
p.Met1714Val missense variant was also found in the affected
son and proband’s mother who had focal seizures in old age
(Figure 1).

The patient with de novo p.Leu890Pro mutation had more
than 10 seizures a month on Carbamazepine, Vigabatrin and
Levetiracetam before the genetic diagnosis. His medication
was changed to Topiramate, Levetiracetam and Clobazam
in the following months after receiving the results and his
seizure frequency drastically reduced to only 1-2 seizure a
month.

PRRT2
Three variants were found in PRRT2 gene, including two hotspot
p.Arg217Profs∗8 frameshift mutations that were inherited in the
families with benign infantile epilepsies (Figure 1). The third
missense variant p.Leu298Pro is novel and found in a patient
with both focal epilepsy and paroxysmal kinesigenic dyskinesia.
In silico programs predicted this missense mutation to be
deleterious/damaging/disease causing. The available unaffected
sister did not have the mutation, the affected brother had
paroxysmal kinesigenic dyskinesia and epilepsy but was not
available for testing. Functional study of this variant showed
lack of membrane localization of the mutant protein, similar
to the hotspot truncating mutation p.Arg217Profs∗8 (Tsai
et al., under review). Therefore, the variant is classified as
pathogenic based on consistent phenotype and functional
data.

CHRNA4
Two missense variants (p.Ser284Leu, p.Ile321Asn) were
found in CHRNA4, both located in the transmembrane
domain; the novel missense variant p.Ile321Asn
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FIGURE 1 | The pedigrees of pathogenic and likely pathogenic variants identified by targeted multigene panel.

is predicted to be disease-causing by all in silico
programs. Both patients had nocturnal frontal lobe
epilepsy.

DEPDC5
The pathogenic nonsense mutation p.Val516Ter in DEPDC5
is not presented in any control databases and is predicted to
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cause nonsense-mediated decay. Therefore, the mutation is likely
to cause haploinsufficiency of the DEPDC5 protein, consistent
with the currently known molecular mechanism. Clinically,
the patient had focal epilepsy, consistent with the DEPDC5
phenotypic spectrum.

PCDH19
The patient had febrile seizures at 9 months old and later
developed fever sensitive seizure clusters and intellectual
disability. The novel missense variant p.Asp233Asn is located
in the extracellular domain; the amino acid forms part of
the calcium binding pocket that is critical to the homophilic
binding function of PCDH19. The variant is classified as de novo
pathogenic because both unaffected parents did not carry the
mutation.

SLC2A1
The patient had early onset focal seizures, intellectual disability,
and low CSF glucose level, and clinically suspected GLUT1
deficiency syndrome. The novel nonsense variant p.Ser414Ter
is located in the transmembrane domain and both unaffected
parents did not have the mutation, thus the variant is classified
as de novo pathogenic. The patient received ketogenic diet and
responded partially to the therapy.

DISCUSSION

The real-world utility and experience of the multi-gene panel
in focal epilepsies, the most common form of epilepsies,
is very limited (28, 29). We screened a large cohort of
focal epilepsy patients and found that 1.85% (11/594) can
be attributed to a pathogenic or likely pathogenic variant.
Our study highlights the usefulness but also challenges and
limitations of using the multi-gene panel in focal epilepsies. The
determination of the significance of identified genetic variants
is complicated in real-world situation, which requires correct
correlation between phenotypes and genotypes. It becomes more
difficult when the phenotypes are not previously associated
with the genes where variants are identified. It requires more
studies to explore the boundaries of the phenotypic spectrum
associated with each epilepsy gene. Some of the VUS may
be reclassified as pathogenic or likely pathogenic when the
phenotype-genotype relationship redefined. Moreover, we noted
lack of segregation data is a common obstacle due to limited
availability of the family members in routine clinical setting,
which makes the determination of the pathogenicity of variants
more difficult.

Previous studies using multi-gene panel in epilepsy with
various genes (n = 35–327) have generated a diagnostic yield
ranged from 10 to 48.5% (11, 21, 23–27, 32). Those studies
selected patients with epileptic encephalopathy (21, 27), epileptic
syndrome with suspected genetic etiology (12, 21, 32) or enriched
for positive family history (21). The higher diagnostic yield was
likely due to early onset epilepsies and severe/specific phenotypes
such as epileptic encephalopathies (21), which are known to have
a stronger genetic underpinning.

Our results are consistent with those reported by Hildebrand
et. al., suggesting that currently known focal epilepsy genes
only explain a small proportion (0.8–1.85%) of all focal epilepsy
patients (29). After excluding patients with clinical suspected
specific epilepsy syndromes, such as Dravet syndrome, GEFS+,
EFMR and patients with intellectual disability, the diagnostic
rate for “garden-variety” focal epilepsies was 1.26%. The reason
for the slightly higher diagnostic rate in our study could be
explained by the fact that most of our patients had not previously
received genetic testing and 10 more genes were included in our
panel (29). Interestingly, a recent study used WES based targeted
gene analysis of 64 genes on 40 consecutive patients with focal
epilepsies with suspected genetic etiology. (28) They reported a
much higher positive rate at 12.5% (5/40), three variants were
found when limiting to the 21 genes we studied (3/40, 7.5%).
The higher yield rate could be explained by the presence of
a positive family history of this study. In our study, patients
with a positive family history also have a higher diagnostic rate
(4% vs. 1.4%) although not statistically significant. Moreover,
we did not include copy number variation (CNV), in-frame
indels and splice-region variants that are not on the canonical
site in this study, which may underestimate the diagnostic
rate.

Taken together, our study found a multi-gene panel provides
genetic diagnosis of a relatively small percentage of real-
world patients with focal epilepsies. Our data indicate that
the underlying genetic architecture of focal epilepsies is very
heterogeneous and more genes await discovery. Supporting this,
a recent study using WES reported positive findings in 38%
of patients with focal epilepsy, including discovery of novel
genes in 7% (46). The positive rate is expected to increase in
the future when more causative genes are identified in focal
epilepsy. Obtaining a correct genetic diagnosis is important as
it may alter the clinical decision on epilepsy surgery, selection
of antiepileptic drugs and reproductive counseling (28). In
routine clinical care, careful selection of patients with specific
phenotypes/syndromes or positive family histories, adopting a
broader panel with more genes, or using WES or even whole
genome sequencing are likely to further increase the diagnostic
yield.
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