
LETTER

doi:10.1002/evl3.202

Plasticity via feedback reduces the cost of
developmental instability
Remi Matthey-Doret,1,2,3,4 Jeremy A. Draghi,2,3 and Michael C. Whitlock2

1Institute of Ecology and Evolution, Universität Bern, Bern 3012, Switzerland
2Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
3Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061

4E-mail: remi.matthey-doret@iee.unibe.ch

Received June 17, 2020

Accepted October 10, 2020

Costs of plasticity are thought to have important physiological and evolutionary consequences. A commonly predicted cost to plas-

ticity is that plastic genotypes are likely to suffer from developmental instability. Adaptive plasticity requires that the developing

organism can in some way sense what environment it is in or how well it is performing in that environment. These two informa-

tion pathways—an “environmental signal” or a “performance signal” that indicates how well a developing phenotype matches

the optimum in the current environment—can differ in their consequences for the organism and its evolution. Here, we consider

how developmental instability might emerge as a side-effect of these two distinct mechanisms. Because a performance cue allows

a regulatory feedback loop connecting a trait to a feedback signal, we hypothesized that plastic genotypes using a performance

signal would be more developmentally robust compared to those using a purely environmental signal. Using a numerical model of

a network of gene interactions, we show that plasticity comes at a cost of developmental instability when the plastic response is

mediated via an environmental signal, but not when it is mediated via a performance signal. We also show that a performance sig-

nal mechanism can evolve even in a constant environment, leading to genotypes preadapted for plasticity to novel environments

even in populations without a history of environmental heterogeneity.
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Impact Summary
Phenotypic plasticity is the widespread property of living

organisms of changing their morphology, physiology, or

behavior in response to their environment. It is at the core

of how organisms learn, interact with their environment, and

how they might adapt to their environment during their life-

time. Although we have a good understanding of the selection

pressures that can promote the evolution of plasticity, we

have little understanding of the developmental mechanisms of

plasticity and how different mechanisms affect the evolution

of plasticity. In this article, we investigate two mechanisms

by which a plastic response can be implemented; by sensing

the state of the environment via an environmental signal or by

sensing how well the organism is performing in a specific en-

vironment via a performance signal. We performed computer

simulations of an evolving population by simulating the devel-

opment of each individual with a network of gene interaction.

We show that these different mechanisms for plasticity lead

to different developmental consequences. More specifically,

we show that the development tends to be more stochastic

when sensing an environmental signal than when sensing

a performance signal. The reason is that the performance

signal acts as a negative feedback loop correcting undesired

stochasticity in the development. The idea that a plastic geno-

type is more noisy than a nonplastic genotype is a commonly

mentioned constraint to evolving plasticity. We show that this

constraint depends upon the developmental mechanism for

plasticity. Considering such a mechanistic model of develop-

mental plasticity also allowed us to identify a way by which

570
© 2020 The Authors. Evolution Letters published by Wiley Periodicals, LLC on behalf of Society for the Study of Evolution
(SSE) and European Society for Evolutionary Biology (ESEB).
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
Evolution Letters 4-6: 570–580

http://creativecommons.org/licenses/by/4.0/


PLASTICITY AND ROBUSTNESS

plasticity could evolve, not as a direct response to selection

to plasticity but as a correlated side effect of selection for

developmental robustness. Under such a scenario, we show

that plasticity could evolve even in a constant environment.

Plasticity is the ability of a genotype to produce different

phenotypes in different environments. Plasticity is a heritable trait

(Côté et al., 2007; Landry et al., 2006; Li et al., 2006; Suzuki

& Nijhout, 2006) that can have many ecological consequences

(Forsman et al., 2008; Wennersten & Forsman, 2012): plastic-

ity can increase population growth rate (Hughes et al., 2008;

Wennersten & Forsman, 2012), broaden ecological niches (Smith

& Skulason, 1996), reduce intraspecific competition (Forsman

et al., 2008), and increase invasiveness (Sultan, 2000; Bock et al.,

2018). Plasticity also affects population differentiation and the

rate of speciation (Gray & McKinnon, 2007; Pfennig et al.,

2010). Finally, plasticity can affect adaptive evolution (Price

et al., 2003), including local adaptation (Arendt, 2015), responses

to climate change (Charmantier et al., 2008; Nicotra et al., 2010;

Hoffmann & Sgrò, 2011), and adaptation via genetic accommo-

dation (Bock et al., 2018; Pigliucci et al., 2006). When a trait

is adaptively plastic, the plasticity causes the organism to better

match its environmental optimum.

By allowing organisms to sustain a high fitness in a range

of environments, adaptive phenotypic plasticity would appear to

provide a solution to any eco-evolutionary problem. However,

plasticity is not ubiquitous, which leads many authors to ask what

limits its evolution (Agrawal, 2001; DeWitt et al., 1998; Moran,

1992; Murren et al., 2015; Scheiner et al., 1991; Scheiner &

Holt, 2012; Swanson & Snell-Rood, 2014; Van Tienderen, 1991;

Tonsor et al., 2013; Van Kleunen & Fischer, 2005). There are

a number of possible costs and limits to the evolution of plas-

ticity (DeWitt et al., 1998; Snell-Rood et al., 2010), but current

empirical research on the costs of plasticity has been mainly in-

conclusive; costs have been rarely found and when found they

are rather mild (Snell-Rood, 2012; Snell-Rood et al., 2010; Van

Buskirk & Steiner, 2009; Van Kleunen & Fischer, 2005). One of

the most commonly discussed costs is the idea that plasticity gen-

erates developmental noise and therefore great phenotypic varia-

tion, reducing fitness in comparison to more precise, constitutive

expression of a phenotype (DeWitt, 1998; Scheiner et al., 1991;

Tonsor et al., 2013).

Developmental noise, as defined in this article, refers to the

phenotypic variation among clones of a specific genotype devel-

oped in the same environment. Developmental robustness is de-

fined as the inverse of developmental noise. Developmental in-

stability is heritable (McAdams & Arkin, 1997; Klingenberg &

Nijhout, 1999) and is involved in various processes such as cellu-

lar specialization in multicellular organisms (reviewed in Losick

& Desplan, 2008) and the penetrance of alleles (reviewed in Cha-

lancon et al., 2012). Also, developmentally noisy traits expe-

rience reduced heritability (Tonsor et al., 2013) and hence re-

duced responses to selection. Importantly, developmental noise

creates deviations from the targeted phenotype, which reduces

fitness for a well-adapted phenotype under stabilizing selection

(Gavrilets & Hastings, 1994). However, developmental instabil-

ity can also be beneficial as a form of bet-hedging (Simons &

Johnston, 1997; Seger & Brockmann, 1987; Veening et al., 2008).

Evolution of developmental noise can affect the overall rate of

adaptation (Wang & Zhang, 2011), as well as networks of gene

interactions (Chalancon et al., 2012). Understanding the evolu-

tion of plasticity and developmental noise can therefore influence

our thinking about many aspects of evolution and ecology.

In our simulation model, developmental noise arises from

stochasticity in gene expression, translation, mRNA degrada-

tion, and protein degradation, which produce substantial vari-

ability among unicellular organisms (Chalancon et al., 2012).

Noise can also propagate through regulatory interactions among

genes (Pedraza & Van Oudenaarden, 2005), and this effect in-

creases with the extent of the regulatory cascade (Hooshangi

et al., 2005). Multicellular organisms may have different and ad-

ditional sources of random phenotypic variability, motivating us

to treat expression noise as representative of more general sources

of phenotypic noise.

COSTS AND LIMITS ON THE EVOLUTION OF

PLASTICITY

The idea that plasticity comes at a cost of developmental instabil-

ity is one of the most popular constraints discussed in the litera-

ture (e.g., Debat & David, 2001; DeWitt, 1998; Scheiner et al.,

1991; Snell-Rood et al., 2010; Tonsor et al., 2013; Wilson &

Yoshimura, 1994; Yoshimura & Shields, 1995). Because a plastic

response might require a complex regulatory mechanism and be-

cause a more complex regulatory cascade is expected to be more

stochastic, it follows that plastic traits are likely to be more de-

velopmentally noisy than their nonplastic counterparts (see also

DeWitt, 1998).

The prediction of the relationship between plasticity and de-

velopmental robustness is based on an intuitive prediction that

does not distinguish among the diverse developmental pathways

by which a plastic response can be implemented (as criticized

by Snell-Rood et al., 2010). The simplest developmental mech-

anism for a plastic response is one where individuals sense an

environmental signal and respond to it. Daphnia can respond to

kairomones released by predators such as fish, backswimmers,

or midge larvae, and they also respond to chemicals released by

macerated conspecifics (Laforsch et al., 2006). In the presence

of such signals, several species of Daphnia develop a long hel-

met on their head that protect them against these predators. Other
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examples of plastic responses involving an environmental signal

include the Pennsylvanian meadow vole’s coat thickness, which

in the offspring is dependent on the duration of daylight experi-

enced by the mother (Lee & Zucker, 1988) and the East African

Acridoid Grasshoppers whose melanin deposition for camouflage

is greater after a fire (Rowell, 1972).

An alternative mechanism is what Snell-Rood (2012) calls

“developmental selection” (also known as “somatic selection”

or “epigenetic selection”; Sachs, 1988; West-Eberhard, 2003).

Developmental selection has two components: First, the geno-

type must produce a range of phenotypes, and second, the geno-

type must assess the performance of each phenotype and bias

subsequent development toward the highest performing pheno-

types (Snell-Rood, 2012). The essential distinction between sim-

ple plasticity and developmental selection is that the latter in-

volves a performance signal that integrates information from both

development and the environment and act like a negative feed-

back loop (see also Bhalla & Iyengar, 1999; Becskei & Serrano,

2000). We will therefore contrast plasticity in response to an en-

vironmental signal with plasticity in response to a performance

signal.

Although a performance signal as a mechanism for plastic

responses has been largely ignored in the evolutionary literature,

the reality is that such mechanisms are very common in nature

(Snell-Rood, 2012). In humans, bones respond plastically to im-

pact loading by increasing their sizes, mineral content, and den-

sity (reviewed in Zernicke et al., 2006). In tennis players, for ex-

ample, bone mineral content is 13% higher on the dominant arm

than that on the nondominant arm (see Ducher et al., 2004 and

Sanchis-Moysi et al., 2011 for similar observations in tennis play-

ers on gluteal muscles). Osteocytes serve a key role in sensing the

resistance of the bone when bearing mechanical stress and com-

municate this information to osteoclasts and osteoblasts that will,

respectively, degrade and synthesize bone tissue (Zernicke et al.,

2006). Other tissues show similar plastic response to performance

signals such as cell walls in plants (Tiré et al., 1994) and muscles

in animals (Hoppeler et al., 2011). Other examples include any

trial-and-error learning behaviors in, say, foraging, or for learn-

ing associations between cues and rewards (Dukas, 2008; Papaj

& Prokopy, 1989), vertebrates’ adaptive immune system (self-

vs. nonself-distinction; Litman et al., 1993; Nemazee, 2006), and

neuroplasticity in the brain (Luo & O’Leary, 2005; Song & Ab-

bott, 2001). More examples and evidence of the commonality

of performance signal mechanisms are reviewed in Snell-Rood

(2012).

HYPOTHESES

Plastic developmental pathways tend to be more complex than

nonplastic ones, and more complex developmental pathways tend

to be more noisy (Hooshangi et al., 2005). Also, plasticity re-

quires sensitivity to the environment, which allows noise in the

signal to affect the phenotype. At the same time, feedback loops

have been shown to buffer against developmental noise, hence

increasing developmental robustness (Becskei & Serrano, 2000;

Bhalla & Iyengar, 1999). A performance signal mechanism in-

volves a negative feedback loop, and therefore we hypothesize

that plasticity in response to an environmental signal would come

at a cost of being developmentally less robust, but this cost would

be attenuated or even reversed when the organism evolves plas-

ticity via performance signal.

Because performance signals might increase developmen-

tal robustness (Becskei & Serrano, 2000; Bhalla & Iyengar,

1999), one can expect that a performance signal mechanism could

evolve even in a constant environment, to increase developmen-

tal robustness. Several authors have suggested that organisms us-

ing a performance signal are more likely to respond adaptively

to a novel environment (Frank, 2011; Hull et al., 2001; Snell-

Rood, 2012), and this hypothesis has been discussed thoroughly

in Snell-Rood et al. (2018). Hence, we also hypothesize that

performance signal use can evolve in a constant environment

to increase developmental robustness and create preadaptation

through a plastic response to novel environments: organisms that

have never encountered any environmental heterogeneity might

nonetheless be adaptively plastic.

We investigate these two hypotheses through numerical sim-

ulations with a numerical model called ENTWINE (Draghi &

Whitlock, 2015), which we modify here. Our goal is to simu-

late the evolution of network of genes that are regulated by other

genes’ transcription factors. Parameters of the model are inspired

from the empirical literature as we strive to model gene net-

work interactions with as much realism as can be computationally

tractable.

Methods
We simulated the evolution of a developmental network through

computer simulations, using a modified version of the program

ENTWINE (Draghi and Whitlock 2015). For each individual,

ENTWINE simulates the development of a phenotype in a single-

cell organism, based on a small interacting network of genes and

their products. ENTWINE uses a modified Gillespie algorithm

(Gillespie, 2007) to model stochastic reactions of mRNAs and

proteins. This framework sets a time step τ that aims at balanc-

ing the computational time and controlling the error produced

by the discrete-time approximation. Each individual cell devel-

ops for a constant period of 300 min. ENTWINE also allows

populations of such individuals to evolve over time, with stabi-

lizing selection on the organism’s phenotypic value at the end of

development. For computational convenience, the evolutionary

algorithm uses a panmictic populations of haploid individuals
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using a Wright-Fisher model. Plasticity is specific to particular

phenotypic traits and environments (Wagner, 2005). In this arti-

cle, we will be focusing on a single phenotypic trait and a spec-

ified set of environmental conditions, allowing us to talk about

“plastic and nonplastic genotypes” without ambiguity.

For a detailed description of the model’s methods and

sources for parameter and design decisions, see Draghi and Whit-

lock (2015). Below, we sketch out the essential features and pro-

vide full details about the additions to the model that are specific

to this article.

DEVELOPMENT OF AN INDIVIDUAL

The phenotype of an individual is determined by simulating its

development using a model of a network of gene interactions.

We modeled three types of genes: regulatory genes, phenotype

genes, and signal-binding genes. The regulatory genes code for

transcription factors that can only regulate the transcription rates

of themselves or of other genes. The phenotype genes, such as

regulatory genes, can regulate other genes but can also directly

affect the growth of the measured phenotypic trait. The signal-

binding genes produce a protein that can interact with an envi-

ronmental signal through cooperative binding, described in the

subsection “signals” below. The protein complex formed by this

interaction between the protein and the environmental signal may

then regulate the expression of other genes in the same way as a

transcription factor. None of these types of gene can mutate to

any other type, but genes may mutate in several ways, including

deletion and duplication of an entire gene. In these simulations,

a gene needs an enhancer to be expressed; therefore, nothing can

be expressed in the system unless there are some transcription

factors present by default. As a consequence, we provide a “basic

transcription factor” that is inputted into the system at a constant

rate and can eventually start the expression of one or more genes

in the system. This basic transcription factor does not evolve in

these simulations.

In ENTWINE, each gene is made of two parts: the cis-

regulatory region and the coding region. The cis-regulatory re-

gion is made of a number of distinct binding sites, set to 20 for

the simulations reported here. Each binding site is associated with

a cis-regulatory effect and a binding affinity (an integer implic-

itly representing the number of amino acid mismatch between the

protein’s binding domain and the binding site). The coding region

for transcription factors contains two types of information: the

protein’s inherent regulatory effect (a positive or negative value)

and which one of the possible cis-regulatory binding motifs (of

the 20 allowed possibilities) it matches, and therefore binds to.

By implementing a model of regulation grounded in biophysical

mechanisms, we allow genes to respond to external and internal

signals and affect other genes’ expression by cis-regulatory in-

teractions. The rate of transcription is modeled with a Michaelis-

Menten-like equation representing the binding and action of ac-

tivators and repressors. The model tracks the discrete number of

transcription factors in which changes are stochastic, affected by

transcription, and decay events. To focus on cis-regulation, we fix

the rate of translation and the rates of decay of both mRNA and

proteins, for all genes. Therefore, mutations only affect regula-

tion by altering the rate of transcription of a gene.

We measured a single phenotypic trait on which selection

is applied. The phenotype genes produce a protein that catalyzes

growth of the target phenotype. The phenotype starts at zero and

never decays, hence simulating a case of irreversible plasticity

(Foster et al., 2015). The phenotype increases at a rate that is

proportional to the number of copies of the phenotypic catalysis

proteins multiplied by their specific phenotypic effects.

Many aspects of the developmental system are subject to

mutation in each generation. There are six types of mutations:

duplications, deletions, and four types of mutations that can influ-

ence the effect of a given protein on gene expression. Mutations

on the effect of the protein can affect (1) the protein’s inherent

regulatory effect, (2) the binding affinity between the protein and

the binding site of the target gene, (3) the binding site targeted

by the protein, or (4) the cis-regulatory effect of the binding site.

More information on the mutation rates and distribution of effect

sizes for each of these mutation types is in the Supporting Infor-

mation of Draghi and Whitlock (2015). Duplications happens at

a rate of 10−8 per replication per genome and deletions happen at

a rate 10−7 per replication per gene.

SIGNALS

The signal-binding genes react to an endogenous signal produced

in response to some information available to the organism. We as-

sume that this information is provided by structures outside the

focal evolving gene network. As a result of this information cap-

ture, a signal protein is input to the system at a rate proportional

to the strength of the signal being measured. For the environment

signal, the rate of input is Pe, where Pe is the optimal phenotype

in the environment e. For the performance signal, the rate of in-

put is |Pt − Pe|, where Pt is the current phenotype at time t during

development. In both cases, in the system, the signal decays at

the same rate as do proteins and is therefore subject to the same

stochasticity in its decay. The environmental signal mechanism

was present in the previous version of ENTWINE (Draghi and

Whitlock 2015); the performance signal was added to the pro-

gram for this project.

Once in the system, the signal can affect gene expression

through cooperative binding with the protein product of a signal-

binding gene, creating a heterodimer that acts as a transcription

factor. Let S be the signal’s concentration. Cooperative binding

is modeled with a Hill equation (Hill, 1910) Se = Sn

Kn+Sn , where

n is the Hill coefficient, K is the dissociation constant, and Se
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is the effective signal, the concentration available to act as a tran-

scription factor. The Hill coefficient n is specific to each gene and

takes a random value uniformly distributed between 1.0 and 5.0

when genotypes are constructed at the start of the simulation (see

section STARTING CONDITIONS below). Cooperative binding

is newly added to the code for ENTWINE for this article.

EVOLUTION

We simulated the evolution of this network of gene interaction

over time. Individuals in ENTWINE are haploid, hermaphroditic,

and randomly mating. Evolution occurred with nonoverlapping

generations with a constant population size of 10,000 individu-

als. The target phenotype was subjected to Gaussian stabilizing

selection, based on the phenotype of the individual at the end of

development. If, at the end of its development, an individual phe-

notype is P in an environment e where the optimal phenotype

is Pe, then the fitness of this individual is exp[− (P−Pe )2

ω
], where

ω = 5 × 10−5 represents the strength of selection.

The code along with an example of an input file with all

parameters is available at https://github.com/RemiMattheyDoret/

ENTWINE.

INPUT PARAMETERS AND TREATMENTS

We explored two types of environmental patterns: a constant en-

vironment and a spatially heterogeneous environment. The con-

stant environment treatment is to study evolution of plasticity as

a correlated side effect of the evolution of developmental robust-

ness. The spatial heterogeneity treatment is to study whether plas-

ticity comes at a cost of developmental instability and how dif-

ferent signals can affect this cost.

In each type of environment, we considered three treatments:

Environmental Signal, in which there is an environmental signal

that the organism can potentially evolve to sense; Performance

Signal, in which there is a performance signal that the organism

can potentially evolve to sense; and finally, No Signal, in which

no cue is present (and therefore no way to evolve plasticity). This

2 × 3 design yields a total of six treatments, and we performed

200 replicates simulations for each treatment.

We followed the evolution of each population for at least

100,000 generations. Under spatial heterogeneity, half of the sim-

ulations of each of the three treatments were randomly chosen

and were extended to 200,000 generations. Gaussian stabilizing

selection is applied on a single phenotypic trait. We consider two

environments, a low and a high environment in which the optimal

phenotypes are 1000 and 3000, respectively (the fitness functions

are displayed on the right side of Fig. 1). For the constant environ-

ment treatment, individuals only experience the low environment.

With spatial heterogeneity, each individual is randomly put in ei-

ther environment in each generation (resulting in a migration rate

of 0.5 among environments). This extreme scenario was chosen

Figure 1. Reaction norms for the Environmental Signal and Per-

formance Signal treatments under spatial heterogeneity. Each line

represents a single genotype (a single simulation) and links the

average phenotypes in both environments. Reaction norms that

are steep enough to be considered plastic (see Methods) are rep-

resented in black; nonplastic genotypes are represented in gray.

The horizontal dashed lines represent the optimal phenotypes in

each environment. On the right panel are the fitness functions in

both environments.

to have a high incentive for evolving a plastic response. Because

our goal is to establish a proof of concept and not to estimate how

different input parameters will impact the observed statistics and,

also because simulations are computationally very expensive (a

single simulation can take up to a month to run), we did not fur-

ther vary the parameters such as the strength of selection or the

optimal phenotypes to reach in the two environments.

Note that because the protein production is essentially a

Poisson process and because the variance of a Poisson distribu-

tion equals its mean, a genotype that produces more protein prod-

ucts ought to be more noisy. Per consequence, genotypes that pro-

duce a large phenotype would tend to be more noisy too, hence

causing a preference for targeting the low environment rather

than the high environment for nonplastic genotypes.

STARTING CONDITIONS

Each simulation started with a population of cloned haploid in-

dividuals with a genome containing three regulatory genes and

three phenotype genes. In the Environmental Signal treatment,

organisms start with an extra three environmental signal genes

and in the Performance Signal treatment, organisms start with

an extra three performance genes. Because gene duplication and

gene deletion are possible, the number of genes in a represen-

tative genotype after 100,000 generations of evolution generally

differed from the starting number of genes.

Every simulation started with a population of clones founded

by a unique ancestor. At the beginning of every simulation, be-

fore simulating the first generation, potential ancestral genotypes

were randomly produced until a genotype that has a mean fitness
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between 0.15 and 0.25 is found. This fitness assay is measured in

the low environment. This genotype is then cloned to create one

starting population.

MEASURING PLASTICITY AND ROBUSTNESS

We sampled the most common genotype in the population at

the last generation to measure the statistics of interest. For the

treatments Environmental Signal and Performance Signal, under

spatial heterogeneity, we also sampled other generations during

the run to investigate the evolutionary dynamics. Plasticity and

developmental robustness were then measured for each sampled

genotype.

To measure plasticity, we redeveloped each genotype 50,000

times in the low environment and 50,000 times in the high en-

vironment. Because the vast majority of genotypes were either

very plastic or not plastic at all (Fig. 1), instead of consider-

ing plasticity as a quantitative trait, we categorized genotypes

as plastic based on whether the average phenotypes between the

two environments was greater than �P = 400 (i.e., greater than

20% of the difference in the optima). We have explored differ-

ent threshold values for �P (100, 200, and 800), and the spe-

cific threshold did not affect the general conclusions (data not

shown).

To determine the developmental robustness of a genotype,

we used the 50,000 redevelopments of this genotype described

above in the low environment. We define the developmental noise

as the standard deviation in the realized phenotypes.

Results
Figure 1 shows the reaction norms for Performance Signal and

Environmental Signal under spatial heterogeneity at the end of

the simulations. In these treatments and with very few exceptions,

genotypes are either very adaptively plastic or not plastic at all.

With a single exception, the nonplastic genotypes target the lower

environment (the environment in which the initial fitness was re-

quired to be between 0.15 and 0.25).

PLASTICITY AND DEVELOPMENTAL ROBUSTNESS

Because the performance signal involved a negative feedback

loops, and because such loops have been shown to buffer against

developmental noise (Becskei & Serrano, 2000; Bhalla & Iyen-

gar, 1999), we hypothesized that plasticity would come at a cost

of increased instability when implemented via an environmen-

tal signal but that this cost would not exist (or even be reversed)

when implemented via a performance signal. Figure 2 shows

that nonplastic genotypes are less developmentally noisy than

plastic genotypes in the Environment Signal treatment (Welch

t-test: 79 < δ < 168, P < 5 × 10–7), but not in the Perfor-

mance Signal treatment (Welch t-test: –53 < δ < 108, P ∼ 0.47).

Figure 2. Average developmental noise for the Environmental

Signal and Performance Signal treatments under spatial hetero-

geneity, separating the plastic (in black) from the nonplastic geno-

types (in gray). Developmental robustness was measured in the

low environment. See Figure S1 for developmental noise per indi-

vidual simulation for all treatments. Error bars are standard errors.

See Figure S2 for the evolution of developmental noise over time

for these two treatments. Developmental noise is defined as the

standard deviation of the phenotypes created by replicate devel-

opment of identical genotypes.

Importantly, plastic genotypes using the performance signal are

less developmentally noisy than plastic genotypes using the en-

vironmental signal (Welch t-test: 52 < δ < 136, P < 3 ×
10−5). We observe a significant interaction between the signal

and whether a genotype is plastic after controlling for the main ef-

fects of signal and whether a genotype is plastic (OLS regression:

P < 0.05).

In the Environmental Signal treatments, nonplastic geno-

types are significantly more robust than plastic genotypes; how-

ever, we observe substantial variance in developmental robust-

ness within treatments and an important overlap among individ-

ual values among treatment (Fig. S1). Results for other treatments

are also present in Figure S1.

Developmentally robust genotypes may face constraints

preventing the evolution of plasticity (Draghi, 2019). In Figure

S2, we see that the genotypes that eventually evolve plasticity

have lower robustness than those that do not evolve plasticity.

This difference among plastic and nonplastic lineages persists

during the entire simulation in the Environmental Signal treat-

ment. Therefore, the cost of plasticity (lower fitness caused by

extra developmental noise) persists with Environmental Signal

throughout the duration of the simulations. However, with

the Performance Signal, the initial difference in robustness is

eliminated by the end of the simulations.
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PERFORMANCE SIGNAL MAKES IT EASIER TO

EVOLVE PLASTICITY

We hypothesized that a genotype may evolve to use performance

signal even in a constant environment and, as a result, be adap-

tively plastic to environments that have never been encountered

in the evolutionary history of the lineage. This prediction results

from the idea that a performance signal can increase develop-

mental robustness and hence can be beneficial even in a constant

environment, therefore making the organism plastic as a side ef-

fect. However, some genotypes in a constant environment with

an environmental signal evolved some level of plasticity, which

was unexpected. Therefore, we wanted to investigate whether

plasticity in constant environments evolves more often in the

Performance Signal treatment than in the Environmental Signal

treatment.

Comparing the fractions of simulations that evolved a plas-

tic response in both treatments is made a little more complicated

because some of the starting genotypes were already plastic. In

our model, an organism needs to use some cue to initiate the de-

velopment. For the majority of genotypes, this cue is the “basic

transcription factor” (see methods), but some genotypes used ei-

ther the performance signal or the environmental signal to initiate

their development. In fact, with the constant environment, 30%

and 37.5% of genotypes started out plastic for the environmen-

tal signal and performance signal treatments, respectively. Most

starting plastic genotypes lost their plasticity very early on, with

only 10% and 9.3% of the genotypes that started plastic remain-

ing plastic during the whole simulation for the environmental sig-

nal and performance signal treatments, respectively. Of course,

some of these lineages that have lost their initial plastic behavior

regained it during the run.

With the environmental signal, 2.8% of the genotypes start-

ing nonplastic were plastic at the end of the experiment and

18.3% of the genotypes starting plastic were plastic at the end.

With the performance signal, 41.6% of the genotypes starting

nonplastic ended up plastic and 32% of the genotypes starting

plastic ended up plastic. Because we are interested in the evo-

lution of plasticity, we report below the fraction of genotypes

that evolved plasticity including only simulations where starting

genotypes were not plastic. However, including them would not

change the conclusion. Excluding the simulations where geno-

types started plastic, in the constant environment, we observe that

0%, ∼3%, and ∼42% of the genotypes evolved plasticity in the

treatments No Signal, Environmental Signal, and Performance

Signal, respectively (Fig. 3). All pairwise differences are signif-

icant (Fisher tests: No Signal – Environmental Signal: P < 0.05;

No Signal – Performance Signal: P = 2.2 × 10−16; Environmen-

tal Signal – Performance Signal: P = 6.55 × 10−16).

Although the above results are drawn from cases where we

test preadaptive plasticity to produce a larger phenotype, we show

Figure 3. Fraction of genotypes that evolved plasticity in all treat-

ments. The figure excludes simulations where genotypes started

plastic. As expected, in the No Signal treatment, no genotypes

ever evolved plasticity. With signals, a higher fraction of geno-

types evolved plasticity in the Performance Signal treatment than

in the Environmental Signal treatment, even when evolved in a

constant environment.

in Appendix B in the Supporting Information that preadaptive

plasticity also evolves in a constant high optimum environment,

typically producing genotypes that develop a partially adapted

smaller phenotype when grown in the low environment.

Because some of the expectations found in the literature

about the effect of plasticity of developmental robustness men-

tion that the implementation of a plastic response requires extra

genes that can be a supplemental source of noise, we also re-

port a comparison of the number of genes in different treatments

separating the plastic from the nonplastic genotypes (Table S1).

Note that with the Environmental Signal and Performance Signal

treatments, genotypes start with three more genes than with No

Signal treatment (see Methods). In an ANCOVA, using the type

of signal as covariant, the number of genes is not significantly af-

fected by the presence of environmental heterogeneity (F = 5.49,

P < 0.02) but is significantly higher among plastic genotypes

than among nonplastic genotypes (F = 44.5, P < 4.5 × 10−11).

Discussion
COST OF PLASTICITY

We hypothesized that plasticity in response to an environmental

signal would come at a cost of being less developmentally robust.

Because a performance signal involves a negative feedback loop

and because such loops have been shown to buffer against de-

velopmental noise (Becskei & Serrano, 2000; Bhalla & Iyengar,

1999), we hypothesized that this cost would be attenuated or even
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reversed when the organisms evolve plasticity via a performance

signal.

In agreement with this hypothesis, we observe that plasticity

comes at a cost of being developmentally noisy but only when the

plastic response is mediated via an environmental signal (Fig. 2).

Indeed, a performance signal allowed genotypes to evolve plas-

ticity without the cost of being developmentally noisy. Note,

however, that in contrast with our hypothesis, for performance-

based plastic responses, we do not find a significant decrease in

developmental stability compared with nonplastic individuals but

only the absence of a cost.

Empirical studies investigating the relationship between

plasticity and developmental instability have found mixed results

(DeWitt, 1998; DeWitt et al., 1998; Lind & Johansson, 2009;

Perkins & Jinks, 1973; Scheiner et al., 1991; Tonsor et al., 2013;

Van Buskirk & Steiner, 2009; Van Kleunen & Fischer, 2005). We

have shown that whether plasticity comes at a cost of develop-

mental instability depends upon the developmental mechanism

used to implement plasticity. This phenomenon can in part be the

reason for this lack of consensus.

There is also a general lack of empirical evidence of fitness

cost of plasticity (Van Kleunen & Fischer, 2005)—whether this

cost is mediated by developmental instability or some other phe-

nomenon (e.g., epiphenotypic problem, information acquisition

costs, etc.; DeWitt et al., 1998). We want to suggest one reason

for the general lack of evidence of fitness cost of plasticity. A

genotype can only be called “plastic” with regard to a specific

phenotypic trait of interest (see also Wagner, 2005), whereas a

fitness cost is a general property of a genotype. If being plastic

for a specific trait correlates with not being plastic for another

trait, then associating any decrease in developmental robustness

to this trait will be misleading. Consider body temperature, for

example. To have an environmentally robust (nonplastic) body

temperature, traits such as shivering, hair position, vasoconstric-

tion, and other mechanisms of body temperature regulation must

respond plastically to temperature variation (Tansey & Johnson,

2015). In this example, searching for a cost of plasticity for body

temperature can be misleading as what may be costly are the plas-

tic mechanisms (e.g., shivering, hair position, and vasoconstric-

tion) that regulate temperature. Such situations are likely to be

common. Any fitness cost of plasticity is always only meaning-

ful when carefully specifying the trait and when keeping in mind

that plasticity for this trait may be positively or negatively corre-

lated with plasticity for another trait.

Given that sensing a performance signal has such an advan-

tage over sensing an environmental signal, it raises a question

of why an organism would ever evolve to use an environmental

signal rather than performance signal. As an example, consider

again the Daphnia plastic response to the presence of predators

already discussed in the introduction. Daphnia cannot determine

whether their helmet is long enough to be protected against preda-

tors because a failure to produce a long enough helmet would be

fatal. In such an example, Daphnia has no other choice but to use

an environmental signal.

PREADAPTATION TO HETEROGENEOUS

ENVIRONMENTS

Several authors hypothesized that organisms using a perfor-

mance signal are more likely to respond adaptively to novel en-

vironments (Frank, 2011; Hull et al., 2001; Snell-Rood, 2012;

Snell-Rood et al., 2018). For this reason and because a per-

formance signal can increase developmental robustness (Figs. 1

and S1), we hypothesized that a performance signal mecha-

nism can evolve even in a constant environment and grant the

organism an ability to respond adaptively to novel environ-

ments. In agreement with this hypothesis, we observed that

in the constant environment, plasticity evolved in ∼42% of

simulations in the performance signal treatment but in only

∼3% of simulations in the Environmental Signal treatment

(Fig. 3).

Our hypothesis that a performance signal would help an

organism be preadapted for a plastic response in a novel envi-

ronmental was motivated by the idea that a performance signal

would evolve in a constant environment because it would provide

a gain in developmental robustness. It is, however, puzzling that

plastic genotypes using the performance signal are in fact equally

robust than nonplastic genotypes in the same treatment (Fig.

S1). We observe that with both a constant environment and with

spatial heterogeneity, genotypes using an environmental signal

are more developmentally noisy than their nonplastic counter-

part. This explains the low propensity of plastic genotypes with a

constant environment in the Environmental signal treatment. We

observe that with both a constant environment and with spatial

heterogeneity, genotypes using a performance signal are equally

developmentally noisy than their nonplastic counterpart. Using

an older version of ENTWINE, Draghi and Whitlock (2015)

showed that mutations affecting the mean phenotype also affect

the developmental robustness as a correlated effect. We think that

with a constant environment in the Performance signal treatment,

although individual mutations making organisms plastic did not

increase developmental robustness on average (data not shown),

they caused little to no reduction in developmental robustness

and may have been beneficial as a mean to bring the individual’s

mean phenotype closer to the optimal phenotype. Note that

although with the performance signal treatment plastic responses

always had a positive reaction norm (adaptive when placed in

the heterogeneous environment), this was not the case with the

environmental signal treatment (more information on that in

Appendix A in the Supporting Information).
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Because we frame our work as a proof of concept and also

because simulations are computationally very expensive, we did

not vary the parameters employed. Our work therefore does not

provide reliable estimates of what ought to be observed in na-

ture but only informs about the potential mechanisms at play. For

example, our work does not provide an estimate of how much

fitness can be gained by using a performance signal versus an en-

vironmental signal. Some qualitative results may be affected by

varying parameters. For example, if the Gaussian selection ker-

nel were to be set narrower, it could eventually result in more

genotypes evolving plasticity.

Historically, the literature on the evolution of plasticity has

been focused on the selection pressures acting on the plastic be-

havior directly and on its associated costs. Indeed, all models for

the evolution of adaptive plasticity state that adaptive plasticity

can evolve only if populations are exposed to heterogeneous en-

vironments and if the different environments select for different

phenotypes (e.g., see Bradshaw, 1965; Gomulkiewicz & Kirk-

patrick, 1992; Levins, 1968; Lively, 1986; Moran, 1992; Via &

Lande, 1985; reviewed in Ghalambor et al., 2007). In our sim-

ulations, however, plasticity mediated by a performance signal

regularly evolved in a constant environment in contrast to the as-

sumptions of other models in the literature.

Adaptive plasticity has long been suspected of playing a

critical role when a species encounters a novel environment

(Amarillo-Suárez & Fox, 2006; Baker, 1974; Baldwin, 1896;

Pigliucci & Murren, 2003; Price et al., 2003; Robinson & Dukas,

1999; West-Eberhard, 2003); reviewed in Ghalambor et al., 2007

and Snell-Rood et al., 2018) and has been known to be influential

in range shifts and invasiveness (Agrawal, 2001; Sultan, 2000;

Wennersten & Forsman, 2012; Bock et al., 2018). Our study

shows that, when a performance signal is available, a species

can evolve to be adaptively plastic for a novel environment that

has never been encountered in the species’ evolutionary history.

It remains to be estimated how common such processes are in

nature.
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Figure S1: Developmental noise for all treatments at the last generation, separating the plastic (in black) from the non-plastic genotypes (in grey). The
large dot is the mean, and error bars are standard errors.
Figure S2: The evolutionary dynamics of developmental robustness over generations. This figure displays the same data as figure 2. Errors bars are
standard errors. Simulations are classified as plastic or not plastic based on the genotype considered at the last generation (generation 200k). At each
generation displayed, the developmental noise is measured on the most common genotype in the population.
Table S1: Comparison of mean and variance in the number of genes among treatments separating the plastic from the non-plastic genotypes.
Figure A1. The reaction norms for evolved genotypes from all treatments.
Figure B1. Plasticity patterns for the Performance Signal treatment evolved in a constant high environment.
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