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Shifting gears: Id3 enables
recruitment of E proteins to
new targets during T cell
development and differentiation

Michele K. Anderson1,2*

1Department of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada,
2Department of Immunology, University of Toronto, Toronto, ON, Canada
Shifting levels of E proteins and Id factors are pivotal in T cell commitment and

differentiation, both in the thymus and in the periphery. Id2 and Id3 are two

different factors that prevent E proteins from binding to their target gene cis-

regulatory sequences and inducing gene expression. Although they use the

same mechanism to suppress E protein activity, Id2 and Id3 play very different

roles in T cell development and CD4 T cell differentiation. Id2 imposes an

irreversible choice in early T cell precursors between innate and adaptive

lineages, which can be thought of as a railway switch that directs T cells

down one path or another. By contrast, Id3 acts in a transient fashion

downstream of extracellular signals such as T cell receptor (TCR) signaling.

TCR-dependent Id3 upregulation results in the dislodging of E proteins from

their target sites while chromatin remodeling occurs. After the cessation of Id3

expression, E proteins can reassemble in the context of a new genomic

landscape and molecular context that allows induction of different E protein

target genes. To describe this mode of action, we have developed the “Clutch”

model of differentiation. In this model, Id3 upregulation in response to TCR

signaling acts as a clutch that stops E protein activity (“clutch in”) long enough

to allow shifting of the genomic landscape into a different “gear”, resulting in

accessibility to different E protein target genes once Id3 decreases (“clutch

out”) and E proteins can form new complexes on the DNA. While TCR signal

strength and cytokine signaling play a role in both peripheral and thymic

lineage decisions, the remodeling of chromatin and E protein target genes

appears to be more heavily influenced by the cytokine milieu in the periphery,

whereas the outcome of Id3 activity during T cell development in the thymus

appears to depend more on the TCR signal strength. Thus, while the Clutch

model applies to both CD4 T cell differentiation and T cell developmental

transitions within the thymus, changes in chromatin accessibility aremodulated

by biased inputs in these different environments. New emerging technologies

should enable a better understanding of the molecular events that happen

during these transitions, and how they fit into the gene regulatory networks

that drive T cell development and differentiation.
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Introduction

Conventional T cells acquire their functional properties in

two main phases. The first occurs in the thymus, as T cells transit

through successive stages that install the gene expression

programs that will run at steady state. The second phase of

differentiation occurs in the periphery after exposure to signals

that occur during an immune response. These signals activate

accessible but latent sub-routines that are kept in check prior to

the initiation of the immune response. Both processes depend on

the activity of E protein transcription factors and their

antagonists, the Id factors. One of the most intriguing aspects

of E proteins is their context-dependent use in many different T

cell lineages, and the propensity of T cell receptor (TCR)

signaling and Id3 activity, in collaboration with other

extracellular signals, to create those contexts. While TCR

signaling is required for peripheral CD4 T cell differentiation,

the specific functional pathways accessed in the periphery are

very sensitive to the cytokine milieu. By contrast, the progression

of T cell precursors into different pathways in the thymus

appears to be driven more by TCR signal strength. In both

cases, TCR-dependent upregulation of Id3 is important for

allowing changes in changes in chromatin remodeling and

gene expression that are needed to restrict E protein activity to

the appropriate targets.
T helper cell differentiation
and function

Conventional CD4 T cells emerge from the thymus as

“naïve” cells ready for activation. The functional T helper cell

differentiation pathways they take upon antigen encounter

depends on the types of inflammatory molecules produced

during the innate immune response (1) (Figure 1A). Each T

helper cell subset is dependent on a specific “master regulator”

transcription factor that directly induces the effector genes of

each program (2). The Th17 lineage, characterized by secretion

of IL-17A, IL-17F, and IL-22, is triggered by the innate response

to bacteria and fungi. RORgt (Rorc) is the Th17 master regulator.

Viruses and other intracellular pathogens induce differentiation

into the T-bet (Tbx21) dependent Th1 pathway, leading to IL-2,

TFNa, and IFNg production. Helminth infection induces the

Th2 fate, leading to secretion IL-4, IL-5, and IL-13, under the

control of GATA3 (3).

Other Th subsets generated in the periphery include Bcl6-

driven T-follicular helper cells (Tfh) (4), specialized for B cell

help in the germinal center, and induced T-reg cells, which, like

thymic-derived T-regs, depend on FoxP3 (5). In addition to

playing unique roles in immunity, Th subsets also have

pathogenic impacts when dysregulated (6). In general, Th1

and Th17 cells contribute to autoimmune pathology, Th2 cells
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are largely responsible for allergic reactions, and T-regs inhibit

anti-cancer immunity (7, 8). Most Th subsets retain plasticity

after activation, and some can transdifferentiate from one type to

another (2). Additional Th subsets continue to be identified,

including Th22, Th9, Tfh13, and Tr1 cells, suggesting that the

networks controlling these effector functions are dynamic, and

represent more of a physiological state than a committed fate,

rendering them open to manipulation during an immune

response (9–11).
Transcriptional control of
Th differentiation

Differentiation of naïve CD4 T cells into the Th subsets is

coordinated by several sets of signal-dependent transcription

factors (12). Triggering of the ab TCR and co-stimulatory

receptors leads to activation of NFkB, NFAT, and IRF

transcription family members, as well as upregulation of AP1

transcription factor family members such as BATF and Jun (13,

14). Cytokine receptor signaling leads to the activation of

different sets of transcription factors, most notably members of

the STAT and SMAD families (15, 16). BATF, IRF4, and the

cytokine-responsive factors recruit chromatin remodeling

enzymes that provide access to genes of specific Th subsets,

while restricting access to genes of alternative Th subsets (13,

17). After chromatin remodeling, the master regulators are

induced, providing the final key needed for functional

activation during the immune response.

E proteins and Id proteins are involved in regulation of the

naïve CD4 T cell state, and in the differentiation of Th2, Th17,

and T-reg cells (18–20). In general, E protein activity is regulated

post-translationally by Id proteins, which sequester them in

inactive dimers. The requirement for E proteins for Th17

differentiation has been especial ly well studied. A

comprehensive study conducted by the Strober group in 2013

showed that mice carrying a conditional double HEB/E2A

deletion on a CD4-Cre background had a profound defect in

Th17 development in vitro, and compromised immune function

in vivo, using both autoimmunity and infection models (21).

This study also showed that HEB and E2A can directly bind and

activate the Rorc locus, but only in the context of Th17 cells, not

in naïve CD4 T cells. Studies of Id3-deficient mice suggest that E

proteins restrain the Th2 and Tfh lineages and promote the Th9

lineage, whereas Th1 cells appear to require Id proteins and to be

E protein independent (21–24). Interestingly, T-regs require

both Id3 and E2A in a sequential manner. TGFb induces

transient expression of Id3, which is needed to prevent

repression of the FoxP3 promoter (25). This repression is not

mediated directly by E proteins, but rather results from E

protein-mediated upregulation of GATA3. Subsequently, E2A

activity is required to directly activate the FoxP3 promoter.
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However, if E2A levels are too high, FoxP3 expression becomes

unstable in T-regs, emphasizing the importance of transcription

factors levels in maintaining stable outcomes (26).
The Clutch model of E protein/Id3
activity in T cell transitional states

The theme of transient Id3 expression followed by shifting E

protein target gene activation suggests what we term a “Clutch”

model of Th differentiation (Figure 1). In this model, Id3-
Frontiers in Immunology 03
mediated pausing of E protein activity would act like the

clutch of a car, withholding access to the engine (E protein

activity) until the appropriate gear (chromatin context) is

engaged, and then allowing the engine to move the car (Th

differentiation) forward in a controlled fashion (Figure 1A). E

proteins bind to many effector genes in Th subsets. Therefore, it

is likely that restriction of E protein binding to the “right” set of

mediators within each lineage is essential for linking

environmental input to functional output in Th subsets. This

is clearly a strong paradigm for peripheral T cell differentiation

(27). The Clutch model also applies to T cell development in the

thymus, but with a twist, as described below (Figure 1B).
B

A

FIGURE 1

“Clutch” model of Id3-E protein mediated fate choice. (A) E proteins regulate a core CD4 T cell program in naïve T cells. Upregulation of Id3
causes a transient inhibition of E protein activity (red, clutch in), during which time initiating transcription factors provide access to Th subset-
specific genes. Once remodeling is finished, Id3 activity ceases and E protein activity resumes (green, clutch out). E proteins can then induce
master regulators and effector genes specific to each Th lineage. (B) Waves of graded Id3 (red) induction in response to TCR signaling pauses a
subset E protein activity (clutch in) followed by reassembly of E proteins at successive stages of T cell development (clutch out). Levels of Id3
dictate lineage choice, but E proteins are often engaged in both choices downstream of lineage commitment. Id2 (green) is responsible for
differentiation away from the adaptive T cell lineage and into the innate lymphoid cell lineage (ILC) or invariant natural killer T (iNKT) cell lineage.
DN=double negative CD4-CD8-, DP=double positive CD4+CD8+, gdT1 = IFNg-producing gd T cells, gdT17 = IL-17 producing gd T cells.
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Moreover, the role of Id2 in thymic T cell development exhibits

stark differences from Id3 during thymic development and does

not conform to the Clutch model.

Id2 regulates the innate/adaptive
fate choice in early T cell precursors

The earliest T cell progenitors (ETPs) to enter the thymus

are not yet committed to the T-cell lineage and have alternative

fates available to them depending on their access to

microenvironmental signals. One of the key molecular

switches that must be flipped to gain access to the T cell

pathway is to increase E protein activity. This occurs in at

least two different ways. The first is upregulation of E proteins

at the mRNA level, and the second is the downregulation of Id2

(28). Id2 is a critical mediator of the innate/adaptive lineage split

(18, 29). ETPs express “legacy genes”, thus termed because they

are expressed in hematopoietic stem cells (30). ETP legacy genes

include Id2, the Ets protein PU.1, and the Class II bHLH factor

SCL. All three of these factors can act in opposition to T-lineage

commitment: PU.1 drives expression of myeloid and B cell genes

(31), SCL can re-direct E proteins to stem cell gene loci and away

from T cell gene loci (32), and Id2 interferes with E protein

activity. E protein activity is essential for the expression of Rag

recombinase genes, which are necessary for the generation of

TCRs and thus T cells (33). Unlike Id3, Id2 does not appear to be

under the influence of transient signals during thymocyte

development but rather is subject to degradation in a cell

cycle-dependent manner (34, 35). Downregulation of PU.1

and upregulation of Bcl11b in early T cell development results

in the cessation of Id2 mRNA expression, which allows

upregulation of T-lineage E protein target genes (36, 37).

Conversely, Id2 expression is maintained in mature innate

cells including ILCs, NK cells, and myeloid cells, and appears

to support the maintenance of lineage fidelity.

Notch signaling shifts the E
protein-Id2 balance to allow
T cell development

As ETPs enter the thymus, they are exposed to Delta-like

(Dll) ligands of Notch receptors, resulting in strong Notch

signaling. Notch signaling is indispensable for T cell

specification and lineage commitment, acting upstream of an

elegant cascade of transcription factors that inhibits alternative

fates and induces T-cell genes (38). While Notch regulates a wide

swath of important target genes, one of the most important roles

plays in T-lineage commitment is by shifting the balance

between Id and E protein activity in ETPs, in three

complimentary ways. First, Notch redirects PU.1 away from

Id2 and towards more T-lineage friendly genes (39). Secondly,

Notch upregulates the E protein HEBAlt, increasing the overall E
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protein availability (40). Thirdly, Notch directly upregulates

Bcl11b, which downregulates Id2 at the transcriptional level

(37). This delivers a one-two-three punch that directs cells

permanently away from Id2-dependent ILCs and into the T-

cell lineage. Thus, Id2 does not acts as a way station for changing

gene availability to E proteins, but instead is more akin to a

railroad switch that directs cells down one pathway or

another (Figure 2).
TCR signal strength determines
lineage outcomes during the
intrathymic T cell lineage choices

Once cells have been switched onto the T-lineage track, they

progress towards the first “checkpoint” of T cell development.

There are two main checkpoints that occur during T cell

development, so called because they serve as testing of the cells

for functional TCR rearrangement and function (Figure 1B).

During the first checkpoint, the TCRb chain pairs with the pre-

Ta chain to form a pre-TCR. The only requirement for the pre-

TCR to allow “passage” through the checkpoint is for it to

complex with CD3 chains and translocate to the cell membrane

long enough to invoke a weak set of signaling cascades (41).

Alternatively, the cell can rearrange and express a TCR

composed of TCRg and TCRd chains. In this situation, the gd
TCR/CD3 complex is stably expressed on the surface,

transmitting a stronger signal than that transduced by the pre-

TCR, which directs cells away from the ab T cell fate and into

the gd T cell fate (42, 43). After commitment to the ab T cell

lineage, cells expressing ab TCRs are subjected to second

“checkpoint” which vets these TCRs for their ability to bind to

MHC/peptide and assesses the affinity of the interaction. As with

the first checkpoint, this signal also serves as a lineage

branchpoint, with cells experiencing lower and briefer TCR

signaling adopting the CD8 fate, and cells experiencing longer

and stronger TCR signaling progressing into the CD4 T cell

lineage (44). This paradigm also applies to committed gd T cells

that progress along the IFNg-producing gdT1 fate or the gdT17
fate (45) (Figure 1B). Engagement of strong gd TCR ligands in

conjunction with co-stimulatory molecules results in strong

TCR signaling and the gdT1 developmental outcome, whereas

a less strong TCR signal leads to the gdT17 fate (46–48). All these
lineage choices are intimately associated with the balance

between Id3 and E proteins (49, 50).
Translation of TCR signal strength
into Id3 activity modulates E protein
target gene accessibility

As in peripheral CD4 T cells, TCR signaling in early

precursors leads to upregulation of Id3, and a pause in E
frontiersin.org

https://doi.org/10.3389/fimmu.2022.956156
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Anderson 10.3389/fimmu.2022.956156
protein activity allows chromatin remodeling and shifting of E

protein target availability. There may also be a role for TCR

signal strength during T helper cell differentiation, particularly

in combination with cytokine signaling (51). However, there is a

clear hierarchy of TCR signal strength that is induced at each

checkpoint in thymic T cell development (52). During T cell

development, TCR signaling may shift the balance between Id3

and E proteins to different degrees, allowing retention of E

protein occupancy on some sites but not others. E2A and HEB

are direct regulators of most of the genes needed for assembly of

the TCR genes and formation of the pre-TCR (53, 54). Id3 is also

induced in response to abTCR signaling at the DP stage, and is

necessary to overcome the gatekeeper function of E proteins at

the DP to SP transition (55, 56). However, past this checkpoint,

E proteins are required for the generation of CD4 SP cells (57). E

proteins also regulate genes in gd-T committed cells that dictate

functional programming, including Tcf7 (58). An elegant study

by Hosoya and colleagues shed considerable light on the

chromatin remodeling events that occur during ab T cell

development using ATAC-seq, which detects open chromatin

and predicts the presence of transcriptional complexes (59). This

study showed that the loci for both gd-lineage and ab-lineage
genes were accessible in DN thymocytes. However, as cells

transitioned from the DN to the DP stage and then to the

CD4 and CD8 stages, cis-regulatory elements with predicted

binding by the key gd-lineage factor Sox13 showed a dramatic
Frontiers in Immunology 05
loss of accessibility. Likewise, predicted HEB sites shifted in

accessibility according to the stage of ab T cell development,

consistent with Id3-facilitated chromatin remodeling at these

transitions. This is doubtless just the beginning of this new phase

of our journey towards a deeper understanding of T cell

developmental transitions, and it will be exciting to learn how

E protein genomic site occupancy changes after they are

dislodged and then reassembled on different loci at progressive

stages of T cell development and differentiation.

Limitations of the Clutch model of
Id3-facilitated shifts in E
protein targets

Like E proteins, Id3 is used widely in different contexts

outside of T cell development (60, 61). Clearly, the Clutch model

does not apply in all situations, but rather appears to be

restricted to certain types of cells and developmental

transitions. Moreover, an examination of E2A occupancy at

the DN3 to DN4 transition revealed both overlapping and

unique sites of E2A occupancy in both subsets, indicating that

E2A was only dislodged from a subset of sites during the

transition, while others were maintained (19). Release of E

proteins from specific sites likely depends on both the Id3/E

protein ratio and the availability of E protein binding partners.
BA

FIGURE 2

Railroad analogy of Id2 versus Id3 outcomes. (A) Id2 acts as a switch that diverts T cell precursors away from the adaptive fate and towards the
innate fate by permanently silencing E protein activity and E protein target gene expression. (B) Id3 serves as a way station (roundhouse) that
allows changes in accessibility of E protein target genes while E proteins are inactive, followed by E protein engagement with different E protein
target genes at the next stage of development. This occurs in both CD4 T cell differentiation (Naïve/Polarized) and multiple stages of thymic
differentiation (Stage 1/Stage 2). Blue-Yellow ovals = HEB/E2A. Black railroad ties = completely inaccessible genes; gray railroad ties = accessible
genes lacking the proper combination of transcription factors for induction; colored railroad ties = E protein target genes bound by HEB/E2A
and undergoing active transcription. Roundabout = Id3-mediated pause in E protein activity during which changes in accessibility of E protein
target sites occurs. Arrow with half circle = extracellular signaling inputs that direct which genes undergo changes in chromatin accessibility.
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For instance, the downregulation of Notch1 in response to pre-

TCR signaling would be predicted to increase the disengagement

of E proteins from sites that require both Notch factors and E

proteins, but not from other sites that maintain the core T-

lineage program. Importantly, E proteins themselves are

important mediators of chromatin remodeling, interacting

directly with both positive and negative regulators of

chromatin configuration such as p300, CHD4, LSD1, and

PRC2 (62–66). It is important to note that chromatin

remodeling in this context does not indicate simply a shift

between “open” and “closed” configurations, but also includes

the transition from “poised” to “active” states (67). This may be

mediated in part by fresh access to new binding partners that

become available after the transition. Furthermore, the plasticity

of CD4 T cell subsets suggests that lineage-specifying E protein

sites remain accessible during and after CD4 T cell

differentiation (68). A comprehensive understanding of global

E protein occupancy changes that occur during these processes

awaits further studies. Likewise, the relative contributions of

E2A versus HEB to these processes are not well understood.
Discussion

While it is well understood that Id proteins inhibit E protein

activity and interfere with the expression of E protein target

genes, much less is known about how E protein targets shift

during the developmental transitions that occur during Id3

expression, and the molecular events that underpin them.

Here, the Clutch model is presented as a conceptual scaffold

that will provoke questions and undergo modifications and

stratification as new data is obtained revealing E protein

chromatin occupancy before, during, and after T cell stages

transitions, and identifying stage-specific E protein partners.

Due to technical limitations, earlier studies largely relied on in

vitro models of T cell development or differentiation such as

OP9-DL co-culture derived T cell precursors or in vitro

polarization of naïve peripheral T cells (69, 70). While these

studies have provided a wealth of information into the global

events that orchestrate T cell development, they cannot

completely replicate the complex thymic niches that shift over

time as cells migrate through different niches in the thymus, nor

can they fully provide the complex medley of signals that

transpire during a coordinated immune response. The advent

of single cell RNA-seq, and multiomic approaches such as

scRNA-seq/ATAC-seq and CITE-seq that allows that require

fewer input cells are now providing unprecedented access to ex

vivo precursors and products that arise during T cell

development. Moreover, computational methods such as

pseudotime modeling and RNA velocity are further advancing

our understanding of transient states of development (71).

Importantly, there is a fourth dimension that is rarely

considered in these snapshot approaches: time. Single cell live
Frontiers in Immunology 06
imaging has revealed that Id3 transcription is “bursty”, occurring

in only a small number of cells within a population at any one

time, in the B cell lineage (72). It remains to be seen whether this

is true in T cell precursors, and whether TCR signaling can

synchronize cells into uniformly high Id3 expressers.

Alternatively, burstiness may contribute to the gradation of

Id3 that mediates intrathymic T cell fate choices. By contrast,

Id2 acts as a permanent switch into the innate lineage choice.

This distinction highlighting the unique nature of Id3 in

regulating fate choices by facilitating E protein target changes

as T cells journey through development in the thymus or

differentiate in the periphery during an immune response.
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