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Abstract: Non-uniform intensity distribution of laser near-field beam results in the irregular shape
of the spot in the wavefront sensor. The intensity of some sub-aperture spots may be too weak to
be detected, and the accuracy of wavefront restoration is seriously affected. Therefore, an extreme
learning machine method is proposed to realize high precision wavefront restoration under dynamic
non-uniform intensity distribution. The simulation results show that this method has better accuracy
of wavefront restoration than the classical modal algorithm under dynamic non-uniform intensity
distribution. The root mean square error of the residual wavefront for the proposed method is only
2.9% of the initial value.

Keywords: non-uniform intensity; the wavefront sensor; wavefront restoration; the extreme learning
machine method; modal algorithm

1. Introduction

At present, many laser applications require lasers to not only produce high-power
output beam, but also maintain high beam quality [1–4]. Unfortunately, as the laser power
continues to increase, the thermal effect of the laser not only limits the improvement of the
beam quality severely, but also makes the beam diameter and beam divergence change
greatly [5,6]. How to obtain high average power and high beam quality at the same time is
a basic physical problem in laser research [7–9]. Adaptive optics (AO) is a technology that
can correct the wavefront distortion of the laser beam in real-time, as shown in Figure 1. It
can compensate the dynamic laser beam aberration in real-time, and has been applied in
many laser systems with remarkable results [10–12].
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Figure 1. Schematic diagram of adaptive optics. 

Citation: Lin, H.; He, X.; Wang, S. 

Wavefront Restoration Technology 

of Dynamic Non-Uniform Intensity 

Distribution Based on Extreme 

Learning Machine. Sensors 2021, 21, 

x. https://doi.org/10.3390/xxxxx 

Academic Editors: Malgorzata 

Kujawinska and Daniele Cocco 

Received: 21 April 2021 

Accepted: 2 June 2021 

Published: 4 June 2021 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2021 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses

/by/4.0/). 
Figure 1. Schematic diagram of adaptive optics.
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To correct the laser beam aberration, a wavefront sensor (WFS) is needed to detect the
accurate wavefront aberration in real-time. However, with the continuous improvement of
laser power and energy density, the transmission medium, and emitted light are seriously
affected by the thermal effect [13,14]. It makes the intensity distribution of the laser present
a dynamic non-uniform distribution. Due to the non-uniform intensity distribution of
the laser beam, some sub-aperture light spots of WFS have an irregular shape or, weak
intensity, or being too weak to be detected by WFS, as seen in Figure 2. The result is
that WFS will lose part of the phase information, making it difficult for WFS to detect the
accurate beam aberration information. This, in turn, makes it difficult for the AO system
to improve the beam quality of the laser. Therefore, accurate wavefront restoration from
the phase information measured by WFS under the condition of the non-uniform intensity
distribution will greatly improve the beam quality for the AO system.
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Figure 2. (a) The standard sub-aperture image of WFS. (b) The sub-aperture image of WFS with
non-uniform near-field and irregular spots.

Recently, machine learning has been utilized to implement an image-based wavefront
estimation. Xu applied the method of an extreme learning machine to accomplish the
wavefront reconstruction of WFS with insufficient sub-aperture [15]. Barwick proposed
the method of neural network post-processing to improve the wavefront reconstruction
accuracy [16]. Guo et al., applied the artificial neural networks to estimate the Zernike coef-
ficients and compared the wavefront reconstruction results with traditional approaches [17].
Hu et al., employed a conventional neural network (CNN) model to achieve high-order
wavefront aberration detection [18]. Li et al., applied artificial neural networks to improve
the robustness of SHWS in extreme situations [19]. Although the mentioned methods pro-
vide some new approaches for WFS to predict accurate Zernike coefficients, the influence
of the dynamic non-uniform intensity distribution on the WFS detection accuracy, however,
has not been considered and studied. Due to the non-uniform intensity distribution of the
laser beam, it is difficult for WFS to detect accurate centroid displacements.

This paper mainly focuses on the advantages of machine learning methods on wave-
front restoration under the dynamic non-uniform intensity distribution. When the intensity
of the laser presents dynamic non-uniform distribution, some sub-aperture light spots of
WFS may have an irregular shape or weak intensity. The linear regression relationship
between Zernike mode coefficients of the wavefront and the local slopes measured by WFS
is no longer well satisfied. In this situation, it is difficult for the classical modal algorithm
based on Zernike polynomials to restore accurate Zernike mode coefficients. This paper
proposes the wavefront restoration technology based on the extreme learning machine
(ELM) method to construct this complicated corresponding relationship under the dynamic
non-uniform intensity distribution. Compared with other gradient descent-based learn-
ing methods (such as the backpropagation algorithm), the ELM method only needs the
generalized inverse matrix to obtain network weights in this case. What is more, it boasts
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faster training speed and better generalization performance [20–22]. This article will verify
the accuracy of the proposed method through numerical simulations. The ELM model
can restore Zernike mode coefficients more accurately than the classical modal algorithm
under the non-uniform intensity distribution.

This paper is organized as follows: The ELM method’s concepts and modeling for
wavefront restoration are introduced in Section 2. Section 3 shows the numerical simulation
comparison results of the wavefront restoration between the proposed ELM model and the
classical modal algorithm. Finally, Section 4 provides the conclusion.

2. Principle

This paper will construct the ELM model to solve the problem of the linear regression
relationship between Zernike mode coefficients of the wavefront and the local slopes
measured by WFS under the non-uniform intensity distribution. The network structure
of the ELM model is shown in Figure 3. The ELM model transmits the slope information
G = {Gx(1), Gy(1), . . . , Gx(m), Gy(m)} as the input signal (input layer) to the output layer
forward through the hidden layer. The output layer of the ELM model represents Zernike
mode coefficients a = {a1, a2, . . . , an} of the incident wavefront with the non-uniform
intensity distribution. The slope information G of the incident wavefront is measured by
WFS under the non-uniform intensity distribution.
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According to Figure 3, the variable wij is defined as the connection weights between
the i-th neuron of the input layer and the j-th neuron of the hidden layer. bj is defined as
the threshold of the j-th neuron of the hidden layer, and βjk is defined as the connection
weights between the j-th neuron of the hidden layer and the k-th neuron of the output layer.
The neural network structure of the ELM model is mathematically modeled as [23]

ak =
N

∑
j=1

β jkg(wijGi + bj) i = 1, 2, . . . 2m, k = 1, 2, . . . n (1)

where m, N, and n, respectively, represent the number of the nodes in the input layer, the
number of neurons in the hidden layer, and the number of the nodes in the output layer.
g(x) represents the activation function of the hidden layer neuron.

The ELM model training firstly generates random data wij and bj. The hidden layer
output matrix H is as follows,

H =


g(w11G1 + b1) g(w12G1 + b2) · · · g(w1NG1 + bN)
g(w21G2 + b1) g(w22G2 + b2) · · · g(w2NG2 + bN)

...
... · · ·

...
g(w2m1G2m + b1) g(w2m2G2m + b2) · · · g(w2mNG2m + bN)


2m×N

(2)
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Next, according to Equation (1), the output of the ELM model can be calculated as
the least square solution of the equation Hβ = a, where β is the weight matrix between the
hidden layer and the output layer, and a is the output matrix. Therefore, the weight matrix
β can be obtained by the following equation,

β = H†a (3)

where H† = (HTH)−1HT is the generalized inverse matrix of the hidden layer’s output
matrix H.

The wavefront restoration algorithm based on the ELM model can be divided into two
parts: The ELM model training and the ELM model testing. In the model training phase,
the parameters of the ELM model can be obtained according to Equations (2) and (3). In
order to verify the accuracy of the trained ELM model, the slope information of the test
wavefront with dynamic non-uniform intensity distribution is imported into the trained
ELM model. The output of the trained ELM model is Zernike mode coefficients of the test
wavefront. The test wavefront with the dynamic non-uniform intensity distribution can be
described as,

U(x, y) = Aeiφ(x,y)

φ(x, y) =
n
∑

i=1
aiZi(x, y) (4)

where A is the amplitude (A2 is light intensity), Zi is the i-th Zernike polynomial, and ai is
the corresponding Zernike mode coefficient.

3. Numerical Simulations
3.1. Dataset

A series of simulations are carried out to validate the wavefront restoration ability of
the ELM model under the dynamic non-uniform intensity distribution. The key parameters
of the simulations are shown in Table 1. The set of the incident wavefront with the dynamic
non-uniform intensity distribution can be generated by the linear relationship of the first
15 orders of Zernike polynomials. Its slope information, which is used as the input of the
ELM model training, can be measured by WFS. And the overall tilt term a1 and the piston
term a2 has been removed from the slope information in the process of data measurement
and acquisition. Zernike mode coefficients as the output of the ELM model training are
generated by the Kolmogorov atmosphere turbulence model [24].

Table 1. The key parameters of the simulations.

Parameters Value

Wavelength 1064 nm
Numbers of micro-lens 10 × 10

Focal length of micro-lens 21.7 mm
Valid sub-aperture 76

Numbers of pixel in each sub-aperture 24 × 24 pixels
Pixel size 14 µm

Sampling frequency of WFS camera 1000 Hz

In order to enrich the datasets, 10,000 groups of wavefronts with the dynamic non-
uniform intensity distribution have been randomly generated by employing 100 kinds of
light intensity distributions measured experimentally according to the first 15 orders of
Zernike polynomials and Equation (4). The order of the dataset is randomly shuffled, and
9000 groups are selected as the training set and the remaining 1000 groups as the test set.
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3.2. Model Training and Optimization

The predictive accuracy of the ELM model is evaluated by mean square error (MSE)
of Zernike mode coefficients, which is defined as follows,

MSE =

15
∑

i=3
(yi − ai)

2

13
(5)

where yi and ai are, respectively, the target value and predicted value of the i-th Zernike
mode coefficient (excluding the tilt term a1 and the piston term a2). The smaller MSE is,
the higher the predictive accuracy of the ELM model will be obtained. When the number
of output and input is given, the different activation functions in the hidden layer will
affect the prediction accuracy and the number of neurons in the hidden layer. The number
of hidden neurons in the ELM model is the predetermined parameter that affects the
prediction accuracy. Therefore, we have analyzed the influence of different activation
functions in the hidden layer on the wavefront restoration prediction accuracy for the
ELM model. Table 2 shows the influence of several activation functions on the predictive
accuracy of the ELM model.

Table 2. The influence of different activation functions in the hidden layer on the predictive accuracy
of the ELM model.

Activation Function MSE

softplus 2.9489 × 10−6

Relu 2.6361 × 10−5

sig 7.5124 × 10−5

tanh 4.3081 × 10−4

sin 0.0024
hardlim 0.0015

RBF 0.0110

According to Table 2, the proposed ELM model with the Softplus activation function
can achieve the smallest MSE under the same test set.

In order to determine the number of neurons in the hidden layer, the mean MSE value
of 1000 test samples under a different number of neurons is shown in Figure 4. With the
increasing number of neurons in the hidden layer, the predictive accuracy of the ELM
model increases first and then decreases. The highest predictive accuracy of the ELM model
can be obtained when the number of neurons in the hidden layer is 5100.
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In conclusion, the final optimization results of the trained ELM model are as follows:
The number of neurons in the hidden layer is 5100, and the activation function is selected
as the Softplus activation function.

3.3. Prediction Results

The performance of the ELM model is evaluated by a series of simulations in this
section. We randomly select a set of light intensity distributions from 100 kinds of dynamic
non-uniform intensity distributions, and use Equation (4) to generate a random wavefront.
In this paper, F-factor is used to express the statistical characteristics of 100 kinds of intensity
distribution, which is defined as follows:

F =
Imean

Imax
(6)

where Imean represents the mean value of intensity distribution, and Imax represents the
maximum value of intensity distribution. F-factor of 100 kinds of intensity distribution
is shown in Figure 5. There is little relevant literature or theory for reference about what
intensity distribution variation so that WFS does not work properly. According to the
statistical characteristics of intensity distribution, it is difficult to detect accurate wavefront
aberrations for WFS in this paper when F-factor is less than 0.1347.
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Then we employ the trained ELM model to predict Zernike mode coefficients of the
generated random wavefront, as shown in Figure 6. The condensing beam system of WFS
is the Cassegrain structure, and the incident aperture is annular, as shown in Figure 6b,c.
In the current sample, it can be obviously seen that WFS cannot fully detect the random
wavefront aberration, and some sub-apertures have no light spot or weak intensity light
spot. Figure 7 shows that the predicted result of the ELM model. When the intensity of the
incident wavefront is non-uniform, the ELM model can predict the accurate Zernike mode
coefficients. The MSE is 3.0718 × 10−6.
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The generated random wavefront in Figure 6 is restored by Zernike modes coefficients
which are obtained from the classical modal algorithm and the trained ELM model, respec-
tively. The restored wavefront and residual wavefront are shown in Figure 8, respectively.
According to Figure 8, the root mean square (RMS) and peak-valley value (PV) of the
residual wavefront of the ELM model are 0.0011λ and 0.0096λ, respectively. The RMS and
PV of the residual wavefront of the modal algorithm are 0.3673λ and 3.3673λ, respectively.
Through the wavefront restoration comparison of the two methods, the ELM model has
smaller RMS and PV of the residual wavefront and higher wavefront restoration accuracy.
The first 15 order Zernike coefficients, respectively, predicted (excluding the first two order:
Piston a1 and tilt a2) by the classical modal algorithm and the trained ELM model are shown
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in Figure 9. The prediction result of the proposed ELM model is significantly more accurate
than the modal algorithm, according to Figure 9. There is a big discrepancy between
Zernike coefficients obtained by the classical modal algorithm and the target values in
Figure 9. The main reason is that the wavefront phase information detected by WFS is
insufficient and inaccurate under the non-uniform intensity distribution.
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Figure 8. (a) The incident wavefront. (b) The restored wavefront by the ELM model. (c) The residual
wavefront of the ELM model. (d) The incident wavefront. (e) The restored wavefront by the classical
modal algorithm. (f) The residual wavefront of the classical modal algorithm.
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Figure 9. Wavefront restoration Zernike coefficients.

To further study the generalization of the ELM model, we use all the different light
intensity distributions to expand the number of test samples to 1000 sets of wavefronts
with the dynamic non-uniform intensity. The mean RMS and PV values of the incident
wavefronts are 0.2831λ and 2.8501λ, respectively. The RMS and PV values of the residual
wavefront of these two methods are shown in Figure 10. The mean RMS and PV values
of the residual wavefront of the ELM model are 0.0082λ and 0.0066λ, respectively, while
that of the modal algorithm are 0.4396λ and 4.8990λ, respectively. According to Figure 11,
the RMS and PV power spectrum curve of the residual wavefront, based on the ELM
model, is obviously smaller than the modal algorithm. Therefore, compared with the
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modal algorithm, the proposed ELM model can achieve much higher precision wavefront
restoration under the dynamic non-uniform intensity distribution.
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4. Conclusions

When the intensity of the laser presents dynamic non-uniform distribution, some
sub-aperture light spots of WFS may have an irregular shape or weak intensity. The linear
regression relationship between Zernike mode coefficients of the wavefront and the local
slopes measured by WFS is no longer well satisfied. In this situation, it is difficult for the
classical modal algorithm to restore accurate Zernike mode coefficients. The ELM model is
proposed to establish the complex corresponding linear relationship between Zernike mode
coefficients and the local slopes measured by WFS in the above cases. The simulation results
prove that the proposed ELM model can restore the wavefront phase more accurately than
the classical modal algorithm with fewer sub-apertures under the dynamic non-uniform
intensity distribution. This improvement is beneficial to the applications where high
precision wavefront restoration is necessary for the high energy and power laser beam
purification system.
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