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Abstract: The Centers for Disease Control and Prevention (CDC) recognizes Neisseria gonorrhoeae as
an urgent-threat Gram-negative bacterial pathogen. Additionally, resistance to frontline treatment
(dual therapy with azithromycin and ceftriaxone) has led to the emergence of multidrug-resistant
N. gonorrhoeae, which has caused a global health crisis. The drug pipeline for N. gonorrhoeae has
been severely lacking as new antibacterial agents have not been approved by the FDA in the last
twenty years. Thus, there is a need for new chemical entities active against drug-resistant N. gonor-
rhoeae. Trifluoromethylsulfonyl (SO2CF3), trifluoromethylthio (SCF3), and pentafluorosulfanyl (SF5)
containing N-(1,3,4-oxadiazol-2-yl)benzamides are novel compounds with potent activities against
Gram-positive bacterial pathogens. Here, we report the discovery of new N-(1,3,4-oxadiazol-2-
yl)benzamides (HSGN-237 and -238) with highly potent activity against N. gonorrhoeae. Additionally,
these new compounds were shown to have activity against clinically important Gram-positive bac-
teria, such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci
(VRE), and Listeria monocytogenes (minimum inhibitory concentrations (MICs) as low as 0.25 µg/mL).
Both compounds were highly tolerable to human cell lines. Moreover, HSGN-238 showed an out-
standing ability to permeate across the gastrointestinal tract, indicating it would have a high systemic
absorption if used as an anti-gonococcal therapeutic.
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1. Introduction

Drug-resistant bacterial infections have become a serious global threat. Neisseria
gonorrhoeae is a Gram-negative bacterial pathogen which causes gonorrhea, a sexually
transmitted infection (STI) [1]. N. gonorrhoeae infects a variety of mucosal surfaces (i.e.,
the urethra, endocervix, pharynx, and rectum) [2] and, if left untreated, can cause drastic
complications, such as pelvic inflammatory disease, ectopic pregnancy, and increased
susceptibility to HIV infections [3]. The Centers for Disease Control and Prevention (CDC)
considers N. gonorrhoeae an urgent threat, as it accounts for 550,000 infections per year and
$133.4 million dollars in medical costs in the United States alone [4]. Globally, N. gonorrhoeae
is also devastating. The World Health Organization (WHO) listed N. gonorrhoeae as a
priority 2 (high) pathogen, as it is has caused 87 million new cases as well as an estimated
total treatment cost of $5 billion dollars [5–8].

Efforts to develop novel antibiotics against urgent threat pathogens, especially N.
gonorrhoeae, have intensified [9]. For instance, N. gonorrhoeae is now resistant to former front-
line therapies such as penicillin, fluoroquinolones, and cefixime, which are now deemed
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ineffective as treatment options [10]. This increased resistance rate prompted a global health
scare, leading the CDC to recommend treating N. gonorrhoeae with dual therapy involving
ceftriaxone and azithromycin [1,11]. Yet, resistance to this dual therapy has been reported,
leading to the rise of multidrug-resistant N. gonorrhoeae (commonly referred to as super
gonorrhea) [2]. To make matters worse, no new classes of antibiotics to treat N. gonorrhoeae
have been FDA-approved over the last two decades, warranting the public health concern
that once easily treated gonorrhea infections will soon become deadly [12–14]. Therefore,
the rise in multidrug-resistant N. gonorrhoeae infections necessitates intense research efforts
to identify and develop new antibiotics.

Our program focuses on the development of N-(1,3,4-oxadiazol-2-yl)benzamides to
treat drug-resistant bacterial pathogens [15,16]. We recently reported the discovery of
trifluoromethylsulfonyl (SO2CF3), trifluoromethylthio (SCF3), and pentafluorosulfanyl
(SF5) containing N-(1,3,4-oxadiazol-2-yl)benzamides that exhibited potent antibacterial
activities against clinically important Gram-positive bacterial pathogens [17]. These agents
were found to be active against clinical isolates of drug-resistant Gram-positive bacteria,
were non-toxic to mammalian cells, and effectively reduced the burden of intracellular
methicillin-resistant Staphylococcus aureus (MRSA) [17]. Here, we describe a new generation
of N-(1,3,4-oxadiazol-2-yl)benzamides with potent activity against N. gonorrhoeae. The
antibacterial activity against N. gonorrhoeae, cytotoxicity against mammalian cells, and
bi-directional Caco-2 permeability were investigated.

2. Results and Discussion
2.1. Synthesis and Antigonococcal Activity of N-(1,3,4-oxadiazol-2-yl)benzamides

We previously reported that trifluoromethylsulfonyl (SO2CF3), trifluoromethylthio
(SCF3), and pentafluorosulfanyl (SF5) containing N-(1,3,4-oxadiazol-2-yl)benzamides
(compounds 6, 12, and 13, respectively) were potent against a panel of drug-resistant
Gram-positive bacteria [17]. We wondered if these compounds would be active against
N. gonorrhoeae and discovered that compounds 6, 12, and 13 have quite potent activity
against N. gonorrhoeae strain 181, with minimum inhibitory concentrations (MICs) of 0.5,
0.06, and 0.06 µg/mL, respectively (see Table 1). While all three compounds have favorable
CLogP values, they also contain an unsubstituted thiophene moiety (Figure 1) which can
cause toxicity. For example, the cytochrome P450-mediated oxidation of thiophene moeities
can lead to reactive metabolites such as thiophene epoxides [18], thiophene-S oxides [18,19],
and sulphenic acids [20], which can react with nucleophiles such as glutathione and/or
water [21]. However, since Compounds 6, 12, and 13 have shown excellent activities
against N. gonorrhoeae as well as adequate CLogP values, we desired to further optimize
these compounds via the synthesis of new analogs. We proceeded to use computational
methods to guide our synthetic strategy. We began to substitute the benzamide ring with
the trifluoromethoxy (OCF3) group due to its importance in medicinal chemisty [22,23].
For instance, it was reported that the electronegativity of the OCF3 group allows for en-
hanced in vivo uptake and transport in biological systems [22]. Thus, utilizing this strategy
has led to the synthesis of HSGN-235, which contained a fluoro atom ortho to the OCF3
group as well as a trifluoromethyl phenyl. Yet, HSGN-235 was found to contain a much
larger CLogP value compared to previously synthesized analogs (Figure 1). Since LogP
shows a positive correlation between low aqueous solubility and compromising bioavail-
ability (an extremely important attribute when creating antibacterial agents against N.
gonorrhoeae) [24], we replaced the thiophene moiety with a substituted thiophene or
phenyl group as unsubstituted thiophene could be a toxicophore, as mentioned above.
Considering that the addition of halogens to compounds has been shown to improve drug
properties and metabolic stability [25–29], our new analogs were made up of compounds
with halogen substitutions to a phenyl ring (Figure 1).
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Figure 1. Previously reported analogs as well as newly synthesized 
N-(1,3,4-oxiadizol-2-yl)benzamides for this study. Note: CLogP was calculated using SwissADME. 

The synthesis of these compounds started with a substituted aryl aldehyde, fol-
lowed by the addition of semicarbazide and sodium acetate to give the corresponding 
semicarbazone. Then, using bromine and sodium acetate, the semicarbazone was con-
verted into the subsequent aryl 1,3,4-oxadizol-2-amine. Amide coupling between the aryl 
1,3,4-oxadiazol-2-amine and 4-trifluoromethoxy benzoic acid using benzotria-
zol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP) reagent gave 
the desired N-(1,3,4-oxadiazol-2-yl)benzamides (Scheme 1).  

 
Scheme 1. Synthesis of N-(1,3,4-oxadiazol-2-yl)benzamides. Reagents and Conditions: (a) 
Semicarbazide hydrochloride, NaOAc, MeOH:H2O (1:1), rt, 30 min. (b) Bromine, NaOAc, 
AcOH, 60°C, 1 h. (c) BOP Reagent, DIPEA, DMF, rt, 12 h. 

Trifluoromethoxy containing (1,3,4-oxadiazol-2-yl)benzamides with the substitution 
of the thiophene moiety with a fluorophenyl (HSGN-237) or chlorothiophenyl 
(HSGN-238) groups had potent activity against N. gonorrhoeae strain 181 with MICs of 

Figure 1. Previously reported analogs as well as newly synthesized N-(1,3,4-oxiadizol-2-
yl)benzamides for this study. Note: CLogP was calculated using SwissADME.

The synthesis of these compounds started with a substituted aryl aldehyde, fol-
lowed by the addition of semicarbazide and sodium acetate to give the corresponding
semicarbazone. Then, using bromine and sodium acetate, the semicarbazone was con-
verted into the subsequent aryl 1,3,4-oxadizol-2-amine. Amide coupling between the
aryl 1,3,4-oxadiazol-2-amine and 4-trifluoromethoxy benzoic acid using benzotriazol-1-
yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP) reagent gave the de-
sired N-(1,3,4-oxadiazol-2-yl)benzamides (Scheme 1).
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Scheme 1. Synthesis of N-(1,3,4-oxadiazol-2-yl)benzamides. Reagents and Conditions: (a) Semicarbazide hydrochloride,
NaOAc, MeOH:H2O (1:1), rt, 30 min. (b) Bromine, NaOAc, AcOH, 60◦C, 1 h. (c) BOP Reagent, DIPEA, DMF, rt, 12 h.

Trifluoromethoxy containing (1,3,4-oxadiazol-2-yl)benzamides with the substitution
of the thiophene moiety with a fluorophenyl (HSGN-237) or chlorothiophenyl (HSGN-238)
groups had potent activity against N. gonorrhoeae strain 181 with MICs of 0.125 µg/mL
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(Table 1). Interestingly, the substitution of the 4-trifluoromethoxy phenyl group with a
fluorine, as well as the substitution of the thiophene moiety with trifluoromethylphenyl
(HSGN-235) only had moderate activity when tested against N. gonorrhoeae strain 181
(Table 1). Since both HSGN-237 and HSGN-238 contained aromatic rings bearing a halo-
gen atom, we speculate that the loss of activity for HSGN-235 is due to the addition
of the fluorine atom ortho to the trifluoromethoxy group (see Figure 1 and Table 1 for
comparisons).

Table 1. MICs (µg/mL) of the previously reported analogs (compounds 6, 12, and 13) and the
new compounds (HSGN-235, -237, and -238) against N. gonorrhoeae strain 181. The experiment was
repeated 3 independent times and the same MIC values were obtained. Compounds tested are in
bold while control drugs are in regular script.

Compound/Control Drug N. gonorrhoeae Strain 181

Compound 6 0.5
Compound 12 0.06
Compound 13 0.06

HSGN-235 16
HSGN-237 0.125
HSGN-238 0.125

Azithromycin 256
Tetracycline 2

After the initial screening against N. gonorrhoeae 181, the anti-gonococcal activity
of HSGN-235, -237, and -238 was explored against a panel drug-resistant pathogenic N.
gonorrhoeae strains, including one WHO reference strain (N. gonorrhoeae WHO L) which
has a well-characterized antibiogram and phenotypic and genetic markers [30]. As depicted
in Table 2, HSGN-237 and -238 exhibited potent activity against the tested strains, with
inhibitions of their growth at concentrations ranging from 0.03 to 0.125 µg/mL. Both
were superior to azithromycin and tetracycline against the tested isolates. On the other
hand, HSGN 235 inhibited the growth of the tested strains at concentrations ranging from
1 to 2 µg/mL. Interestingly, the minimum bactericidal concentration (MBC) values of
HSGN235, -237, and -238 were the same as or one-fold higher than their corresponding
MIC values, indicating that the compounds exhibit bactericidal activity against the tested
N. gonorrhoeae strains.

Table 2. MICs and MBCs (µg/mL) of HSGN-235, -237, and -238 against N. gonorrhoeae clinical isolates. The experiment was
repeated three independent times and the same MIC values were obtained.

Bacterial Strains
HSGN-235 HSGN-237 HSGN-238 Azithromycin Tetracycline

MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC

N. gonorrhoeae 165 2 2 0.06 0.125 0.125 0.25 1 4 4 8
N. gonorrhoeae 166 2 2 0.06 0.06 0.125 0.25 0.5 1 2 8
N. gonorrhoeae 194 1 1 0.03 0.06 0.125 0.125 0.25 0.5 1 4
N. gonorrhoeae 197 1 2 0.03 0.06 0.125 0.125 0.5 2 2 4
N. gonorrhoeae 200 2 2 0.06 0.06 0.125 0.125 0.5 0.5 2 8

N. gonorrhoeae WHO L 1 2 0.06 0.06 0.06 0.125 0.5 1 0.5 2

2.2. Antibacterial Activity of N-(1,3,4-oxadiazol-2-yl)benzamides against Other Bacterial Species

While the focus of these new N-(1,3,4-oxadiazol-2-yl)benzamides is towards N. gonor-
rhoeae, we proceeded to test their activity against other Gram-positive and Gram-negative
pathogens. Intriguingly, HSGN-235, HSGN-237, and HSGN-238 had potent activity
against the tested Gram-positive bacterial pathogens. For instance, all three compounds had
potent activity against the staphylococcal strains, with MICs ranging from 0.25 to 1 µg/mL
(Table 3). Furthermore, HSGN-235, HSGN-237, and HSGN-238 maintained potent activity
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against clinically relevant Gram-positive bacterial pathogens such as vancomycin-resistant
enterococci (VRE) and Listeria monocytogenes (Table 3). Additionally, we moved to test if
HSGN-235, HSGN-237, and HSGN-238 were active against other Gram-negative bacterial
pathogens. These compounds were found to be inactive against E. coli BW25113. This lack
of activity against Gram-negative bacteria appears to be due to HSGN-235, HSGN-237,
and HSGN-238 being a substrate for efflux. This can be seen by the shift in the MICs
observed for HSGN-235, HSGN-237, and HSGN-238 against wild-type E. coli BW25113
(MIC >8 µg/mL for all compounds; Table 3) in comparison to a mutant strain (E. coli
JW55031), where the AcrAB-TolC multidrug-resistant efflux pump is knocked out (MIC
for HSGN-235, HSGN-237, and HSGN-238 improves to 4, 0.25, and 0.06 µg/mL, respec-
tively; Table 3). A similar result was observed with linezolid, an antibiotic known to be
a substrate for the AcrAB-TolC efflux pump in Gram-negative bacteria, as reported in
previous reports [31,32]. Interestingly, HSGN-235, HSGN-237, and HSGN-238 appeared
to be bacteriostatic agents, as their MBCs were more than three-fold higher than their
corresponding MICs against the tested bacterial strains (Table 3).

Table 3. MICs (µg/mL) and minimum bactericidal concentrations (MBCs, in µg/mL) of HSGN-235, HSGN-237, and
HSGN-238 and control drugs (vancomycin, linezolid, and gentamicin) against a panel of clinically important Gram-positive
and Gram-negative bacterial pathogens including: Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA),
Enterococcus faecalis, Enterococcus faecium, Listeria monocytogenes, and Escherichia coli. The experiment was repeated three
independent times and the same MIC values were obtained.

HSGN-235 HSGN-237 HSGN-238 Vancomycin Linezolid Gentamicin

Bacterial Strains MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC

S. aureus ATCC 25923 1 >64 0.25 >64 0.25 >64 1 1 2 64 NT NT

MRSA USA300 0.5 64 0.25 32 0.25 16 1 2 1 16 NT NT

E. faecalis
ATCC 29212 4 32 1 >64 1 32 1 1 2 64 NT NT

VRE. faecalisATCC 51575 2 >64 1 >64 1 32 >64 >64 2 64 NT NT

VRE. faecalis ATCC 51299 1 64 0.5 16 0.25 8 >64 >64 1 32 NT NT

VRE. faecium ATCC 700221 1 32 0.5 8 0.25 8 32 32 2 64 NT NT

L. monocytogenes
ATCC 19115 1 64 0.5 64 0.5 32 1 1 2 64 NT NT

E. coli
BW25113

(wild-type strain)
>8 >8 >8 >8 >8 >8 >64 >64 >64 >64 0.25 0.25

E. coli
JW55031

(TolC Mutant)
4 >64 0.25 16 0.06 32 >64 >64 8 >64 0.25 0.25

NT: Not tested.

2.3. Antibacterial Activity of N-(1,3,4-oxadiazol-2-yl)benzamides against N. gonorrhoeae in
Presence of Serum

An increase in MIC due to antibiotics being highly protein-bound has been docu-
mented in several classes of antibiotics [33–35]. Therefore, we evaluated our compounds’
activity against N. gonorrhoeae in the presence of different concentrations of fetal bovine
serum (FBS). As presented in Table S2, the activity of HSGN-235, -237, and -238 was re-
duced in the presence of FBS. The addition of 1%, 5%, and 10% FBS to the media increased
the MIC of HSGN-237 to 0.125, 1, and 4 µg/mL, respectively (see Table S2). Similarly, the
MIC of HSGN-238 also changed to 0.25 and 1 µg/mL (still considered good potency) in
the presence of 1% and 5% FBS, respectively, but stayed at 1 µg/mL with the addition of
10% FBS (Table S2). The MIC of HSGN-235 did not change in the presence of 1% FBS, but
increased to 4 and 8 µg/mL in the presence of 5% and 10% FBS, respectively (Table S2).
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Hydrophobic antibiotics such as antimicrobial peptides and lipopeptides have been found
to show an increase in MIC upon the addition of serum to media [36,37]. We predict that
the hydrophobicity of these N-(1,3,4-oxadiazol-2-yl)benzamides contributes to the rise in
MIC in the presence of FBS. Future studies will attempt to develop analogs thereof with
fewer protein-binding properties.

2.4. N-(1,3,4-Oxadiazol-2-yl)benzamides Are Highly Tolerable to Human Cell Lines

Prokaryotic cell selectivity is highly important for an antibiotic candidate. Therefore,
since HSGN-237 and -238 were found to be the most potent analogs against N. gonorrhoeae,
they were assessed for toxicity to mammalian cells over 24- and 48-h periods (Figure 2A,B).
Both compounds showed excellent safety profiles against human colorectal cells (Caco-2).
For instance, HSGN-237 was non-toxic at concentrations higher than 64 µg/mL, which is
512-times higher than the compound‘s corresponding MIC values against N. gonorrhoeae
(Figure 2A,B). Additionally, HSGN-238 was non-toxic at concentrations of up to 16 µg/mL
which is 128 times higher than the compound‘s corresponding MIC values against N.
gonorrhoeae (Figure 2A,B).
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Figure 2. In vitro cytotoxicity assessment of HSGN-237 and -238 (tested in triplicate) against human
colorectal cells (Caco-2) after (A) 24 h, and (B) 48 h, using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Results are presented as
percent viable cells relative to DMSO (negative control). Error bars represent standard deviation
values. A two-way ANOVA, with post hoc Dunnet’s multiple comparisons test, determined the
statistical difference between the values obtained for the compound and DMSO. Asterisks denote
statistically significant differences between treatments of cells with either HSGN-237 or -238 as
compared to DMSO-treated cells. The experiment was repeated 3 independent times.

2.5. HSGN-238 Demonstrates High Intestinal Permeability:

Oral bioavailability is a highly important consideration when developing bioactive
molecules as therapeutic agents [38]. A critical factor of oral bioavailability is human intesti-
nal absorption. The Caco-2 bidirectional permeability assay is the most widely used in vitro
model for predicting if a bioactive molecule can have adequate systemic absorption [39,40].
Thus, we selected HSGN-238 to act as a model to analyze the drug-like properties of newly
synthesized N-(1,3,4-oxadiazol-2-yl)benzamides. The assay demonstrated that HSGN-238
showed an outstanding ability to permeate across Caco-2 bilayers (apparent permeability,
Papp = 82.3 × 10−6 cm s−1 from the apical to basolateral and Papp = 32.9 × 10−6 cm s−1

from the basolateral to apical; see Table 4). This permeability is comparable to propranolol
(Papp = 37.2 × 10−6 cm s−1 from the apical to basolateral and Papp = 22.7 × 10−6 cm s−1

from the basolateral to apical (Table 4)), a drug that is known to have a high perme-
ability across Caco-2 bilayers. Ranitidine was used as a low-permeability control, as its
Papp = 0.5 × 10−6 cm s−1 from the apical to basolateral and Papp = 1.3 × 10−6 cm s−1 from
the basolateral to apical. Therefore, the Caco-2 permeability results indicate that HSGN-238
has a high potential to be strongly absorbed after being administered orally.
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Table 4. Caco-2 permeability analysis for HSGN-238 and control drugs.

Compound/Control Drug Mean A→ B Papp (cm s−1) Mean B→ A Papp (cm s−1) Notes

HSGN-238 82.3 × 10−6 32.9 × 10−6 High Permeability
Ranitidine 0.5 × 10−6 1.3 × 10−6 Low Permeability Control

Propranolol 37.2 × 10−6 22.7 × 10−6 High Permeability Control

3. Materials and Methods
3.1. Chemistry

General considerations: All reagents and solvents were purchased from commercial
sources. The 1H, 13C, and 19F NMR spectra were acquired in DMSO-d6 as solvent using a
500 MHz spectrometer with Me4Si as an internal standard. Chemical shifts are reported
in parts per million (δ) and were calibrated using residual undeuterated solvent as an
internal reference. Data for 1H NMR spectra are reported as follows: chemical shift (δ ppm)
(multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows:
s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, or combinations thereof.
High resolution mass spectra (HRMS) were obtained using electron spray ionization (ESI)
technique and as TOF mass analyzer. New compounds were characterized by 1H NMR,
13C NMR, 19F NMR, and HRMS data.

3.2. Synthesis of 1,3,4-Oxadiazol-2-Amines [A.1-A.3]

The synthesis of A.1-A.3 was performed following a literature-reported procedure [41].
1H, 13C, and 19F NMR spectra were in agreement with the literature-reported data.

3.3. Amide Coupling Procedure for Synthesis of Compounds

A 20 mL screw-capped vial, charged with the corresponding acid (1 eq.), amine (1 eq.),
BOP reagent (2.7 eq.), and diisopropylethylamine (23 eq.) in DMF solvent (3 mL), was
stirred at room temperature for 16 h. After completion, the reaction mixture was concen-
trated under reduced pressure, followed by flash column chromatography (hexanes:ethyl
acetate 80:20 to 60:40) to give the desired product.

3.4. 3-Fluoro-4-(trifluoromethoxy)-N-(5-(4-(trifluoromethyl)phenyl)-1,3,4-oxadiazol-2-yl)
benzamide (HSGN-235)

Off-white solid (34 mg, 18%). 1H NMR (500 MHz, DMSO-d6) δ 8.1 (m, 2H), 8.0 (m,
2H), 7.8 (m, 2H), 7.5 (m, 1H). 13C NMR (126 MHz, DMSO-d6) δ 161.9, 160.1, 158.4, 153.0
(d, J = 258.3 Hz), 136.3 (d, J = 12.6 Hz), 132.0 (q, J = 32.8 Hz), 129.7, 127.5, 127.4, 126.9 (d,
J = 3.78 Hz), 126.8, 126.0 (d, J = 5.04 Hz), 125.3, 123.1 (q, J = 288.5 Hz), 121.5 (q, J = 259.6 Hz).
19F NMR (471 MHz, DMSO-d6) δ −59.0 (s, 3F), −62.9 (s, 3F), −132.1 (s, 1F). HRMS (ESI)
m/z calcd for C17H9F7N3O3 [M + H]+ 436.0532, found 436.0531.

3.5. N-(5-(3-Fluorophenyl)-1,3,4-oxadiazol-2-yl)-4-(trifluoromethoxy)benzamide (HSGN-237)

Off-white solid (42 mg, 24%). 1H NMR (500 MHz, DMSO-d6) δ 8.2 (dd, J = 8.5, 3.6
Hz, 2H), 7.8 (dd, J = 7.9, 3.6 Hz, 1H), 7.7 – 7.6 (m, 2H), 7.5 (ddd, J = 34.6, 10.1, 6.0 Hz, 3H).
13C NMR (126 MHz, DMSO-d6) δ 165.0, 163.7 (d, J = 245.7 Hz), 160.2, 158.8, 151.9, 132.4 (d,
J = 8.82 Hz), 132.2, 131.3, 125.9 (d, J = 8.82 Hz), 122.8, 121.5 (q, J = 259.6 Hz), 121.1, 119.3 (d,
J = 21.4 Hz), 113.3 (d, J = 23.9 Hz). 19F NMR (471 MHz, DMSO-d6) δ −57.8 (s, 3F), −112.5
(q, J = 8.1 Hz, 1F). HRMS (ESI) m/z calcd for C16H10F4N3O3 [M + H]+ 368.0658, found
368.0659.

3.6. N-(5-(5-Chlorothiophen-2-yl)-1,3,4-oxadiazol-2-yl)-4-(trifluoromethoxy)benzamide
(HSGN-238)

Off-white solid (45 mg, 24%). 1H NMR (500 MHz, DMSO-d6) δ 8.1 (d, J = 8.5 Hz, 2H),
7.6 (d, J = 4.1 Hz, 1H), 7.5 (m, 2H), 7.3 (m, 1H). 13C NMR (126 MHz, DMSO-d6) δ 164.8,
158.0, 156.5, 151.9, 133.5, 131.9, 131.3, 129.9, 129.1, 123.7, 121.4 (q, J = 258.3 Hz), 121.1. 19F
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NMR (471 MHz, DMSO-d6) δ -57.8 (s, 3F). HRMS (ESI) m/z calcd for C14H8ClF3N3O3S
[M + H]+ 389.9927, found 389.9925.

3.7. Bacterial Strains, Media, Reagents and Cell Lines

Neisseria gonorrhoeae clinical isolates (Table S1) used in this study were obtained from
the CDC. S. aureus, MRSA, E. faecalis, E. faecium, and L. monocytogenes strains were obtained
from the American Type Culture Collection (ATCC). E. coli BW25113 and JW25113 were
obtained from the Coli Genetic Stock Center (CGSC), Yale University, USA. Media and
reagents were purchased from commercial vendors: Brucella broth, chocolate II agar, cation-
adjusted Mueller Hinton broth, tryptic soy broth (TSB), and tryptic soy agar (TSA) (Becton,
Dickinson and Company, Cockeysville, MD, USA); yeast extract and dextrose (Fisher
Bioreagents, Fairlawn, NJ, USA), proteose-peptone, nicotinamide adenine dinucleotide
(NAD), agarose and tetracycline (Sigma-Aldrich, St. Louis, MO, USA); hematin, Tween
80, pyridoxal, linezolid and gentamicin sulfate (Chem-Impex International, Wood Dale,
IL, USA); Dulbecco’s Modified Eagle Medium (DMEM), fetal bovine serum (FBS) and
phosphate-buffered saline (PBS) (Corning, Manassas, VA, USA); and azithromycin (TCI
America, Portland, OR, USA). Human colorectal adenocarcinoma epithelial cells (Caco-
2) (ATCC HTB-37) was obtained from the American Type Culture Collection (ATCC)
(Manassas, VA, USA). Compounds were synthesized from commercial sources in our
laboratory.

3.8. Determination of the MICs of Compounds and Control Drugs against N. gonorrhoeae Strains

The MICs of the tested compounds and control drugs; azithromycin, and tetracycline
were determined using the broth microdilution as described previously [42–44]. Briefly,
bacteria were grown overnight on chocolate agar II at 37◦ C in the presence of 5% CO2.
Afterwards, a bacterial suspension equivalent to 1.0 McFarland standard was prepared and
diluted in brucella broth supplemented with yeast extract, neopeptone, hematin, pyridoxal,
and NAD. Test agents were added in the first row of the 96-well plates and serially diluted
along the plates. Plates were then incubated at 37◦ C in the presence of 5% CO2 for 24
h. The MICs reported in Table 1 are the minimum concentrations of the compounds and
control drugs that could completely inhibit the visual growth of bacteria. The minimum
bactericidal concentration (MBC) of these drugs was tested by plating 4 µL from wells
with no growth onto chocolate agar II plates. Plates were then incubated at 37 ◦ C in the
presence of 5% CO2 for 24 h. The MBC was categorized as the lowest concentration that
reduced bacterial growth by 99.9% [45–47].

3.9. Determination of the MICs and MBCs of Compounds and Control Drugs against Clinically
Important Gram-Positive and Gram-Negative Bacteria

The minimum inhibitory concentrations (MICs) of the tested compounds and control
drugs, linezolid, vancomycin, and gentamicin, were determined using the broth microdilu-
tion method according to the guidelines outlined by the Clinical and Laboratory Standards
Institute (CLSI) [48] against clinically relevant bacterial (Staphylococcus aureus, MRSA, Es-
cherichia coli, Enterococcus faecalis and Enterococcus faecium strains. S. aureus, MRSA, E. coli,
Enterococcus faecalis and Enterococcus faecium were grown aerobically overnight on tryptone
soy agar (TSA) plates at 37◦ C. Afterwards, a bacterial solution equivalent to 0.5 McFarland
standard was prepared and diluted in cation-adjusted Mueller–Hinton broth (CAMHB) (for
S. aureus, MRSA, and E. coli) to achieve a bacterial concentration of about 5 × 105 CFU/mL.
Enterococcus faecalis and Enterococcus faecium 0.5 McFarland standard solution was diluted
in tryptone soy broth (TSB) to achieve a bacterial concentration of about 5 × 105 CFU/mL.
Compounds and control drugs were added in the first row of 96-well plates and serially
diluted with the corresponding media containing bacteria. Plates were then incubated
as previously described. MICs reported in Table 2 are the minimum concentration of the
compounds and control drugs that could completely inhibit the visual growth of bacteria.
The minimum bactericidal concentration (MBC) was tested by spotting 4 µL from wells
with no growth onto TSA plates. Plates were incubated at 37 ◦ C for at least 18 h before
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recording the MBC. The MBC was categorized as the lowest concentration that reduced
bacterial growth by 99.9% [45–47].

3.10. In Vitro Cytotoxicity Analysis of HSGN-237 and -238 against Human Colorectal Cells

HSGN-237 and -238 were assayed for potential cytotoxicity against a human colorec-
tal adenocarcinoma (Caco-2) cell line, as described previously [16,49,50]. Briefly, tested
compounds were incubated with caco-2 cells for 24 and 48 h. Then, the cells were incubated
with MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium) reagent for 4 h before measuring the absorbance values (OD490).

3.11. Caco-2 Permeability Assay

Assay and data analysis were performed by Eurofins Panlabs (MO, USA) according to
a previously reported protocol [51,52]. The apparent permeability coefficient (Papp) of the
tested agents was calculated using the equation below:

Papp(cm/s) =
VR ∗ CR,end

∆t
∗ 1

A ∗ (CD,mid − CR,mid)
,

where VR is the volume of the receiver chamber. CR,end is the concentration of the test
compound in the receiver chamber at the end time point, ∆t is the incubation time, and A
is the surface area of the cell monolayer. CD,mid is the calculated mid-point concentration
of the test compound in the donor side, which is the mean value of the donor concentration
at 0 minutes and the donor concentration at the end time point. CR,mid is the mid-point
concentration of the test compound in the receiver side, which is one half of the receiver
concentration at the end time point. Concentrations of the test compound were expressed
as peak areas of the test compound.

4. Conclusions

We have identified promising N-(1,3,4-oxadiazol-2-yl)benzamides with potent an-
tibacterial activity against N. gonorrhoeae. Furthermore, HSGN-237 and -238 exhibited
ha ighly acceptable tolerability to human colon cells. Moreover, when assessed using a
Caco-2 bidirectional permeability assay, HSGN-238 showed a remarkable ability to cross
Caco-2 bilayers, indicating that it would have favorable systemic absorption. Thus, the
potent antibacterial profiles of these N-(1,3,4-oxadiazol-2-yl)benzamides warrants further
investigation and exploration as potential therapeutics to treat drug-resistant N. gonorrhoeae
infections. OCF3-modified N-(1,3,4-oxadiazol-2-yl)benzamides can be added to the list of
novel antibacterial agents with novel scaffolds that we have reported [53–56].

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/5/2427/s1.
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