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Thermomonospora curvata Henssen 1957 is the type species of the genus Thermomonospo-
ra. This genus is of interest because members of this clade are sources of new antibiotics, en-
zymes, and products with pharmacological activity. In addition, members of this genus par-
ticipate in the active degradation of cellulose. This is the first complete genome sequence of a 
member of the family Thermomonosporaceae. Here we describe the features of this organ-
ism, together with the complete genome sequence and annotation. The 5,639,016 bp long 
genome with its 4,985 protein-coding and 76 RNA genes is a part of the Genomic Encyclo-
pedia of Bacteria and Archaea project. 

Introduction 
Strain B9T (= DSM 43183 = ATCC 19995 = JCM 
3096) is the type strain of Thermomonospora cur-
vata, which in turn is the type species of the genus 
Thermomonospora [1]. T. curvata was effectively 
published in 1957 [1]. When the original strains 
R30 and R71 were no longer cultivable, strain B9 
was proposed as the neotype in 1967 [2]. Current-
ly, there are two species in the genus Thermomo-
nospora, which in turn is one of the six genera in 
the family Thermomonosporaceae [3]. The generic 
name Thermomonospora was proposed by Hens-
sen [1] for thermophilic actinomycetes isolated 
from composted stable manure [4]. Strain B9T was 

isolated from municipal refuse compost samples 
[1]. Other (rubber degrading) strains of T. curvata 
have been isolated from food residues used in an-
imal husbandry in Egypt (strain E4), from com-
post in Germany (strain E5) [5], and also from 
municipal solid waste compost (probably USA) [6-
9]. Cellulase biosynthesis has been studied in a 
catabolite repression-resistant mutant of T. curva-
ta [10]. Here we present a summary classification 
and a set of features for T. curvata strain B9T, to-
gether with the description of the complete ge-
nomic sequencing and annotation. 
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Classification and features 
The 16S rRNA gene sequence of the strain B9T 
(AF002262) shows 98.1% identity with the 16S 
rRNA gene sequence of T. curvata strain E5 
(AY525766) [5].The distance of strain B9T to other 
members of this family ranged between 5% and 
7%. Further analysis shows 94% 16S rRNA gene 
sequence identity with an uncultured bacterium, 
clone BG079 (HM362496) and 92% similarity to 
compost metagenome contig00434 (AD-
GO01000428) [11] from metagenomic libraries 
(env_nt) (status October 2010). A representative 
genomic 16S rRNA sequence of T. curvata was 
compared using NCBI BLAST under default settings 
(e.g., considering only the high-scoring segment 
pairs (HSPs) from the best 250 hits) with the most 
recent release of the Greengenes database [12] and 
the relative frequencies, weighted by BLAST scores, 
of taxa and keywords (reduced to their stem [13]) 
were determined. The five most frequent genera 
were Actinomadura (54.3%), Nocardiopsis (12.5%), 
Actinocorallia (8.8%), Jiangella (5.8%) and Acti-
noallomurus (5.0%) (208 hits in total). Regarding 
the two hits to sequences from members of the 
species, the average identity within HSPs was 
99.9%, whereas the average coverage by HSPs was 
96.2%. Regarding the single hit to sequences from 

other members of the genus, the average identity 
within HSPs was 95.2%, whereas the average cov-
erage by HSPs was 58.4%. Among all other species, 
the one yielding the highest score was Actinomadu-
ra cremea, which corresponded to an identity of 
96.3% and a HSP coverage of 85.3%. The highest-
scoring environmental sequence was HM362496 
('microbial naturally composting sugarcane piles 
decomposting bagasse clone BG079'), which 
showed an identity of 94.5% and a HSP coverage of 
96.3%. Within the labels of environmental samples 
which yielded hits, the five most frequent key-
words were 'soil' (4.7%), 'compost' (3.1%), 
'microbi' (2.4%), 'skin' (2.0%) and 'acid' (2.0%) (41 
hits in total). These keywords partially fit to the 
ecology of compost and food residues, from which 
the known strains have been isolated [1,5,6]. Envi-
ronmental samples which yielded hits of a higher 
score than the highest scoring species were not 
found. 
Figure 1 shows the phylogenetic neighborhood of 
T. curvata B9T in a 16S rRNA based tree. The se-
quences of the four 16S rRNA gene copies in the 
genome differ from each other by up to one nucleo-
tide, and differ by up to five nucleotides from the 
previously published 16S rRNA sequence 
(D86945), which contains one ambiguous base call.  

 

 
Figure 1. Phylogenetic tree highlighting the position of T. curvata relative to the type strains of the other species 
within the genus and to the type strains of the other genera within the suborder Streptosporangineae. The trees 
were inferred from 1,373 aligned characters [14,15] of the 16S rRNA gene sequence under the maximum like-
lihood criterion [16] and rooted with the type strain of the order in accordance with the current taxonomy [17]. 
The branches are scaled in terms of the expected number of substitutions per site. Numbers above branches are 
support values from 1,000 bootstrap replicates [18] if larger than 60%. Lineages with type strain genome se-
quencing projects registered in GOLD [19] are shown in blue, published genomes in bold [20,21]. 
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Strain B9T is facultatively aerobic, Gram-positive, 
non-acid-alcohol-fast, and chemoorganotrophic 
[1,4 Table 1]. Based on the original literature, the 
morphology of neotype B9T was the same as of the 
original strains [1,2]. Substrate mycelium was 
branched and bared aerial hyphae that differen-
tiated into single or short chains of arthrospores 
[2,4] (Figure 2, arthrospores not visible). Spores 
were formed by the differentiation of the sporo-
phores when they reached a given width [2]. Poly-
morphic and single spores in clusters appeared 
with a folded surface on branched and unbranched 
sporophores [2]. They had spindle, lemon or pear 
forms varying between 0.6-1.5 x 0.3-0.9 µm [2]. The 
optimal growth occurred at 50°C. However, weak 
growth was observed at 40°C and 65°C, but no 
growth at 28°C [2]. Colonies were white or yellow 
depending on culture medium [2]. On meat extract 
agar, the growth was moderate, aerial white myce-
lium formed and the colonies were yellow to brown 
[2]. On asparagine glucose agar, the growth was 
low and the aerial mycelium white [2]. On casein 
glucose agar, a few single colonies were observed 
[2]. The growth was good and the aerial mycelium 
white on cellulose agar medium [2]. On Czapek 
agar, a few spotty colonies were observed [2]. On 
Czapek peptone agar, the growth was good, almost 
no aerial mycelium formation [2]. When oatmeal 
agar was used as medium, the growth was good 
and the aerial mycelium white [2]. The growth on 
yeast agar was good, with thick aerial mycelium. In 
this case, colonies were partially yellow [2]. On 
yeast glucose agar, the growth was good, aerial my-
celium developed later and was white while brow-

nish colonies were formed [2]. On yeast starch agar, 
the growth was good, white aerial mycelium was 
formed and colonies were yellow to orange [2]. On 
potato agar I, spotty growth is observed, while no 
aerial mycelium was formed [2]. Few single colo-
nies formed on potato agar II [2]. On starch agar 
medium, the growth was moderate and aerial my-
celium was white [2]. Strain B9T showed endoglu-
conase activity and attacks cellulose [4]. It was also 
active in the decomposition of municipal waste 
compost [6-9]. When grown on protein-extracted 
lucerne fiber compound, strain B9T released 16 
times more β-glucosidases compared to growth on 
cellulose or purified cellulose [34]. Strain B9T grew 
well at pH 7.5 on any nutrient medium that con-
tains some yeast extract. It showed significant 
growth even at pH 11 [35]. Tests of the nitrate re-
duction and phosphatase were positive [4]. The 
sole carbon sources (1%, w/v) were ribose and su-
crose. L-arabinose, galactose, lactose and mannitol 
were not used [4]. Strain B9T was able to degrade 
agar, cellulose powder (MN300), carboxymethyl-
cellulose, keratin, xylan, starch, Tween 20 and 
Tween 80 [4]. Growth was also observed in the 
presence of crystal violet (0.2 µg/ml), but it was 
inhibited by kanamycin and novobiocin (each 
25µg/ml) [4]. The inability to utilize pectin is an 
important feature that differentiates strain B9T 
from other members of the genus Thermomonospo-
ra. Amylases of the strain B9T were extremely ac-
tive and stable at 60-70°C and slightly acid to neu-
tral pH [36-38]. Also, endoglucanase and exogluca-
nase were active in the strain [39]. Cellobiose was 
found to be a good cellulase inducer [40]. 

 
Figure 2. Scanning electron micrograph of T. curvata B9T 
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Table 1. Classification and general features of T. curvata B9T according to the MIGS recommendations [22] 

MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS [23] 

Phylum Actinobacteria TAS [24] 

Class Actinobacteria TAS [25] 

Order Actinomycetales TAS [25-28] 

Family Thermomonosporaceae TAS [25,28,29] 

Genus Thermomonospora TAS [1,27,30,31] 

Species Thermomonospora curvata TAS [1,27] 

Type strain B9 TAS [2] 
 Gram stain positive TAS [1] 

 Cell shape mycelium TAS [1] 

 Motility not mobile NAS 

 Sporulation yes TAS [1] 

 Temperature range 40°C-65°C TAS [1] 

 Optimum temperature 50°C TAS [1] 
 Salinity not reported NAS 

MIGS-22 Oxygen requirement facultative aerobic TAS 

 Carbon source ribose and sucrose TAS [4] 

 Energy source chemoorganotroph TAS [1] 

MIGS-6 Habitat compost, overheated vegetable material, straw TAS [4] 

MIGS-15 Biotic relationship not reported NAS 

MIGS-14 Pathogenicity no TAS [4] 

 Biosafety level 1 TAS [32] 

 Isolation rye straw TAS [1] 

MIGS-4 Geographic location unknown, but most probably Berlin, Germany TAS [1] 

MIGS-5 Sample collection time 1959 TAS [1] 
MIGS-4.1 
MIGS-4.2 

Latitude 
Longitude 

52.5 
13.4 

NAS 

MIGS-4.3 Depth not reported NAS 

MIGS-4.4 Altitude approx. 34-115 m above sea level NAS 

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement 
(i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed 
for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evi-
dence). These evidence codes are from of the Gene Ontology project [33]. If the evidence code is IDA, then 
the property was directly observed by one of the authors or an expert mentioned in the acknowledgements 

Chemotaxonomy 
Strain B9T possesses a cell wall type III with A1γ 
and with meso-diaminopimelic acid as major con-
stituent [4,41,42]. The principal menaquinones 
are MK-9(H4), MK-9(H6) and MK-9(H8), with 
MK-9(H6) being the predominant one (the profile 
type sensu Kroppenstedt is termed 4B2 [43]) [4]. 
The fatty acid profile was described to be of type 
3a [4]. Members of this type can synthesize  

terminally branched and 10-methyl-branched fat-
ty acids [43]. T. curvata lacks madurose, a type C 
sugar and has polar lipids of type IV [4], 
represented by phosphatidylinositol (PI) and un-
known phospholipids (PL), which according to 
Lechevalier [44,45] are, phosphatidyglycerol (PE), 
phosphatidylinositolmannosides(PIM) and di-
phosphatidylglycerol (DPG) [4]. 
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Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [46], and is part 
of the Genomic Encyclopedia of Bacteria and Arc-
haea project [47]. The genome project is depo-

sited in the Genomes OnLine Database [19] and 
the complete genome sequence is deposited in 
GenBank. Sequencing, finishing and annotation 
were performed by the DOE Joint Genome Insti-
tute (JGI). A summary of the project information is 
shown in Table 2. 

Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
One Sanger 6 kb pMCL200 library, one 454 pyrose-
quence standard library and one Illumina standard library 

MIGS-29 Sequencing platforms ABI3730, 454 GS FLX, Illumina GAii 
MIGS-31.2 Sequencing coverage 9.7 × Sanger; 26.6 × pyrosequence 
MIGS-30 Assemblers Newbler version 1.1.02.15, phrap 
MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 
 INSDC ID CP001738 
 Genbank Date of Release November 19, 2009 
 GOLD ID Gc01146 
 NCBI project ID 20825 
 Database: IMG-GEBA 646311963 
MIGS-13 Source material identifier DSM 43183 
 Project relevance Tree of Life, GEBA 

Growth conditions and DNA isolation 
T. curvata B9T, DSM 43183, was grown in DSMZ 
medium 550 (CYC medium, modified following 
Cross and Attwell, 1973) [48] at 45°C. DNA was 
isolated from 0.5-1 g of cell paste using Master-
Pure Gram-positive NDA purification kit (Epicen-
tre MGP04100) following the standard protocol as 
recommended by the manufacturer, with modifi-
cation st/LALM for cell lysis as described in Wu et 
al. [47]. DNA is available through the DNA bank 
Network [49,50]. 

Genome sequencing and assembly 
The genome of was sequenced using a combina-
tion of Sanger and 454 sequencing platforms. All 
general aspects of library construction and se-
quencing can be found at the JGI website [51]. Py-
rosequencing reads were assembled using the 
Newbler assembler version 1.1.02.15 (Roche). 
Large Newbler contigs were broken into 6,203 
overlapping fragments of 1,000 bp and entered 
into assembly as pseudo-reads. The sequences 
were assigned quality scores based on Newbler 
consensus q-scores with modifications to account 
for overlap redundancy and adjust inflated q-
scores. A hybrid 454/Sanger assembly was made 
using the parallel phrap (High Performance Soft-
ware, LLC). Possible mis-assemblies were cor-
rected with Dupfinisher [52] or transposon bomb-

ing of bridging clones (Epicentre Biotechnologies, 
Madison, WI). A total of 2,673 Sanger finishing 
reads were produced to close gaps, to resolve re-
petitive regions, and to raise the quality of the fi-
nished sequence. Illumina reads that were used to 
correct potential base errors and increase consen-
sus quality using a software Polisher developed at 
JGI [53]. The error rate of the completed genome 
sequence is less than 1 in 100,000. Together, the 
combination of the Sanger and 454 sequencing 
platforms provided 36.3 × coverage of the ge-
nome. The final assembly contains 73,067 Sanger 
reads and 602,893 pyrosequencing reads. 

Genome annotation 
Genes were identified using Prodigal [54] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [55]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGRFam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [56]. 
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Genome properties 
The genome consists of a 5,639,016 bp long chro-
mosome with a 71.6% GC content (Figure 3 and 
Table 3). Of the 5,061 genes predicted, 4,985 were 
protein-coding genes, and 76 RNAs; ninety five 

pseudogenes were also identified. The majority of 
the protein-coding genes (64.7%) were assigned 
with a putative function while the remaining ones 
were annotated as hypothetical proteins. The dis-
tribution of genes into COGs functional categories 
is presented in Table 4. 

 

 
Figure 3. Graphical circular map of the genome. From outside to the center: Genes on forward strand (color by 
COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, 
other RNAs black), GC content, GC skew. 
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Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 5,639,016 100.00% 
DNA coding region (bp) 4,739,306 84.04% 
DNA G+C content (bp) 4,039,905 71.64% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 5,061 100.00% 
RNA genes 76 1.50% 
rRNA operons 4  
Protein-coding genes 4,985 98.50% 
Pseudo genes 95 1.88% 
Genes with function prediction 3,275 64.71% 
Genes in paralog clusters 895 17.68% 
Genes assigned to COGs 3,274 64.69% 
Genes assigned Pfam domains 3,647 72.06% 
Genes with signal peptides 1,418 28.02% 
Genes with transmembrane helices 1,089 21.52% 
CRISPR repeats 12  

 

Table 4. Number of genes associated with the general COG functional categories 

Code value %age Description 
J 169 4.5 Translation, ribosomal structure and biogenesis 
A 2 0.1 RNA processing and modification 
K 382 10.1 Transcription 
L 174 4.6 Replication, recombination and repair 
B 1 0.0 Chromatin structure and dynamics 
D 41 1.1 Cell cycle control, cell division, chromosome partitioning 
Y 0 0.0 Nuclear structure 
V 68 1.8 Defense mechanisms 
T 270 7.2 Signal transduction mechanisms 
M 159 4.2 Cell wall/membrane/envelope biogenesis 
N 2 0.1 Cell motility 
Z 2 0.1 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 38 1.0 Intracellular trafficking and secretion, and vesicular transport 
O 134 3.6 Posttranslational modification, protein turnover, chaperones 
C 256 6.8 Energy production and conversion 
G 193 5.1 Carbohydrate transport and metabolism 
E 292 7.7 Amino acid transport and metabolism 
F 78 2.1 Nucleotide transport and metabolism 
H 161 4.3 Coenzyme transport and metabolism 
I 265 6.8 Lipid transport and metabolism 
P 160 4.2 Inorganic ion transport and metabolism 
Q 181 4.8 Secondary metabolites biosynthesis, transport and catabolism 
R 511 13.5 General function prediction only 
S 243 6.4 Function unknown 
- 1,787 35.3 Not in COGs 
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