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Abstract: Background: Ionizing radiation from galactic cosmic rays (GCR) is one of the major risk
factors that will impact the health of astronauts on extended missions outside the protective effects of
the Earth’s magnetic field. The NASA GeneLab project has detailed information on radiation exposure
using animal models with curated dosimetry information for spaceflight experiments. Methods:
We analyzed multiple GeneLab omics datasets associated with both ground-based and spaceflight
radiation studies that included in vivo and in vitro approaches. A range of ions from protons to iron
particles with doses from 0.1 to 1.0 Gy for ground studies, as well as samples flown in low Earth orbit
(LEO) with total doses of 1.0 mGy to 30 mGy, were utilized. Results: From this analysis, we were able
to identify distinct biological signatures associating specific ions with specific biological responses
due to radiation exposure in space. For example, we discovered changes in mitochondrial function,
ribosomal assembly, and immune pathways as a function of dose. Conclusions: We provided a
summary of how the GeneLab’s rich database of omics experiments with animal models can be used
to generate novel hypotheses to better understand human health risks from GCR exposures.

Keywords: GeneLab; NASA; space radiation; HZE; galactic cosmic rays; transcriptomics; dosimetry;
radiation

1. Introduction

Space is a hostile environment, and human space travel will entail effects at many levels of
biological organization leading to related physiological effects. One of the major environmental factors
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in space is radiation. Ionizing radiation in space is composed of a complex mixture of particles
including protons from the sun and galactic cosmic rays (GCRs) originating from outside the solar
system. The GCR is composed of atomic nuclei, including a component of heavy charged and energetic
(HZE) particles that are relatively few in number but highly ionizing. A major risk-factor for human
spaceflight is exposure GCR HZE that can cause DNA damage that is unrepaired or mis-repaired [1].

Current research has shown measurable impact on in several areas affecting human health bone
loss [2], skeletal muscle atrophy [3–5], reproductive hazards in women and men [6], cognitive/behavioral
changes [7], central nervous system (CNS) decrements [8,9], and changes in cardiovascular
physiology [10]. The possibility that space radiation exposure to increase cardiovascular disease risk
requires additional validation similar to the ongoing observations of increased cardiac impairment
observed in radiotherapy-treated cancer survivors [11,12]. Spaceflight has also been shown to have an
impact on established cancer hallmarks [13], possibly increasing carcinogenic risk [14].

At the molecular level, space radiation from high energy photons and atomic nuclei can cause
damage to cellular components, in particular deoxyribonucleic acid (DNA). Damaged DNA, which
is inadequately repaired, can led to mutations and chromosomal aberrations that have potential
to propagate into RNA, potentially leading to cancer. Simulations using ground-based datasets
representative of a combined space radiation and microgravity exposure have demonstrated that
oxidative stress processes and mitochondrial dysfunctions are important contributors to biological
effects from spaceflight. Simulated microgravity studies have demonstrated an inhibitory effect on cell
cycle and cell proliferation [15]. These studies show the value of research centered on understanding
the totality of space exposures [16]. A multitude of other biological processes that are affected include
increased genomic instability and mutation rates [17], immune dysregulation [18], and deregulated
cellular energetics [19]. Conflicting results on cellular stemness [20] have been reported with effects
such as elongation of telomere and altered telomerase function that require clarification [21,22].

A substantial amount of work has also been generated in the area of omics. For several
decades, omics animal-based studies have been performed to understand the human health risks
due to spaceflight missions using the International Space Station, the space shuttle, biosatellites,
and ground-based experiments. NASA’s growing GeneLab omics database now hosts almost 250
experimental studies on spaceflight exposure and analogous ground-based experiments from microbes,
plants, animal models, and human/animal-derived cell cultures [23]. These data are available
as an open-access resource for single- and multi-omic analyses on microarray, RNA-sequencing,
bisulfite-sequencing, proteomic, metabolomic, and metagenomic datasets. Although these data are
targeted to better understand the risks associated with human spaceflight, these experiments also
demonstrate a unique stress that provides a better understanding of adverse human health effects due
to alterations in cellular behavior owing to factors such as microgravity, altered carbon dioxide levels,
psychological stressors, and damaging ionizing radiation exposures from GCR and protons in the
Earth’s radiation belts. These datasets, and in particular the in vivo animal models used, present a
unique experimental setting to study the cellular and host-level interactions that impact human health.

In this study, a meta-analysis of these accumulated transcriptomic datasets in GeneLab relevant to
spaceflight was undertaken to uncover potential dose-dependent biological responses that will help
in understanding the human health risks experienced in the spaceflight environment. The studies
identified were from human- and animal-derived tissues or cells exposed to protons and GCR HZEs
at doses ranging from 0.1 to 1.0 Gy for ground studies and using samples flown to the International
Space Station or shuttle missions with total doses between 1.0 and 30 mGy. Ground experiments are
a well-established analog for space flight, but are limited in that they are relatively high dose, high
dose rate, and in most cases use single particle species, in contrast to the low dose, low dose rate
mixed radiation in space. Further work is needed to elucidate platform-dependent differences (mixed
fields now being offered at the NASA Space Radiation Laboratory [24] are a step in this direction).
The datasets were pooled and subjected to gene set enrichment analysis (GSEA) to identify clusters of
gene sets and associated biological processes. The results from this analysis highlight novel cellular
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responses that may be relevant contributors to the combined effects of microgravity and space radiation
and therefore critical drivers of health risks from space radiation.

2. Results

Using primarily in vivo animal models and their associated curated datasets available from the
NASA GeneLab’s omics database, an examination of biological responses as a function of radiation
dose was made using transcriptional and sequencing data. A total of 30 experimental conditions from
25 GeneLab Data System (GLDS) datasets were collected (Table 1). Multiple datasets were included
from human or murine cell cultures or animal tissues from several anatomical sites (adrenal gland,
blood, bone marrow, brain, breast, heart, cartilage, skin, eye, hair follicle, kidney, liver, lung, muscle,
spleen, or thymus). For the simulated space radiation ground studies (GLDS-73, -80, -109, and -117)
information related to energy, linear energy transfer (LET, a measure of energy deposition at the cellular
and molecular scale), dose rate, particle charge, and particle mass are available and can be viewed
in Table S1. The dose data for all spaceflight experiments, with the exception of GLDS-111, were
from instruments available on the Space Shuttle and the International Space Station. Analysis was
completed by subject matter experts from the Space Radiation Analysis Group (SRAG), Johnson Space
Center, NASA. The provenance of data from GLDS-111 (Bion-M1) is detailed in the environmental
data section of the GLDS for Bion-M1. The doses and dose rates for ground-based exposures are from
the NASA Space Radiation Laboratory with uncertainties that are less than 2% [24].

Table 1. Summary of the NASA GeneLab datasets for samples exposed to cosmic radiation during
spaceflight or analogous ground-based radiation experiments curated for analysis.

GLDS Condition Dose
(mGy)

Radiation
Type * Species Tissue/Cell Culture Ref.

63 Spaceflight 1.04 LEO Rat Mammary [25–27]
52 Spaceflight 1.54 LEO Human Endothelial cells (HUVEC) [28,29]
114 Spaceflight 1.83 LEO Human Fibroblast cells (AG01522) [30]
21 Spaceflight 2.19 LEO Mouse (C57BL/6) Skeletal muscle [31–33]
4 Spaceflight 3.25 LEO Mouse (C57BL/6) Thymus [32,34]

47 Spaceflight 4.62 LEO Mouse (C57BL/6) Liver [35]
25 Spaceflight 4.66 LEO Mouse (C57BL/6) Liver [32,33,36–42]
98 Spaceflight 7.78 LEO Mouse (C57BL/6) Adrenal gland [32]
99 Spaceflight 7.78 LEO Mouse (C57BL/6) Muscle (extensor digitorum longus) [32]
100 Spaceflight 7.78 LEO Mouse (C57BL/6) Eye [43]
101 Spaceflight 7.78 LEO Mouse (C57BL/6) Muscle (gastrocnemius) [32]
102 Spaceflight 7.78 LEO Mouse (C57BL/6) Kidney [32]
103 Spaceflight 7.78 LEO Mouse (C57BL/6) Muscle (quadriceps) [32]
104 Spaceflight 7.78 LEO Mouse (C57BL/6) Muscle (soleus) [32]
105 Spaceflight 7.78 LEO Mouse (C57BL/6) Muscle (tibialis anterior) [32]
168 Spaceflight 7.78 LEO Mouse (C57BL/6) Liver [42,44]
242 Spaceflight 8.03 LEO Mouse (C57BL/6) Liver [45]
161 Spaceflight 9.20 LEO Mouse (BALB/C) Adrenal gland [46]
162 Spaceflight 9.20 LEO Mouse (BALB/C) Eye [47]
163 Spaceflight 9.20 LEO Mouse (BALB/C) Kidney [48]
168 Spaceflight 9.20 LEO Mouse (BALB/C) Liver [42,44]
61 Spaceflight 28.80 LEO Mouse (C57BL/6) Skin [32,49]

111 Spaceflight 29.90 LEO Mouse (C57BL/6) Muscle (extensor digitorum longus) [5,32,33]
111 Spaceflight 29.90 LEO Mouse (C57BL/6) Muscle (soleus) [5,32,33]
80 Ground 100 Silicon Mouse (BALB/C) Mammary tissue [50]

109 Ground 150 Iron Mouse (C57BL/6) Cardiomyocytes [29,51]
80 Ground 300 Silicon Mouse (BALB/C) Mammary tissue [50]
73 Ground 500 Iron Human Bronchial epithelial cells [52]
73 Ground 500 Silicon Human Bronchial epithelial cells [52]

117 Ground 900 Proton Mouse (C57BL/6) Cardiomyocytes [29,51]
73 Ground 1000 Iron Human Bronchial epithelial cells [52]
73 Ground 1000 Silicon Human Bronchial epithelial cells [52]

* LEO: low Earth orbit radiation for flight experiments is due to a combination of cosmic radiation (protons, galactic
cosmic rays (GCR), and heavier ions) as well as protons trapped in Earth radiation belts.
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2.1. Changes in RNA-Specific Error Rates Comparing Spaceflight Versus Ground Control Samples

DNA mutations caused by ionizing radiation have been shown to propagate onto RNA during
translation, unless they are adequately removed by transcription-coupled repair. Higher doses of
radiation exposure to a cell will result in greater accumulated damage, up to a point where the
cellular repair mechanisms are overwhelmed. However, lower levels of damage may be replicated
into RNA with aberrant effects on translation and cellular function. Thus, RNA-sequencing data
using mice liver samples from two experiments were analyzed to identify potential error rates due
to spaceflight. Analysis of the GLDS-168 dataset showed no difference in overall mapping error
rates across the entire genome (approximately 0.5%). Further investigation of the mismatches with
respect to each chromosome identified error rates to be near 0.5%; however, there was no difference
between the spaceflight and ground control groups (Figure 1A,B). Interestingly, there were differential
error rates across some chromosomes, in particular the sex-associated chromosomes, and error rates
for genes associated with mitochondrial DNA were lower than genomic DNA, supporting dynamic
DNA damage repair in mitochondria (reviewed in [53]). Further analysis revealed increased rates
of substitution in specific base sequences in GLDS-168 samples (Figure 1C) but not in the GLDS-242
dataset (Figure 1D). Specific base substitutions showed an increase in A>G and C>T substitutions in
only GLDS-168 samples. We also observed a significant increase in CGT and GTA errors but a decrease
in CAC and GTG errors in spaceflight animals versus ground controls (all corrected p < 0.05; Figure 1E).
In contrast the GLDS-242 dataset showed an overall reduction, though non-significant, in specific base
errors with a significant change in substitutions (p < 0.05, corrected) in spaceflight animals compared
to ground controls (Figure 1D,F).Cancers 2020, 12, 381 5 of 24 

 

 
Figure 1. RNA-sequencing error rates in mouse livers from GLDS-168 (left column) and GLDS-242 
(right column) experiments for spaceflight (black bars) compared to ground control samples (white 
bars). Error rates were examined as follows: (A,B) mismatch rates across chromosomes normalized 
by the number of bases sequenced; (C,D) single base substitution rates; (E,F) CAC, CGT, GTA, or GTG 
error rates. Significance indicated by * p-value < 0.05 and ** p-value < 0.01. 

2.2. Comparison of Multiple Genelab Datasets Using Principal Component Analysis  

Each individual transcriptome dataset was analyzed by comparing flight/radiation exposure 
versus ground/control treatment. Utilizing standard bioinformatics pipelines for RNA-sequencing 
and microarray analyses, we obtained expression data for each dataset for use in gene set enrichment 
analysis (GSEA) [54]. The results indicated a wide variance of significantly regulated gene sets per 
dataset (Figure 2). When considering a false discovery rate (FDR) < 0.05, we observed some datasets 
with a low number of significantly regulated gene sets, whereas others had a high amount of 
significant results for the three GSEA molecular signature database collections (i.e., C5, C2, and C6). 
Thus, for further analysis, individual gene sets were considered for analysis if they had a FDR < 0.25 
in 50% or more of the total datasets examined. Then, using Cytoscape’s enrichment mapper, these 
gene sets were grouped into networks and further examined using the auto-annotate feature to 
cluster similar gene sets on the basis of biological similarity, referred to as “annotated gene sets”.  
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Figure 1. RNA-sequencing error rates in mouse livers from GLDS-168 (left column) and GLDS-242
(right column) experiments for spaceflight (black bars) compared to ground control samples (white
bars). Error rates were examined as follows: (A,B) mismatch rates across chromosomes normalized by
the number of bases sequenced; (C,D) single base substitution rates; (E,F) CAC, CGT, GTA, or GTG
error rates. Significance indicated by * p-value < 0.05 and ** p-value < 0.01.

2.2. Comparison of Multiple Genelab Datasets Using Principal Component Analysis

Each individual transcriptome dataset was analyzed by comparing flight/radiation exposure
versus ground/control treatment. Utilizing standard bioinformatics pipelines for RNA-sequencing
and microarray analyses, we obtained expression data for each dataset for use in gene set enrichment
analysis (GSEA) [54]. The results indicated a wide variance of significantly regulated gene sets per
dataset (Figure 2). When considering a false discovery rate (FDR) < 0.05, we observed some datasets
with a low number of significantly regulated gene sets, whereas others had a high amount of significant
results for the three GSEA molecular signature database collections (i.e., C5, C2, and C6). Thus, for
further analysis, individual gene sets were considered for analysis if they had a FDR < 0.25 in 50%
or more of the total datasets examined. Then, using Cytoscape’s enrichment mapper, these gene sets
were grouped into networks and further examined using the auto-annotate feature to cluster similar
gene sets on the basis of biological similarity, referred to as “annotated gene sets”.Cancers 2020, 12, 381 6 of 24 

 

 

Figure 2. The number of statistically significant gene sets from gene set enrichment analysis (GSEA) 
with a false discovery rate (FDR) < 0.05 for each dataset for the major molecular signatures database 
collections (i.e., C5, C2, and C6). The black bars represent the unaltered genes and the white bars 
represent the annotated gene sets. 

To observe if any trends or batch issues arise from this type of analysis, we compared the 
normalized enrichment scores (NES) for all the gene sets resulting from each molecular signature 
database collection (Figure 3 and S1–3). Principal component analysis (PCA) plots indicated that there 
were no batch issues occurring globally for either the pre- or post-annotated gene sets as a function 
of dose (Figure 3). In addition, we did not observe any tissue dependence or clustering for the pre- 
or post-annotated gene sets (Figure S1). Lastly, these samples were also clustered with t-distributed 
stochastic neighbor embedding (t-SNE) plots to observe whether different methods would produce 
conflicting results (Figure S2 and S3). The t-SNE plots also provided additional validation that no 
batch issues are observed with this type of analysis when considering dose or tissue dependence. 
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Figure 2. The number of statistically significant gene sets from gene set enrichment analysis (GSEA)
with a false discovery rate (FDR) < 0.05 for each dataset for the major molecular signatures database
collections (i.e., C5, C2, and C6). The black bars represent the unaltered genes and the white bars
represent the annotated gene sets.

To observe if any trends or batch issues arise from this type of analysis, we compared the
normalized enrichment scores (NES) for all the gene sets resulting from each molecular signature
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database collection (Figure 3 and Figures S1–S3). Principal component analysis (PCA) plots indicated
that there were no batch issues occurring globally for either the pre- or post-annotated gene sets as a
function of dose (Figure 3). In addition, we did not observe any tissue dependence or clustering for the
pre- or post-annotated gene sets (Figure S1). Lastly, these samples were also clustered with t-distributed
stochastic neighbor embedding (t-SNE) plots to observe whether different methods would produce
conflicting results (Figures S2 and S3). The t-SNE plots also provided additional validation that no
batch issues are observed with this type of analysis when considering dose or tissue dependence.
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Figure 3. Principal component analysis (PCA) plots on GLDS datasets using the gene set enrichment
analysis (GSEA) nominal enrichment scores before (top row) and after (bottom row) auto-annotation
using Cytoscape’s enrichment map software. GSEA gene sets used were as follows: (A,B) C5 Gene
Ontology (GO) terms, (C,D) C2 curated terms, and (E,F) C6 oncogenic signature terms. Each data point
is represented by experimental radiation dose (color) or radiation type (shape).

To compare the number of genes sets with the annotated gene sets, we provided heatmaps and
clustering for all the datasets based on the NES for each molecular signature database collection for the
analysis with the FDR < 0.25 (Figure 4). As expected, the annotated gene sets provided fewer gene
sets, enabling a more streamlined analysis downstream. The overall pattern of the datasets between
the annotated gene sets and all the genes sets did not change. This indicates that any analysis on the
annotated gene sets should provide similar results for all the gene sets.
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Figure 4. Heatmaps on all gene sets and also annotated gene sets for each molecular signature database
collection. Euclidean clustering was used for clustering the rows and columns.

2.3. Transcriptome Evaluation of Biological Functions Impacted by Spaceflight Exposure in Animal Models

To observe the impact of radiation exposure, transcriptional data from experiments spanning 1 to
1000 mGy doses in animal models and cell cultures were examined for alteration in multiple biological
pathways. This analysis combined statistically significant biological pathways that resulted from
GSEA analysis for each individual dataset [54]. This included the following three major molecular
signatures database collections: (1) the Gene Ontology (GO; C5) gene sets from biological processes,
cellular components, and molecular functions; (2) the curated dataset (C2) gene sets from chemical and
genetic perturbations and canonical pathways such as the BioCarta, Kyoto Encyclopedia of Genes and
Genomes (KEGG), Pathway Interaction Database (PID), and Reactome pathway databases; and (3) the
oncogenic signatures (C6) gene sets representing major pathways altered in cancer.

2.3.1. GSEA C5: Gene Ontology Results

Using Cytoscape’s enrichment mapper, 63 statistically significant GSEA gene sets from the Gene
Ontology (C5) database had a FDR < 25% in 50% or more of the GeneLab datasets analyzed. Using the
auto-annotate clustering tool, these 63 gene sets represented 7 major biological pathways including:
(1) ribosome assembly, (2) mitochondrial function, (3) interferon-gamma response, (4) chemotaxis,
(5) cellular differentiation, (6) extracellular organization, and (7) cytokine production (Figure 5A).
Each of these clusters was driven by an overrepresented enrichment of genes related to these pathways.

In addition to understanding common biological pathways disrupted by spaceflight and
ground-based radiation exposure, these results were also used to examine possible dose-dependent
trends. Using a k-means clustering of the heatmaps representing each clustering nominal
enrichment scores, six major annotated clusters were overwhelmingly represented this data, including
(1) mitochondrial pathways, (2) leukocyte and adaptive immune response, (3) wound healing and VEGF
pathways, (4) ribosome, (5) lipid pathways, and (6) mitotic nuclear division (Figure 5B). The nominal
enrichment score (NES) for these annotated gene sets was plotted from 1mGy to 1000 mGy and fitted
using a generalized additive model (GAM) smoothing plot [55,56] (Figure 5C). Indeed, there was
an observed activation as a function of dose for the mitochondrial pathway, whereas the clusters
for the ribosome, lipid pathways, and mitotic nuclear division were generally inactivated. A more
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uncertain trend was observed for the immune related clusters involving leukocyte and adaptive
immune response as well as wound healing and VEGF pathways, demonstrating the complex nature
of normal tissue responses to inflammation and immune responses.
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Figure 5. Analysis of all GeneLab datasets utilized for direct comparisons with Gene Ontology (GO)
GSEA analysis. (A) Auto-annotated GO GSEA terms from Cytoscape’s enrichment mapper. Each node
represents one specific GO term with each wedge representing one GeneLab datasets utilized for this
manuscript. The yellow circles represent the auto-annotated go terms with common related pathways.
(B) Heatmap with k-means clustering for the specific GO pathways. Six specific pathways were found
to be clustered together through k-means clustering. (C) Scatter plots comparing the normalized
enrichment scores (NES) to dose in milligrays and fitting with a generalized additive model (GAM)
on each cluster (represented in (C)). Each panel represents one of the clusters and the color-coded
lines represent GAM fits performed on each GO-annotated term in the cluster. The circles in the plots
represent the gene sets and the pink shade around the GAM fits represent the standard error.

We also performed an analysis with less stringent statistics, involving a larger set of gene sets, to
observe whether other functions or pathways would appear. We performed the same analysis as above
but included significant GSEA gene sets from the Gene Ontology (C5) database that had an FDR < 0.05
in only three of the GeneLab datasets analyzed. Although the FDR was set at a lower threshold, the
lower number of required datasets with an FDR < 0.05 threshold (Figure 2) would result in more
gene sets for the downstream analysis. We saw this as true when observing the number of gene sets
(Figure S4). Some k-means clusters were too dense and were split into sub-clusters (Figures S5 and S6).
The GAM fits were provided for each cluster and sub-cluster (Figures S7–S9). As expected, this less
stringent analysis approach produced less statistically significant fits with more noise confounding the
data. Interestingly, some new trends appeared that can be related to space radiation-induced health
risks, including decreases in muscle-related pathways as a function of increasing dose (Figure S7) and
decreases in chromosome pathways with increasing dose (Figure S8). This inclusive analysis strategy
demonstrated that analyzing the data in many different ways can reveal relevant results when that can
easily be missed with only one methodology and overly strict statistical cutoffs.
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2.3.2. GSEA C2: Curated Dataset Results

To expand these results, the canonical pathways (C2) molecular signatures database collection
was examined in a similar manner to the gene ontology collection (C5) above. For this analysis, there
were 30 total datasets as opposed to 28 for the C5 gene set analysis. We determined 411 significantly
regulated C2 gene sets using Cytoscape’s enrichment mapper with an FDR ≤ 25% in 50% of the
GeneLab datasets analyzed. Due to the C2 GSEA database containing more gene sets, a larger
number of gene sets and auto-annotated terms was expected. From these terms, we observed several
key pathways, including mitotic and cell cycle pathways, cancer-related pathways, hypoxia-related
pathways, interferon pathways, and pathways related to radiation impact on cells (Figure 6A). Cell cycle
pathways [57], hypoxia [58], interferon dysregulation [59], and cancer [60–62] have all been observed
in previous research studies as dysregulated due to spaceflight.

We performed a similar analysis with C2 genes sets as we did with the C5 dose-dependent
analysis (Figures 5 and 6). Using k-means clustering for heatmaps representing each clustering nominal
enrichment scores, 15 major annotated clusters overwhelmingly represented these data, including
(1) hypoxia, MYC, and phospholipid pathways; (2) EGF, TNF, and hematopoietic pathways; (3) E2F3,
EGFR2, p53, and cell cycle pathways; (4) luminal, miR-21 targets, KRAS, and transformation pathways;
(5) RB1, metastasis, mitotic division, and progenitor pathways; (6) hematopoiesis, interferons, and
methylation pathways; (7) obesity-, oxidation-, and adipogenic-related pathways; (8) mitochondrial and
adipogenesis pathways; (9) complex EIF binding; (10) progesterone; (11) apoptosis and phospholipid
pathways; (12) inflammatory, invasion, NOTCH, and HNF1a pathways; (13) carcinoma, hypoxia,
and IL1a pathways; (14) PKD1, ZMPSTE24, and cardiac dysfunctions; and (15) ICP with H3K27ME3
pathway (Figure 6B,C). Similar to the C5 GO analysis, we observed an increase in mitochondrial
pathways as a function of dose. Observing this trend with another pathway database provided
additional confidence with these results. A clear decrease with cardiac dysfunctions, PKD1, and
ZMPSTE24 was revealed as a function of dose. Interestingly, deficiencies or decreases in both
PKD1 [63] and ZMPSTE24 [64] expression have been previously shown to cause cardiac dysfunction.
These observed biological functions seem to follow a trend that may have be missed by manual analysis.

Lastly, less stringent statistics with an FDR < 0.05 in only three of the GeneLab Datasets was also
analyzed for C2 gene sets (Figures S10–S17). Like the C5 analysis, more gene sets were clustered per
group after k-means clustering (Figure S10), leading to three clusters requiring additional k-means
sub-clustering analysis (Figures S11–S13). This less statistically stringent analysis on C2 produced
additional trends through the GAM fits that were not observed in the more conservative analysis
(Figures S14–S17). A clear decrease in TNF pathways was observed with increasing dose (Figure S16),
and a novel pathway related to taste transduction was observed as increasing with dose (Figure S17).
Interestingly, it has been reported that both olfactory pathways and taste are altered in astronauts, which
was previously thought to be due to fluid shifts in the head caused by microgravity conditions [65–67].
These data also indicate that space radiation may have some impact on this interesting phenomenon.
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Figure 6. Analysis of all GeneLab datasets utilized for direct comparisons with the GSEA C2 curated
collection analysis. (A) Auto-annotated C2 GSEA terms from Cytoscape’s enrichment mapper. Each
node represents one specific C2 term with each wedge representing one GeneLab dataset utilized
for this manuscript. The yellow circles represent the auto-annotated GO terms with common related
pathways. (B) Heatmap with k-means clustering for the specific C2 pathways. A total of 15 specific
pathways were found to be clustered together through k-means clustering. (C) Scatter plots comparing
the normalized enrichment scores (NES) to dose in mGy and fits with a generalized additive model
(GAM) on each cluster (represented in (B)). Each panel represents one of the clusters and the color-coded
lines represent GAM fits performed on each C2-annotated term in the cluster. The circles in the plots
represent the gene sets and the pink shade around the GAM fits represent the standard error.

2.3.3. GSEA C6: Oncogenic Signatures

To observe specific oncogenic pathways that may change as a function of space radiation exposure,
we also included an analysis of the GSEA C6 oncology-specific collection from the molecular signatures
database (Figure 7). From the annotation analysis, we discovered that the main oncogenic pathway
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impacted by space radiation was KRAS (Figure 7A). KRAS is a known oncogene and has been heavily
shown in the literature to be involved with lung cancer induced by space radiation [14]. The k-means
clustering on the annotated gene sets produced the following five clusters: (1) KRAS- and LEF1-related
pathways; (2) p53-, mTOR-, KRAS-, and CRX-related pathways; (3) PDGF- and TGFβ-related pathways;
(4) TBK1, VEGFA, and ERBB2 pathways; and (5) embryonic stem cells (ESC) pathway (Figure 7B).
When observing each cluster as a function of dose, there were interesting trends that can shed light
on predicting potential oncogenic risk for longer exposure to space radiation. Thus, the following
known oncogenes as well as the most regulated C6 oncogenic signatures were specifically analyzed as
a function of dose for all datasets: (1) KRAS, (2) CSR, (3) p53, (4) ESC, (5) TGFβ, (6), VEGFa, and (7)
mTOR pathways (Figure 8). These trends as a function of dose across multiple experimental datasets
emphasized a need to functionally valid these observations.
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Figure 7. Analysis of all GeneLab datasets utilized for direct comparisons with the GSEA C6 oncology
signature collection analysis. (A) Auto-annotated C6 GSEA terms from Cytoscape’s enrichment mapper.
Each node represents one specific C6 term with each wedge representing one GeneLab dataset utilized
for this manuscript. The yellow circles represent the auto-annotated GO terms with common related
pathways. (B) Heatmap with k-means clustering for the specific C6 pathways. Five specific pathways
were found to be clustered together through k-means clustering. (C) Scatter plots comparing the
normalized enrichment scores (NES) to dose in milligrays and fits with a generalized additive model
(GAM) on each cluster (represented in (B)). Each panel represents one of the clusters and the color-coded
lines represent GAM fits performed on each C6-annotated term in the cluster. The circles in the plots
represent the gene sets and the pink shade around the GAM fits represent the standard error.



Cancers 2020, 12, 381 12 of 23

Cancers 2020, 12, 381 12 of 24 

 

 
Figure 7. Analysis of all GeneLab datasets utilized for direct comparisons with the GSEA C6 oncology 
signature collection analysis. (A) Auto-annotated C6 GSEA terms from Cytoscape’s enrichment 
mapper. Each node represents one specific C6 term with each wedge representing one GeneLab 
dataset utilized for this manuscript. The yellow circles represent the auto-annotated GO terms with 
common related pathways. (B) Heatmap with k-means clustering for the specific C6 pathways. Five 
specific pathways were found to be clustered together through k-means clustering. (C) Scatter plots 
comparing the normalized enrichment scores (NES) to dose in milligrays and fits with a generalized 
additive model (GAM) on each cluster (represented in (B)). Each panel represents one of the clusters 
and the color-coded lines represent GAM fits performed on each C6-annotated term in the cluster. 
The circles in the plots represent the gene sets and the pink shade around the GAM fits represent the 
standard error. 

 
Figure 8. Analysis of all GeneLab datasets utilized for direct comparisons with the GSEA C6 oncology 
signature collection analysis. Scatter plots comparing the normalized enrichment scores (NES) to dose 
in milligrays and fits with a generalized additive model (GAM) on specific C6 oncogenes. Each panel 
represents one specific oncogene and the color-coded lines represent GAM fits performed on the 

Figure 8. Analysis of all GeneLab datasets utilized for direct comparisons with the GSEA C6 oncology
signature collection analysis. Scatter plots comparing the normalized enrichment scores (NES) to
dose in milligrays and fits with a generalized additive model (GAM) on specific C6 oncogenes. Each
panel represents one specific oncogene and the color-coded lines represent GAM fits performed on the
multiple C6 pathways associated with that oncogene. The circles in the plots represent the gene sets
and the pink shade around the GAM fits represent the standard error.

As in the previous sections, we also performed analysis with less stringent statistics with a
FDR < 0.05 in only three of the GeneLab Datasets analyzed for C6 gene sets (Figures S18–S21). Because
there are fewer gene sets in the C6 database, this analysis started to yield some of the same results
as the analysis with the higher thresholds. The GAM fits for each cluster and sub-cluster produced
similar results, with one sub-cluster purely associated with TGFβ demonstrating the same trend
(Figure S21). Interestingly, one cluster associated with TBK1 did not appear in the higher threshold
analysis and demonstrated a clear decrease in as a function of dose (Figure S20). Lastly, a major
oncogene MYC [68,69] did not show up in the higher threshold analysis, whereas in this analysis MYC
was clearly being activated with increasing dose (Figure S20), indicating that space radiation exposure
would increase the potential for carcinogenesis.

2.4. Common Genes as a Function of Dose and Association with Biological Pathways

To look at specific genes that might be common across all datasets, we performed analysis on
the log2 fold-change values for all datasets. Nine genes (COPB2, UBE2D3, LYPLA2, ARF1, COPB1,
CAPNS1, PHB2, DAD1, PRPF8) identified to be common across the spaceflight missions (1.0 to 30 mGy)
and ground studies (0.1 to 1.0 Gy) were plotted as a function of dose and average log2 fold-change
and fit to a complex polynomial model. These genes, which were expressed across the various tissue
types, displayed no significant expression effects from spaceflight up to 100 mGy. At doses higher than
100 mGy, a slight deviation from baseline expression was observed (Figure 9A). The spaceflight studies
alone showed slight fluctuations in expression across the identified gene sets (Figure 9B).

A focused analysis of only the muscle tissue datasets identified a subset of nine different genes that
were differentially expressed across the spaceflight studies from 0 to 30 mGy (Figure 9C). These genes
displayed dose-response trends. The nine common genes associated with all tissue types were associated
with pathways centered on Golgi to endoplasmic reticulum transport and post-translational protein
modifications (Figure 9D). In addition, these genes also were predicted to regulated phospholipid
activity, immune dysregulation, and embryonic lethality. We observed these pathways to also be
involved with our GSEA analysis as a function of dose.
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Figure 9. Common genes across all datasets. (A) Log2 fold-change with respect to dose for a subset of
9 genes that appeared across all 19 spaceflight studies and 3 ground studies. A polynomial of degree 2
was fit to each dose response in the range 1–1000 mGy. (B) Log2 fold-change with respect to dose for a
subset of nine genes that appeared across spaceflight studies in the range 1–30 mGy. A polynomial
of degree 1 was fit to each dose response. (C) Log2 fold-change with respect to dose for a subset of
nine genes that appeared across all eight spaceflight studies specifically related to the muscle tissues.
A polynomial of degree 1 was fit to each dose response in the range 1–30 mGy. The dashed lines denote
the +/-1 sigma errors on the fitted polynomials. (D) The functional impact of the nine common genes
determined by ToppCluster [70] and displayed using Cytoscape.

3. Discussion

Here, we presented a novel approach in using publicly available transcriptomic data to determine
potential health risks and dysregulation of biological pathways as a function of space radiation exposure.
The use of NASA’s GeneLab platform [23] allowed us to mine data that might not have otherwise
been possible to obtain from individual experimental datasets. The large number of radiation datasets
available through this platform allowed the creative combination of different datasets from former
experiments to generate new hypotheses [71].

Our hypothesis for this work suspected that there was a tissue independent dysregulation as
a function of space radiation-absorbed dose that impacted key biological pathways associated with
increased health risks such as induction of cancer. Because the GeneLab Data System contains
spaceflight transcriptomic data from mice and tissues flown in low Earth orbit (LEO) for various time
durations, we were able to obtain accumulated space radiation doses from 1 to 30 mGy. To obtain
doses that will be more relevant to long-term deep space travel [7,14], we combined our analysis with
simulated space radiation ground experiments performed in the NASA Space Radiation Laboratory
(NSRL) at Brookhaven National Laboratory [24]. These experiments were performed on both mice
and in vitro cell cultures with single ions (protons, 56Fe, and 26Si) at doses from 100 to 1000 mGy.
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By combining 25 GeneLab datasets over these doses, this work represents the first time a study has
provided a comprehensive biological analysis and produced relevant and novel results indicating
which relevant biological processes are being regulated as a function of space radiation exposure.
These results may be further utilized to generate health risk assessment models and uncover potential
targets for mitigation of space radiation effects via novel therapeutics.

We chose to first look at the distribution of mapping errors within the RNA-sequencing results
from liver samples by examining whether mice exposure to spaceflight resulted in detectable changes
compared to ground controls. We chose to focus on liver tissue datasets from GeneLab with mice
exposed to space radiation because on in the GLDS liver is the organ with the largest number
of sequenced tissue thus far from rodent research missions [71]. This extremely novel analysis
demonstrates how RNA-sequence data can be used to generate useful data other than the standard
techniques to generate counts. With a cumulative exposure of 9.20 mGy for GLDS-168 mice, significant
increases in A > G and C > T base substitutions were detected, as well as changes in CAC, CGT, GTA,
or GTG error rates (Figure 1). However, there were no significant base-specific substitutions detected,
and CAC, CGT, GTA, or GTG error rates all decreased significantly in GLDS-242 where mice received
a cumulative dose of 8.03 mGy; however, due to the uncertainty inherent in the flight dosimetry, it was
not possible to definitively determine whether this was the case.

A major difference potentially impacting the observed differences between GLDS-168 and
GLDS-242 was the animal sacrificing time at sample collection, which occurred during spaceflight for
GLDS-168, but was 2 weeks after returning to Earth for GLDS-242. The recovery time for the mice after
2 weeks back on Earth might possibly allow recovery of the base substitutions and error rates observed
during exposure to space radiation. The ability to detect single nucleotide variants (SNVs) in RNA
and DNA datasets has been performed previously on the basis of the assumption of a homogeneous
genomic sample for example from a tumor [70], whereas the sporadic and stochastic nature of HZE
exposure is expected to result in random damage throughout the genome [72]. Therefore, approaches
to map SNVs on the basis of bulk tissue approaches may not be able to account for the stochastic
nature of the SNV damage accumulated in a tissue. Our interpretation of these results was that the
spaceflight animals may have experienced more DNA damage/mutation than ground controls, but in
the animals that were returned to Earth, the recovery of the animals allowed for repair to take place.

Next, purely on the basis of statistical analysis, we were able to determine key biological functions
that were being dysregulated as a function of space radiation. For example, in the C5 Gene Ontology
(GO) terms (Figure 5C), ribosomal pathways were observed as decreasing with dose. Ribosomal
assembly consisted of a number of ribosomal protein large (rpl) genes that are necessary in the assembly
of the eukaryotic ribosome 60S subunit, as well as the ribosomal protein small genes involved 40S
and/or 60S subunit assembly. Indeed, ribosome-related genes have been previously reported to be
disrupted following exposure to ionizing radiation [73–75].

We observed a clear trend of increased activation of mitochondrial-related pathways in multiple
different pathway databases, which include both the C5 GO terms (Figure 5C) and C2 curated gene
sets (Figure 6C). Mitochondrial gene expression is susceptible to radiation-sensitivity [76]. A number
of gene sets in these clusters showed dysregulation of the NADH: ubiquinone oxidoreductase (NDUF)
gene family and mitochondria-related function, in agreement with effects of ionizing radiation on the
mitochondrial respiratory chain complexes in previous studies [77–79]. This is especially relevant
to human health, as the NASA Twins Study recently revealed mitochondrial stress and increased
mitochondrial debris in the blood [21].

A distinct elicitation of inflammatory and immune-related cellular functions was also observed in
this analysis with alteration in chemokine, cytokine, and interferon expression (Figures 5C and 6C).
Indeed, it has been very well appreciated that ionizing radiation exposure will cause both
pro-inflammatory and anti-inflammatory expression as cellular signals attempt to resolve the unique
normal tissue radiation injury that occurs both acutely and longer-term [80–82]. This immune signaling
dysregulation has also been reported to occur when exposed to space radiation [83,84].
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We also explored the potential cancer risk as a function of space radiation. The datasets we utilized
for this study were from both in vitro and in vivo samples that did not have any cancer present and
were not prone to induction of cancer. From our analysis, we observed several interesting results
indicative of increased risk for the induction of cancer. In our analysis on the C6 Oncogenic Signature
database, we observed that PDGF and TGFβ were clustered together, purely on the basis of the statistics,
and both were decreasing with increasing dose (cluster 3 in Figure 7C). This observation is closely
tied to previously established findings. In the literature, PDGF and TGFβ are closely related to cancer
progression [85]. In addition, it has been shown in the clinic that decreases in PDGF and TGFβ levels
after radiotherapy for breast cancer can cause echocardiographic alterations affecting cardiovascular
morbidity [86]. We also observed the highest frequency of the KRAS pathway, a known oncogene [87],
being impacted as a function dose (Figure 7A). It has been previously described in experiments with
single ion species that KRAS can induce lung cancer due to HZE particles [14]. Our tissue-independent
analysis did not demonstrate any significant induction of KRAS with increasing dose (cluster 1 in
Figures 7C and 8). This might indicate that either previous experiments done with single ions at higher
HZE doses did not capture the dose-dependent trend in tissues, or when considering the full spectrum
of ions at lower doses KRAS might not be the key driver in inducing tumor growth.

Other oncogenic trends we observed were decreases in CSR, ESC, TGFβ, VEGFA, and mTOR C6
pathway levels as a function of increasing radiation dose (Figures 7 and 8). TGFβ, VEGFa, and mTOR
have all previously shown similar trends with increasing dose of simulated space radiation [32,88].
The ESC C6 term is refers to differentiation of embryonic stem cells (ESC) [89]. This rather surprising
result indicates that increasing dose of space radiation reduces the efficiency of stem cell differentiation.
It has been reported that after ionizing radiation exposure, mitochondria are heavily involved with stem
cell development [90]. Exploiting these different pathway databases (i.e., GO, C2, and C6) provided
key insights on how these different pathway trends are intertwined.

The CSR C6 term refers to “common serum response” (CSR) specifically related to fibroblast
serum [91]. Fibroblast serum response refers to factors released in the serum from fibroblasts involved
in assisting with wound healing during tumorigenesis [91]. We can relate the decrease to the CSR
pathways to what we observed in the GO analysis (cluster 3 in Figure 5) related to wound healing and
VEGF pathways. We also observed with that wound healing should decrease with increasing doses of
space radiation. This decrease can also reduce wound healing due to CSR and has shown that it can
lead to tumorigenesis [91]. In addition, it has been reported that impairment occurs in space wound
healing [92,93], and these data can potentially indicate an increased chance for tumor induction.

These observed trends as a function of space radiation exposure revealed unique pathways that
seem to be specifically related to GCR, whereas some pathways from our analysis are known to be
universal responses to radiation. The mechanisms of damage are common to highly ionizing radiation
regardless of the source [94]; what is unique to chronic space radiation exposure is the combination
of highly ionizing particles, low dose, and a low dose rate, which may have implications for DNA
repair [17], mitochondrial pathways [16], and lipid pathways [42] as just a few examples of what
emerged from our analysis. In addition, we found specific cancer-related pathways that may be unique
to space radiation. For example, decreases in TGFβ [32], embryonic stem cells (ESC) [95], and VEGFa
seem to be unique to space radiation. Spaceflight studies have previously revealed a plethora of
effects that radiation can have at individual doses or over a small range of discreet doses. However,
the pooling and meta-analysis of these datasets in this study allowed for a unique visualization and
comparison over a larger range of radiation doses. This in turn made it possible to identify trends in
physiological response from low to high doses and provided insight into the response to accumulating
doses that may occur in long duration space missions or over a few days during solar particle events.

This technique may also be utilized to determine potential targets for therapeutic intervention.
For example, because we report that mitochondrial pathways decrease as a function of space radiation,
this argues for additional validation and research on specific mitochondrial targets for countermeasure
development. In addition, from this analysis we can extrapolate to specific doses that may pose greater
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health risks. This analysis can only be done by utilizing a large number of datasets that are available
from platforms such as NASA’s GeneLab. The resolution obtained from this analysis can easily be lost
once we lower the number datasets that will be used.

Our analysis has indicated several different health risks that may occur with increasing exposure to
space radiation. Through an unbiased technique purely driven by statistics and utilizing a large amount
of transcriptomic data from NASA’s GeneLab platform, we were able to identify tissue-independent
biological pathways that are dysregulated as a function of space radiation dose. We believe this
technique can further be used with other datasets and databases to generate more hypotheses that
will assist with determining optimal therapeutic countermeasures and targets that can mitigate space
radiation response in humans.

4. Materials and Methods

4.1. Chromosomal and Subsitution Error Rate Mapping

Two mouse liver RNA-sequencing datasets (GLDS-168 and GLDS-242) from NASA spaceflight
experiments were specifically analyzed for chromosomal or substitution error rates. Compressed fastq
files were cleaned using TRIM galore (v0.6.4, https://github.com/FelixKrueger/TrimGalore/blob/master/
Docs/Trim_Galore_User_Guide.md) to remove adapters and bases falling below a Q20 Phred quality
score. Paired reads were aligned to the mouse mm10 reference genome using bowtie2 (v2.3.4.1,) and the
output piped through samtools to generate a bam file. The bam file had read group information added
and was coordinate sorted using Picard tools (v2.21.3,). Mapping metrics were calculated using Picard
tools and final mismatches (MN flag) extracted with genomic coordinates using Bedtools (v2.26.0,
https://bedtools.readthedocs.io/en/latest/). Data were analyzed in R to determine the frequency of
mismatches with respect to chromosome number and plotted. Mapping quality data from Picard tools
was analyzed using GraphpadPrism (v7.0, GraphPad Software, La Jolla California USA).

4.2. Bioinformatics, Gene Set Enrichment Analysis, and Visulization Using Cytoscape

The transcriptome datasets used for this study were from openly available data housed by
NASA’s GeneLab platform (genelab.nasa.gov,). There was a total of 25 GeneLab datasets (GLDS)
with 30 experimental comparisons from RNA-sequencing or microarray platforms (Table 1). Data
pre-processing was performed as previously published to obtain normalized expression values for
the majority of the datasets [32,33,42]. For GLDS-73, human bronchial epithelial cells (HBECs) were
exposed to gamma-rays (1 Gy or 3 Gy), iron (56Fe), or silicon (26Si) particles (0.5 Gy or 1 Gy each). RNA
extraction was executed 1 hr after exposure and the transcriptome data were evaluate by microarray
technology using the Illumina HumanWG-6 V2 BeadChip (Illumina, Inc.) [52]. The raw data files
were normalized using the quantile method and then background subtraction was performed using R
Package PIMENTo (v1.0).

Fold-change values between spaceflight/radiation exposure versus ground/control samples were
calculated and used for gene set enrichment analysis (GSEA,) with three molecular signature dataset
collections (C2, C5, and C6 gene sets) [54]. These results were imported into Cytoscape (v3.7) for
further visualization and interpretation by the Enrichment Map tool [96]. Only gene set nodes with
a false-detection rate (FDR) < 0.25 in at least 50% of the total datasets analyzed were considered for
network evaluation. To reduce the complexity of the newly developed networks, we utilized the
AutoAnnotate tool (v1.3.2, http://baderlab.org/Software/AutoAnnotate) in Cytoscape to group-related
gene set nodes together. The newly annotated gene sets were then used for further analysis.

4.3. Principal Component Analysis, t-Distributed Stochastic Neighbor Embedding, k-Means Clustering,
Heatmaps, and Generalized Additive Model Fits

The GSEA-produced nominal enrichment scores (NES) were compared using principle component
analysis (PCA) plots from the R-program pca3d (v0.10, https://cran.r-project.org/web/packages/pca3d/

https://github.com/FelixKrueger/TrimGalore/blob/master/Docs/Trim_Galore_User_Guide.md
https://github.com/FelixKrueger/TrimGalore/blob/master/Docs/Trim_Galore_User_Guide.md
https://bedtools.readthedocs.io/en/latest/
genelab.nasa.gov
http://baderlab.org/Software/AutoAnnotate
https://cran.r-project.org/web/packages/pca3d/pca3d.pdf
https://cran.r-project.org/web/packages/pca3d/pca3d.pdf
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pca3d.pdf) [97], and t-distributed stochastic neighbor embedding (t-SNE) plots using R-program
Rtsne (v0.15, https://cran.r-project.org/web/packages/Rtsne/Rtsne.pdf). Further characterization
was performed by hierarchical k-means clustering on the NES. Heatmaps were generated using
the R-program pheatmap (v1.0.12, https://cran.r-project.org/web/packages/pheatmap/pheatmap.pdf).
The auto-annotated gene sets for each k-means cluster were then plotted with the NES versus the dose
for associated for each GeneLab dataset (Table 1) with R-program ggplot2 (v3.2.1,). Data points were
then fit using a generalized additive model (GAM) [55,56] across all dose ranges from 1 to 1000 mGy
with R-program mgcv (v1.8-28, https://cran.r-project.org/web/packages/mgcv/mgcv.pdf)

4.4. Analysis on Common Individual Genes with Fold-Change Values and Fits as a Function of Dose

A total of 19 spaceflight studies and 3 ground studies were selected from the GeneLab database.
Table 1 summarizes the datasets including the tissue, species, the radiation type, and the measured dose.
From each study, the fold-change value between irradiated and control for each gene was calculated.
For spaceflight studies, the log2 fold-change was computed as the ratio of the spaceflight measurement
to a ground control value. In studies where terrestrial measurements for ground control values were
made in both an animal enclosure module (AEM, also referred to as the Rodent Habitat) and a vivarium,
the AEM ground control value was used due to the similar module conditions experienced by tissue
in the spaceflight AEMs. For the terrestrial studies that simulated space radiation, the experimental
values were the samples that were irradiated with a specific ion (i.e., 56Fe, 26Si, or proton) compared to
the sham unirradiated samples closest to the time of irradiation. Across all of the studies, the most
common genes probed were chosen, which produced nine genes present with all the GLDS sets used for
this manuscript. A polynomial of degree 2 was fit to the data in the range 1–1000 mGy for all datasets.
For fits involving only spaceflight samples and only muscle tissues, due to the smaller range of doses
up to 30 mGy, data were fit using a polynomial of degree 1. All fits were performed using a chi-square
method via CERN’s ROOT toolkit (v.6.18/02,) [98]. The nine genes were entered in ToppCluster [99] to
determine the predicted pathways and functions these genes will impact. The results from ToppCluster
were imported into Cytoscape, where the predicted functions were displayed as a network.

5. Conclusions

This work is an example of how GeneLab’s rich database of omics experiments with animal models
can be exploited to better understand the effects of ionizing radiation and the resulting potential risks
to humans. This large-scale analysis of multiple transcriptome datasets including RNA-sequencing
and microarray datasets provides a valuable examination of dose-dependent perturbations of cellular
function across multiple tissue types in animal models. Individually, these experiments were limited by
flight duration, resulting in a single accumulated dose from a micture of particles or, in ground-based
studies, exposure to a single particle species. When analyzing multiple molecular databases using our
approach to many omics datasets, a more comprehensive analysis of significantly impacted biological
factors can be obtained than was previously possible.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/2/381/s1:
Figure S1: Principal component analysis (PCA) plots on GeneLab datasets (GLDS) using the gene set enrichment
analysis (GSEA) nominal enrichment scores before (top row) and after (bottom row) auto-annotation using
Cytoscape’s enrichment map software, Figure S2: t-Distributed stochastic neighbor embedding (tSNE) plots on
GeneLab datasets (GLDS) using the gene set enrichment analysis (GSEA) nominal enrichment scores before (top
row) and after (bottom row) auto-annotation using Cytoscape’s enrichment map software, Figure S3: t-Distributed
stochastic neighbor embedding (tSNE) plots on GeneLab datasets (GLDS) using the gene set enrichment analysis
(GSEA) nominal enrichment scores before (top row) and after (bottom row) auto-annotation using Cytoscape’s
enrichment map software, Figure S4: Analysis of all GeneLab datasets utilized for direct comparisons with Gene
Ontology (GO) GSEA analysis with false discovery rate (FDR) < 0.05 for three datasets, Figure S5: Analysis
of all GeneLab datasets utilized for direct comparisons with Gene Ontology (GO) GSEA analysis with FDR <
0.05 for three datasets for cluster 2, Figure S6: Analysis of all GeneLab Datasets utilized for direct comparisons
with Gene Ontology (GO) GSEA analysis with FDR < 0.05 for three datasets for cluster 3, Figure S7: Scatter
plots comparing the normalized enrichment scores (NES) to dose in mGy and fits with a generalized additive
model (GAM) on each cluster (represented in Figure S4), Figure S8: Scatter plots comparing the normalized
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enrichment scores (NES) to dose in mGy and fits with a generalized additive model (GAM) on each cluster
(represented in Figure S5), Figure S9: Scatter plots comparing the normalized enrichment scores (NES) to dose in
mGy and fits with a generalized additive model (GAM) on each cluster (represented in Figure S5), Figure S10:
Analysis of all GeneLab Datasets utilized for direct comparisons with C2 curated gene sets GSEA analysis with
FDR < 0.05 for three datasets, Figure S11: Analysis of all GeneLab datasets utilized for direct comparisons with
C2-curated gene set GSEA analysis with FDR < 0.05 for three datasets for cluster 1, Figure S12: Analysis of all
GeneLab datasets utilized for direct comparisons with C2-curated gene set GSEA analysis with FDR < 0.05 for
three datasets for cluster 2, Figure S13: Analysis of all GeneLab datasets utilized for direct comparisons with
C2-curated gene set GSEA analysis with FDR < 0.05 for three datasets for cluster 3, Figure S14: Scatter plots
comparing the normalized enrichment scores (NES) to dose in mGy and fits with a generalized additive model
(GAM) on each cluster (represented in Figure S10), Figure S15: Scatter plots comparing the normalized enrichment
scores (NES) to dose in mGy and fits with a generalized additive model (GAM) on each cluster (represented in
Figure S11), Figure S16: Scatter plots comparing the normalized enrichment scores (NES) to dose in mGy and fits
with a generalized additive model (GAM) on each cluster (represented in Figure S12), Figure S17: Scatter plots
comparing the normalized enrichment scores (NES) to dose in mGy and fits with a generalized additive model
(GAM) on each cluster (represented in Figure S13), Figure S18: Analysis of all GeneLab datasets utilized for direct
comparisons with C6 Oncogenic Signature GSEA analysis with FDR < 0.05 for three datasets, Figure S19: Analysis
of all GeneLab datasets utilized for direct comparisons with C6 Oncogenic Signature GSEA analysis with FDR <
0.05 for three datasets for cluster 1, Figure S20: Scatter plots comparing the normalized enrichment scores (NES)
to dose in mGy and fits with a generalized additive model (GAM) on each cluster (represented in Figure S18),
Figure S21: Scatter plots comparing the normalized enrichment scores (NES) to dose in mGy and fits with a
generalized additive model (GAM) on each cluster (represented in Figure S19), Table S1: Doses and dose rates for
ground-based exposures at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory.
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