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ABSTRACT: Hydrogen, an environmentally friendly and highly
regarded future energy source, can form flammable vapor clouds
upon leakage, which may transition into explosion. Predicting the
dispersion behavior of hydrogen is crucial for preventing such incidents.
This study aims to develop a quantitative property−consequence
relationship (QPCR) model using the response surface method (RSM)
and artificial neural network (ANN) to swiftly and accurately predict
dispersion behavior. Initially, 8 variables were defined from source and
dispersion models, constructing a data set through 6,561 PHAST
simulations. Subsequently, the RSM-BBD (Box-Behnken design) and
ANN-BPNN (Backpropagation neural network) models were devel-
oped, alongside a hybrid model incorporating BPNN after excluding
four low-influence variables based on analysis of variance (ANOVA).
All models achieved an R2 value exceeding 0.99. The hybrid model notably reduced computational costs by 97% compared to ANN-
BPNN and exhibited lower mean square error (MSE). These results introduce a cost-effective approach for high-accuracy QPCR
modeling and highlight the viability of diverse statistical methods.

■ INTRODUCTION
Hydrogen is gaining prominence as a next-generation energy
solution, as it can serve as a renewable energy source capable of
replacing fossil fuels without posing a threat to the environ-
ment, while also addressing energy scarcity issues.1,2 Hydrogen
serves not only as a fuel for internal combustion engines in
applications such as aircraft propulsion, hydrogen vehicles, and
hydrogen refueling stations, but also plays a crucial role in
hydrogen fuel cells, where it converts the chemical energy of
hydrogen into mechanical energy. Additionally, hydrogen finds
utility in various conventional petrochemical processes,
including ammonia production and chemical processing.3,4

Despite its potential, hydrogen’s high flammability poses
risks of chemical accidents, including fires and explosions, even
with minimum ignition energy.1,2,5 For example, if the thermal
management system of an electric vehicle’s lithium-ion battery
fails, hydrogen gas as an off-gas can be discharged into the
environment, dispersing and potentially causing fires and
explosions.6−8 One notable hydrogen-related accident oc-
curred in June 2019 at the Uno-X hydrogen refueling station in
Norway. The incident involved a vapor cloud explosion
triggered by progressive hydrogen leakage due to a plug sealing
error. The leaking hydrogen spread and accumulated in the

surrounding environment, resulting in a vapor cloud that
ignited and caused the explosion. This incident resulted in two
injuries and temporary closure of the hydrogen refueling
station, which caused economic losses.9 Such accidents
demonstrate that hydrogen leaks can rapidly form vapor
clouds and escalate into major incidents, including fires and
explosions, because of potential ignition sources.10 Therefore,
in order to avoid fire and explosion accidents caused by leaked
hydrogen, efforts must be made to quickly and properly
understand the dispersion properties of unignited hydrogen
emitted in the hydrogen industry.
The leakage and dispersion of chemical substances,

including hydrogen, can be evaluated and predicted by
understanding the relationship between various input param-
eters such as leakage hole diameter, operating pressure, wind
speed, and concentration of chemicals at specific times and
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locations, which serve as output variables. Such relationships
can be analyzed using the source model and dispersion
model.11,12 The source model evaluates the quantity or rate of
chemical leakage and plays a central role in assessing the size of
vapor clouds or the potential for fires.11,12 The dispersion
model assesses the process of mixing and spreading in the
atmosphere following a release. The dispersion model is
classified into: Empirical methods, Computational Fluid
Dynamics (CFD) approach and Unified Dispersion Models
(UDM).13

Empirical and CFD methodologies may produce drastically
varied findings depending on the specialist’s competence. CFD
approaches, in particular, have limitations due to significant
computational costs depending on hardware performance,
software employed, and user expertise.14 In contrast, a well-
known UDM, PHAST, uses complex models to numerically
study the behavior of chemical compounds by solving time-
dependent ordinary differential equations. This program
addresses the limits of inaccurate empirical models by using
enhanced models and provides the advantage of evaluating
chemical dispersion behavior quickly and at a lower computa-
tional cost than CFD approaches. Furthermore, PHAST has
been proven reliable by numerous prior researches, including
Wiltox et al.15−17

Recently, there has been a trend to combine machine
learning algorithms such as Artificial Neural Networks (ANN)
with CFD or UDM to predict the dispersion of chemicals.18−21

The quantitative property-consequence relationship (QPCR)
model, originally proposed by Jiao et al., is a well-known
machine learning-based dispersion prediction model.21 QPCR
serves as a rapid assessment and prediction tool for
consequences such as dispersion by connecting leakage
conditions and chemical properties to dispersion consequen-
ces. It introduces the concept of ”Property descriptor,”
encompassing source properties, physical properties, criteria
properties, and more, allowing for rapid evaluation and
prediction of consequences. Jiao et al. developed a QPCR
using the Extreme Gradient Boosting algorithm and PHAST to
analyze the dispersion of combustible gases.21 Jiao et al. also
built QPCR models for predicting hazardous dispersion using
algorithms like XGBoost and Random Forests.22 In another
study, they created a QPCR model to assess the influence of
harmful gas dispersion on mortality rates.13

Besides the QPCR models, Li et al. used the Back
Propagation Neural Network (BPNN) to calculate the
maximum horizontal downwind distance utilizing variables
from the source model (leakage flow rate, leakage hole
diameter, and hydrogen mixing ratio).23 BPNN is an algorithm
for predicting challenging nonlinear issues. It consists of three
layers: input, hidden, and output. It modifies the weights and
biases of the neurons using forward propagation and back-
propagation to minimize the loss function (such as mean
squared error), optimizing the network for accurate
predictions. However, while these researches created pre-
diction models for generic chemicals that focused on source
and physical parameters, they ignored dispersion properties
such ambient temperature, wind speed, and release height,
which are crucial variables in dispersion models.
Meanwhile, the Response Surface Method (RSM) serves as

a useful statistical tool for analyzing the impact of input
variables on output variables.24,25 RSM, in particular, has the
advantage of producing accurate results with a limited number
of experimental outcomes, since it can construct response

surfaces with a small number of experiments or trials, removing
the need for lengthy research.25 Furthermore, Analysis of
variance (ANOVA) in RSM uses p-values to analyze the
influence of input variables on the regression model, allowing
for variable sensitivity analysis.26 For the reason for these
benefits, RSM is adopted in many studies to assess the
dispersion consequences of chemicals.
Shi et al. suggested a strategy for predicting vapor cloud size

that takes into account variables from both the source model
(leakage flow rate and direction) and the dispersion model
(wind speed and direction), using RSM and FLACS CFD.27

Mousavi and Parvini combined RSM and PHAST to simulate
the effects of variables from the source model (operating
temperature, operating pressure, leakage hole diameter, release
height) and the dispersion model (atmospheric temperature,
relative humidity, surface roughness, wind speed, atmospheric
pressure).28 However, Shi et al.’s study, which uses CFD
results, has limits in terms of simulation costs and computing
procedures for input variables, limiting the ability to estimate
results quickly. Furthermore, Mousavi and Parvini’s study
focused entirely on the sensitivity of each variable to the
results, which is a weakness.
In this study, we created three types of QPCR models to

predict hydrogen leakage and dispersion, considering both the
source and dispersion models via RSM and ANN. To begin,
scenarios of hydrogen leakage in high-pressure facilities were
chosen, with three variables from the source model and five
variables from the dispersion model serving as property
descriptors. We then used PHAST to calculate the downwind
distances for hydrogen at Lower Explosive Limit (LEL) 100%
and 25%. We utilized PHAST to simulate 6,561 situations,
resulting in 13,122 data points. We subsequently developed
three QPCR models: one using RSM, one using ANN, and a
hybrid model combining RSM and ANN. Finally, we validated
the three QPCR models using the number of data points
needed for model building, the determination coefficient (R2),
and mean squared error (MSE). This study’s findings illustrate
the development of a more accurate and rapid QPCR model,
as well as the potential of diverse statistical approaches in
QPCR model development.

■ METHODOLOGY
In this study, the process of developing the QPCR differed
from the procedure outlined by Jiao et al.,29 as it incorporated
not only the RSM-based QPCR model but also a hybrid
QPCR model that integrates RSM and ANN methods (Figure
1). This section is dedicated to the development and
evaluation of QPCR models utilizing statistical methods such
as ANN to predict hydrogen leakage and dispersion. Instead of
extensively discussing conventional machine learning models,
the focus remains on detailing the key steps outlined in Figure
1.
In this study, the models being developed are designed with

careful consideration of uncertainties. When modeling complex
systems, both aleatoric and epistemic uncertainties need to be
addressed with caution.30,31 Aleatoric uncertainty, also referred
to as data uncertainty, represents inherent errors embedded in
the data. While aleatoric uncertainty cannot be entirely
eliminated, this study aims to mitigate intrinsic noise (e.g.,
variations in measurement environments) that may occur
during the data acquisition process by constructing a data set
based on simulation results. The second type, epistemic
uncertainty, arises from a lack of knowledge about the values of
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model parameters. This uncertainty can be reduced by
obtaining a sufficient amount of data or conducting a thorough
sensitivity analysis.32 In this study, the ANN-BPNN QPCR
model addresses epistemic uncertainty by securing an adequate
amount of data, while the RSM-BBD QPCR model and the
Hybrid QPCR model mitigate this uncertainty through
sensitivity analysis using ANOVA.
Data Generation and Collection. The data generated by

integrated models such as PHAST, validated across various
leakage scenarios, are suitable for QPCR model develop-
ment.29 Selecting variables for the source and dispersion
models is essential to run PHAST, preceded by the selection of
accident scenarios. In this study, we opted for a scenario
involving continuous hydrogen leakage in plume form from
high-pressure vessels. When a hydrogen vessel leaks, the
PHAST results and output variables are set to determine the
distance at which hydrogen is released into the atmosphere and
forms a vapor cloud, specifically the downwind distance at
100% of the LEL and a more conservative downwind distance
at 25% of the LEL.
Because it is not possible to simulate all conceivable

scenarios, many assumptions and restrictions were clearly
established in order to carry out source and dispersion
modeling. First, variations in the chemical’s storage volume
and leakage rate over time are not addressed. Instead, the
model depicts the size of the highest vapor cloud in steady
state following leakage. Second, the leakage and wind
directions are fixed. In this study, the leaking direction is set
to be horizontal to the ground, and the wind direction is
aligned with the leakage direction, focusing primarily on the
situation in which the vapor cloud develops most widely.
Finally, the default values of PHAST for solar radiation and
surface temperature are employed. Although fluctuations in
solar radiation due to day and night or cloudiness might impact
the atmospheric temperature gradient, these circumstances are
too complex to be considered thoroughly, and the values can
vary greatly by area, making it difficult to set a universal
standard. Therefore, this study uses the default values of
PHAST to account for typical conditions. As a result, this
study makes use of PHAST’s default settings to adjust for
common situations. These procedures reduce the complex
source/dispersion modeling process while still producing data
that is appropriate for the study’s purpose.

According to previous studies, for evaluating the results of
PHAST, there are thirty-six adjustable input variables. Among
these, 13 variables classified as Class A (operating pressure,
operating temperature, leakage hole diameter, liquid height
inside the vessel, atmospheric temperature, atmospheric
pressure, relative humidity, leak duration, release height, leak
angle, surface roughness length, wind speed, and atmospheric
specific heat) are dominant in influencing the consequences.33

Among these, operating pressure, operating temperature,
leakage hole diameter, liquid height inside the vessel, and
leak duration are variables related to the source model, while
the remaining eight variables are associated with the dispersion
model.

Source Model. The source model is a model that assesses
the mechanical turbulence, which has a dominant influence
during the initial stages of leakage, to calculate the initial
leakage rate of chemicals. In this study, the source model for
high-pressure vessels is referenced, utilizing the method
described in the literature.34 The source model calculates the
leakage rate of gas using the following Equation 1.
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Where, Qm represents the leakage rate [kg/s], C0 denotes the
leakage coefficient [-], A stands for leakage area [m2], P0
signifies the operating pressure [Pa], γ represents the specific
heat ratio (CP/CV), Pa indicates the atmospheric pressure [Pa],
T0 represents the operating temperature [K], Rg is the gas
constant [8.314 m3·Pa/kg-mole·K], gc denotes the gravitational
accelerator [9.8m/s2], M represents the molecular weight of
the gas [kg/kg-mole].
To model hydrogen leakage from the high-pressure vessel,

the key variables considered are the operating pressure (P0) of
hydrogen, the operating temperature (T0) of hydrogen, and
the leakage hole diameter (D0). Since hydrogen is stored in a
gaseous state inside the vessel, the liquid height inside the
vessel is excluded. Additionally, since the results are based on
reaching a steady state during continuous leakage, no separate
setting for leakage duration is provided. Consequently, these
three variables (P0, T0, D0) have been selected as source
properties.

Dispersion Model. When hydrogen leakage occurs from the
vessel, the momentum that dominated the initial leakage
decreases as the distance from the leakage source increases,
and beyond a certain distance, it is influenced by atmospheric
conditions such as wind speed.33 To interpret this, various
dispersion models, such as the Gaussian-Gifford model, are
used to analyze the dispersion of gases.33 The Gaussian-Gifford
model combines the interpretation of dispersion processes
based on Gaussian normal distribution with correlation
equations for dispersion coefficients derived from neutral
buoyancy gas experimental results. It analyzes the concen-
tration of chemicals moving in the x, y, and z directions.35 The
Gaussian-Gifford equation is as follows Equation 2.
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Figure 1. Flowchart for developing the QPCR model.
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Here, C(x,y,z) represents the concentration of the chemicals in
each direction [ppm], σ is the dispersion coefficient proposed
by Gifford36 [-], u is the wind speed [m/s] and Zh is the release
height [m].
In response to the limitations of the Gaussian-Gifford model,

numerous studies have sought to enhance dispersion models.
Prior studies have emphasized the influence of atmospheric
conditions and surface characteristics on dispersion con-
sequences, particularly in determining the vertical mixing
level between chemicals and the atmosphere.2,37−41 For this
reason, factors like atmospheric temperature (Ta), relative
humidity (Ha), and surface roughness length (Z0) have been
added as input variables in dispersion properties. However, in
the scenario of this study, the influence of operating pressure
during leakage in high-pressure vessels is predominant, so
atmospheric pressure is disregarded, and the atmospheric
specific heat is set to the default value in PHAST.
Consequently, 5 variables (Ta, Ha, Zh, Z0, u) have been
selected as dispersion properties.
Descriptors Definition. For the development of the QPCR

model, eight different property descriptors have been chosen as
shown in Table 1, categorizing each property descriptor into

three source properties and five dispersion properties. The
criteria property chosen is the downwind distance to reach the
LEL at 100% and 25%. Detailed classification and specifica-
tions are provided in Table 1. Each property descriptor
corresponds to input variables in the PHAST simulation.
T0 and P0 are specified to cover the typical operating

temperature and pressure in the hydrogen industry, including
hydrogen refueling stations.42,43 D0 is configured to accom-
modate leakage hole diameter ranging from 0.178 mm, as
recommended by IEC 60079−10−1, to the standard large hole
size of 102 mm specified in API 581, ensuring adaptability.44

Parameters such as u,Ta, and Ha are based on general
atmospheric conditions, while Zh refers to the height of
facilities used in the hydrogen industry. Lastly, Z0 encompasses
various terrains from mud flats to center of city.
RSM-BBD. RSM is a mathematical-statistical method for

determining correlations between different parameters and
responses.25,27 In other terms, it is a statistical method to assess
the extent to which many variables (X1, X2, ..., Xk) influence an
output variable (Y), by creating a mathematical model of the
input-output relationship on a first- or second-order response
surface. Equation 3 depicts the link between the input variable
(X) and the output variable (Y). And Equation 4 employs the

quadratic form to optimize the relationship and examine the
impact of each variable.

=Y f X X X( , , ..., )k1 2 (3)

= + +
= =

Y X X X
i

k

i i
i

k

ij i j0
1 1 (4)

In Equation 4, Y represents the output variable, X represents
the input variable, and, β denotes the regression coefficients.
Furthermore, RSM excels in producing valid results with a

small number of experimental outcomes based on the design of
experiment (DOE) methodology.25 In this study, a Box-
Behnken Design (BBD) model, a sort of fractional factorial
design within DOE, was utilized to assess the impact of each
variable on the output. To do this, the eight variables selected
as descriptors were designed with three levels each, as
illustrated in Table 2. The BBD model has the advantage of
effectively analyzing interactions between input and output
variables with a minimal number of experiments.27

Moreover, RSM enables for a sensitivity analysis of each
input variable to the output variable, i.e., the impact of
variables, using ANOVA. In ANOVA results, the F-value is the
ratio of the mean square to the sum of squares for each factor,
with a higher value indicating a stronger influence of that
variable on the output variable.45 Another indicator, the p-
value, represents the probability of observing extreme results
given that the null hypothesis is true, and is used to evaluate
the model’s dependability and the influence of input variables
Based on the results of Fisher’s statistical test, a p-value of less
than 0.05 suggests that the variable has a significant influence
on the output variable, but a value greater than 0.1 implies
insignificance.28,46

ANN-BPNN. BPNN is an ANN algorithm that adjusts
network weights and biases in the direction of the most rapid
drop in the objective function. BPNN is widely used in
dispersion model predictions due to its outstanding training
speed and prediction capabilities.47,48 BPNN, which includes
input, hidden, and output layers, allows manual adjustment of
the number of neurons in hidden layer. While tuning the
number of the neurons might improve accuracy and
convergence speed, poor synchronization can lead to over-
fitting, resulting in major errors in result accuracy.49

Table 1. Property Descriptors for QPCR Model

Nomenclature Descriptor
Property
Type Unit Range

T0 Operating
Temperature

Source °C −40∼65

P0 Operating pressure Source barg 1∼700
D0 Leakage hole

diameter
Source mm 0.178∼102

u Wind speed Dispersion m/s 1∼6
Zh Release height Dispersion m −0∼10
Z0 Surface roughness

length
Dispersion m 0.005∼3

Ta Atmospheric
temperature

Dispersion °C −20∼40

Ha Relative humidity Dispersion % 20∼100
DLEL Downwind distance

of LEL fraction
Criteria % 25,100

Table 2. Range of Various Descriptors in Scenario

Level of factor

Nomenclature Code Descriptor Unit −1 0 1

T0 X1 Operating
temperature

°C −40 0 65

P0 X2 Operating
pressure

barg 1 350 700

D0 X3 Leakage hole
diameter

mm 0.178 25 102

u X4 Wind speed m/s 1 3 6
Zh X5 Release height m 0 5 10
Z0 X6 Surface

roughness
length

m 0.005 1 3

Ta X7 Atmospheric
temperature

°C −20 10 40

Ha X8 Relative
humidity

% 20 60 100
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In this study, the input layer was built with the eight
variables from Table 2, while the output layer was defined with
two variables: the maximum downwind distances to LEL 100%
and 25%. Additionally, the number of neurons in hidden layer
was chosen to be twice as large as the input layer size.19 The
training process was carried out using the MATLAB neural
network toolbox, with the Levenberg−Marquardt regulariza-
tion approach serving as the optimization algorithm. The data
set was divided into three sets: training (70%), validation
(15%), and testing (15%). If the accuracy did not improve by
the sixth epoch on the validation set, the process was set to
terminate early, with a maximum of 1,000 epochs allowed
unless an early stop happened. The most widely used sigmoid
function was adopted as the activation function. The sigmoid
function has the virtue of being continuously differentiable
everywhere.50

Hybrid Model Based on RSM and ANN. The key stage
in developing a QPCR model is finding appropriate descriptors
as input variables.13 In other words, if we can roughly estimate
the influence of each variable on the outcome before
constructing the data set for model development, we can
improve the accuracy of the results while minimizing
computational costs. To accomplish this, an ANOVA was
employed to examine the influence of eight factors on the
results. ANOVA evaluates the effect of factors in the model-
building process by examining the F-value and p-value
calculated using the RSM approach. The data set was
reconstructed after analyzing the variables’ sensitivity and
removing those with little influence. Then, a BPNN algorithm
was used to create a hybrid QPCR model.This strategy
decreases the number of variables, lowering the computational
cost of data set building while using just influential factors,
resulting in a highly successful QPCR model.
Model Evaluation. In this study, R2 (Equation 5) and

MSE (Equation 6) were chosen as standard metrics to
compare and analyze the RSM, ANN, and hybrid QPCR
models. Additionally, the data set size needed for model
building was chosen as a criterion.

= =

=
R

y y

y y

( )

( )
i
n

i

i
n

i

2 1
2

1
2

(5)

= = y y

n
MSE

( )i
n

i i1
2

(6)

Here, ŷi represents the predicted value, yi represents the target
value, y̅ represents the mean value of the target value, and n
denotes the number of data points in the data set.
R2 measures how effectively the independent variable

predicts variation in the dependent variable, with higher values
indicating better model fit. MSE is calculated as the average
squared difference between predicted and actual values, with
smaller values indicating higher model accuracy.

■ RESULTS AND DISCUSSION
RSM-BBD QPCR Model. Using a BBD-based experimental

methodology, 120 simulations were performed for each QPCR
model, resulting in the development of QPCR models that
predict downwind distances to LEL 100% and LEL 25% based
on 240 data points. Each model follows a quadratic form as
stated in Equation 7, and the proposed LEL 100% RSM-BBD
QPCR model and LEL 25% RSM-BBD QPCR models are
shown below.

= = + +D f x x Ax b x c( )
1
2LEL

T T
(7)

Where, DLEL represents the downwind distance according to
hydrogen concentration, x A b, ,n nnxn and
c are defined as
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0.0194 0.010482 0.04044 0.03981 0.28194 0.069 0.01321 0.016512
0.04592 0.037712 0.290955 0.28194 0.07019 0.226196 0.02551 0.03912

0.091717 0.022158 0.027677 0.069 0.226196 0.00296 0.038093 0.018991
0.041924 0.03139 0.005917 0.01321 0.02551 0.038093 0.06609 0.018912

0.02602 0.04906 0.09572 0.016512 0.03912 0.018991 0.018912 0.13505

LEL100%
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0.00661 0.02337 0.01734 0.008504 0.00827 0.096024 0.024178 0.05205
0.02337 2.01285 0.053684 0.054496 0.061372 0.072173 0.04543 0.04187
0.01734 0.053684 3.15689 0.074646 0.225314 0.162255 0.01782 0.09971

0.008504 0.054496 0.074646 0.01696 0.24462 0.04676 0.004752 0.016292
0.00827 0.061372 0.225314 0.24462 0.035535 0.133999 0.03851 0.01013

0.096024 0.072173 0.162255 0.04676 0.133999 0.118613 0.034141 0.024357
0.024178 0.04543 0.01782 0.004752 0.03851 0.034141 0.11406 0.02553

0.05205 0.04187 0.09971 0.016292 0.01013 0.024357 0.02553 0.18793

LEL25%

Figure 2. RSM-BBD value of QPCR model; (a) externally studentized residuals vs normal plot of LEL 100% RSM-BBD QPCR model, (b)
externally studentized residuals vs normal plot of LEL 25% RSM-BBD QPCR model, (c) predicted vs externally studentized of LEL 100% RSM-
BBD QPCR model, (d) predicted vs externally studentized of LEL 25% RSM-BBD QPCR model.
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Figure 3. Model validation performance for downwind distance: (a) LEL 100% ANN-BPNN QPCR model; (b) LEL 25% ANN-BPNN QPCR
model.

Figure 4. Regression model fitting, validation, and prediction accuracy performance for downwind distance: (a) LEL 100% ANN-BPNN QPCR
model; (b) LEL 25% ANN-BPNN QPCR model. In each subfigure, the top left figure in blue is for training fitting, top right figure in green is for
validation fitting, bottom left figure in red is for testing fitting, and bottom right figure in gray is the model fitting performance for all data sets.
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Each of these parameters (X1, X2, ·, X8) refers to coded
descriptors, which are listed in Table 2. The aforementioned
equations predict the response at given levels of each factor,
and the influence of changes in these variables on the outcome

may be proven when other factors are held constant, as
indicated by regression coefficients. Diagnostics plots are
another tool for evaluating the validity of the model.51 Figure
2(a) and (b) show the normal probability distribution of
residuals for the eight descriptors and the QPCR model,
respectively, while (c) and (d) illustrate the distribution of data
in relation to a straight-line normal distribution. The residuals
conform to a linear pattern indicative of a normal distribution,
with predicted values closely resembling actual values for all
responses. Specifically, all values fall randomly inside the
residual limits (−3.69651 to 3.69651), emphasizing the
distribution’s unpredictability. These findings support the use
of the two QPCR models as prediction tools for assessing
hydrogen leakage and dispersion.
ANN-BPNN QPCR Model. Each QPCR model utilized

6,561 (38) data points to construct its neural network. Among
these, 4,593 data points (70%) were randomly selected for the

Figure 5. Perturbation plots for evaluating variable importance: (a) LEL 100% RSM-BBD QPCR model; (b) LEL 25% RSM-BBD QPCR model.

Table 3. ANOVA Results of QPCR Models Based on RSM-BBD

QPCR Model Source Code Sum of squares df Mean Square F value P-value

LEL 100% Model 587.36 44 13.35 187.43 <0.0001
T0 X1 0.14 1 0.14 1.93 0.1692
P0 X2 81.41 1 81.41 1143.09 <0.0001
D0 X3 405.50 1 405.50 5693.56 <0.0001
u X4 <0.0001 1 <0.0001 <0.0001 0.9225
Zh X5 <0.0001 1 <0.0001 0.016 0.9007
Z0 X6 4.60 1 4.60 64.55 <0.0001
Ta X7 0.14 1 0.14 2.03 0.1586
Ha X8 <0.0001 1 <0.0001 0.060 0.8069

LEL 25% Model 562.80 44 12.79 233.61 <0.0001
T0 X1 0.13 1 0.13 2.29 0.1342
P0 X2 87.09 1 87.09 1590.66 <0.0001
D0 X3 368.36 1 368.36 6727.73 <0.0001
u X4 0.019 1 0.019 0.35 0.5583
Zh X5 <0.0001 1 <0.0001 <0.0001 0.9413
Z0 X6 5.19 1 5.19 94.84 <0.0001
Ta X7 0.38 1 0.38 6.88 0.0105
Ha X8 0.045 1 0.045 0.82 0.3695
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training set, 984 data points (15%) for the validation set, and
another 984 data points (15%) for the testing set. Performance
plots for the developed QPCR models are presented in Figure
3 to visualize their MSE. As previously stated, the number of
neurons in hidden layer was increased to 16, double the
amount of input variables. As seen in Figure 3, the LEL 100%
ANN-BPNN QPCR model (a) exhibits an MSE value of
45.5833 at 548 epochs, while the LEL 25% ANN-BPNN
QPCR model (b) shows an MSE value of 480.2813 at 233
epochs. Both models demonstrate similar trends in their
training, validation, and testing curves.
Figure 4 displays the models’ training, validation, testing,

and combined data sets. The overall predictive performance of
the two models (LEL 100% ANN-BPNN QPCR model and
LEL 25% ANN-BPNN QPCR model) can be considered
excellent as the data points closely follow the output vs target
fitting line. However, it is observed that some data points are
sporadically positioned away from the fitting line. Nevertheless,
the two models had R2 values more than 0.99, indicating
acceptable accuracy.
Hybrid QPCR Model. Based on the RSM-BBD results, an

ANOVA was performed to determine the sensitivity of each
variable. Figure 5 shows perturbation plots for each variable.
The perturbation plots illustrate how input parameters affect
output variables based on ANOVA results. These charts show
the influence of each independent variable on the output
variables, while the other input parameters remain constant at
their baseline values. A steeper slope suggests more sensitivity.
The research determined that D0, P0,and Z0 had the largest
influence on the output variables, in that order. Following
these, Ta appeared to have a considerable impact; nonetheless,
in Figure 5 (a), the difference in influence between Ta and the
other four factors is minor.
To conduct a more precise study, quantitative p-values for

each variable were calculated and the findings are given in
Table 3. A p-value of less than 0.05 indicates a substantial
influence on the model’s outputs.
In the LEL 100% QPCR model, variables P0, D0, and Z0

have high F-values and p-values less than 0.0001, demonstrat-

ing their relevance. These findings are congruent with those
shown in Figure 5.
P0 and D0 are the major factors defining the initial release

momentum, which suppresses the buoyancy effect that occurs
throughout the process of dispersion into the atmosphere,
hence playing an important role in determining the hydrogen
dispersion distance. Z0 is a factor that influences the mixing
level of the atmospheric layer by changing hydrogen’s
horizontal dispersion momentum into vertical momentum,
lowering dispersion distance. The increase in Ta is attributable
to changes in buoyancy and air viscosity, which can improve
mixing with the atmosphere owing to the increased velocity of
hydrogen molecules.37 This can lead in a decrease in hydrogen
dispersion. Notably, Ta had a p-value of 0.05 for predicting
LEL 25%, demonstrating a high sensitivity in monitoring lower
concentrations and thus was picked as a crucial variable.
The variables u, Zh, Ha, and T0 have p-values above 0.05,

suggesting negligible effect on the results. In this study, u
denotes the constant wind speed blowing in the same direction
as the leak. Although a strong wind with a speed more than
10m/s has the greatest influence, at ordinary wind speeds of
2m/s, it behaves similarly to no wind circumstances.52

Furthermore, the same wind direction as the leak direction
can be ignored in the hydrogen dispersion process.52 The
temperature differential between the ground and the
atmosphere, as well as the stratification in air temperature
with height, impact the hydrogen dispersion distance according
to Zh.

53 But, because this study did not account for the
atmospheric temperature gradient induced by solar radiation,
the sensitivity of the output variable to Zh is extremely low.
Increased Ha may affect dispersion by diminishing hydrogen
buoyancy. However, in the context of hydrogen dispersion, Ha
is a significant component in vertical dispersion but has little
effect on horizontal dispersion distance, which is the key
variable in our study.37,54 Lastly, T0, the source property,
affects the hydrogen leakage rates. Notwithstanding, given the
conditions specified in this study, the impacts of P0 and D0 are
so overwhelming that the T0’s significance is small. As a result,
T0 has a very minor influence on this study.

28

Figure 6. Model validation performance for downwind distance: (a) LEL 100% Hybrid QPCR model; (b) LEL Hybrid 25% QPCR model.
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Overall, ANOVA was conducted to evaluate the sensitivity
of each variable, revealing that P0, D0, Z0, and Ta exert
dominant effects on the downwind distance of hydrogen.
Based on this, a hybrid QPCR model considering only these
four variables was developed, while the remaining four
variables were set to their default values at Level 0. After
modifying the data set with the four selected variables, the
ANN technique was applied to develop the hybrid QPCR
model, following the same approach as the ANN-BPNN
QPCR model. The hidden layer consisted of eight neurons,
twice the number of input variables. Out of 81 (34) data sets,
57 data points (70%) were allocated to the training set, 12 data
points (15%) to the validation set, and another 12 data points
(15%) to the test set.
Figures 6 and 7 evaluate the performance of the hybrid

QPCR models. Figure 6 plots the MSE of the hybrid models.
At 20 epochs, the MSE of the LEL 100% hybrid QPCR model
was 21.3705, and at 24 epochs, it was 133.3904. Both models’
training, validation, and testing curves followed a similar
pattern.
In Figure 7, the distribution of 81 data points around the

output vs target fitting line is illustrated. The two hybrid
models are distributed across the fitting line, and the R2 values
of both models are close to 1.
This approach yields significant cost savings in simulations.

While conducting 6,561 simulations would be necessary for a
full factorial design of the original eight variables, excluding less
sensitive variables through ANOVA reduces the number to 81
simulations. This reduced data set allows for the development
of a hybrid QPCR model capable of predicting hydrogen’s
downwind distance, and the model’s accuracy has been verified
to be excellent. In essence, it is expected that by paying only
3% of the expense of a full factorial design, precise results will
be attained.

The study compared and analyzed the RSM-BBD QPCR
model, ANN-BPNN QPCR model, and hybrid QPCR model
based on R2, MSE, and data set size (Table 4).

From a statistical standpoint, when checking the predictive
performance of each model, it is clear that the hybrid QPCR
model, which combines RSM and ANN, has higher R2 values
than the RSM-BBD and ANN-BPNN models. Also, the MSE
of the hybrid QPCR model is significantly smaller than the
other values, indicating that it is the most accurate among the
three models. Plus, the amount of data points required for the
hybrid QPCR model was just 3% of that employed in the
original full factorial design. This implies that by removing
factors with little effects on the findings and focusing on key
variables, reasonably good accuracy may be attained with a
small data set.
The ANN-BPNN QPCR models benefit from the wide

range of meteorological or operating conditions that may be
examined using a full factorial design. Unlike the RSM-BBD
QPCR model, which uses quadratic form to generalize data,
the ANN-BPNN models predict data in a nonlinear fashion,
leading to higher accuracy. On the other hand, the RSM-BBD
QPCR model offers the advantage of developing models with a

Figure 7. Regression model fitting, validation, and prediction accuracy performance for downwind distance: (a) LEL 100% hybrid QPCR model;
(b) LEL 25% hybrid QPCR model. In each subfigure, the top left figure in blue is for training fitting, top right figure in green is for validation fitting,
bottom left figure in red is for testing fitting, and bottom right figure in gray is the model fitting performance for all data sets.

Table 4. ANOVA Results of QPCR Models Based on RSM-
BBD

QPCR Model Parameter

R2 MSE Data points

LEL 100% RSM-BBD 0.9910 480.8503 120
ANN-BPNN 0.9963 104.1621 6,561
Hybrid 0.9998 7.5075 201

LEL 25% RSM-BBD 0.9928 1436.973 120
ANN-BPNN 0.9936 715.5987 6,561
Hybrid 0.9995 57.2931 201
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R2 values greater than 0.99 using the fewest number of data
points, hence reducing simulation costs. In conclusion, all three
models are deemed sophisticated and demonstrate sufficient
performance in predicting the behavior of hydrogen leakage
and dispersion.
Table 5 indicates a comparison between the Hybrid model

developed in this study and the existing QPCR model from

previous research. The comparison model was chosen as the
QPCR model,21 which predicts the dispersion of 41 flammable
chemicals, including hydrogen. The QPCR model to be
compared predicts the maximum downwind distance of the
LEL, which is the same output variable used in this study.
The existing QPCR model, constructed from previous

research, successfully predicts the downwind distance of the
LEL for a variety of flammable chemicals. This model,
however, does not consider dispersion properties, limiting its
application in real-world circumstances with a variety of
atmospheric conditions. In contrast, the hybrid QPCR model
developed in this work focuses solely on hydrogen. The
development of this hydrogen-specific model allows for a
thorough examination of dispersion properties, which were not
completely accounted for in earlier studies, while not
considering physical properties covered in prior studies.
Also, the hybrid model’s design procedure, which involves

variable exclusion using ANOVA, allows for the development
of a predictive model that reflects a wide range of atmospheric
conditions. This method enables the model to attain extremely
high accuracy using a much less data set.

■ CONCLUSION
This work built three QPCR models capable of predicting
hydrogen leakage and dispersion: the RSM-BBD QPCR
model, the ANN-BPNN QPCR model, and the hybrid
QPCR model. These models predict hydrogen leakage from
generic high-pressure containers while including all of the

essential variables that define the source and dispersion
models. The three QPCR models have R2 values over 0.99,
suggesting their ability to reliably predict hydrogen leakage and
dispersion.
Although the models developed in this research have the

drawback of being particular to hydrogen, they successfully
incorporate atmospheric dispersion properties that had
previously been disregarded. Additionally, the development
approach described in this paper shows how to design a model
that accurately predicts hydrogen dispersion while modeling
numerous accident scenarios at a low computational cost.
This approach has the benefit of being applicable to various

chemicals. Once the model is built, it enables for the
acquisition of consequence data suited to the individual
characteristics of a facility, without the need for costly
simulations or the employment of expert engineers. This is a
key strength of the study. The developed QPCR model may be
used into process safety management (PSM) systems in
facilities that handle hazardous materials. One example of this
integration is the application of the QPCR model as a
quantitative risk assessment tool. This allows for direct
quantitative assessment of leakage and dispersion results
from hypothetical incidents, bypassing the necessity for
additional modeling procedures.
Additionally, there is a need to make bold decisions, but it

can be challenging for experts to develop plans, such as
emergency response strategies in the chemical industry, where
considering uncertainties is crucial for risk assessment. In such
cases, the QPCR model can be utilized as a key component of
expert decision-making by providing causal relationships and
quantitative predictions based on various variables.
Moreover, statistical approaches such as RSM and ANN

played an important part in the creation of the QPCR model.
It means that different statistical approaches, such as machine
learning algorithms, may be used to develop QPCR models
adequately. In the future, building QPCR models with
recurrent neural network such as Long Short-Term Memory
(LSTM) algorithm might allow for the consideration of
changes in leakage rates over time. The approach based on
machine learning algorithms is intended to improve the
model’s robustness and broaden its possible uses.
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Table 5. Comparison Results of Existing QPCR21 and
Hybrid QPCR Models

QPCR model

Categories Units Existing Hybrid

Target
chemicals

Chemicals quantity − 41 1 (H2)

Source
property

Material quantity m3 10−4,000 Abundance

Operating
temperature

°C −50−1,000 −40−65

Operating pressure barg 0.069−69 1−700
Leakage hole
diameter

mm 50.8−1,270 0.178−102

Dispersion
property

Atmospheric
temperature

°C 20 −20−40

Wind speed m/s Unknown 1−6
Release height m Unknown 0−10
Surface roughness
length

m Unknown 0.005−3

Relative humidity % Unknown 20−100
Physical
property

LEL % 0−100 −

Vapor density
(air = 1)

− 0.068−4.42 −

Data quantity ea 19,579 201
R2 − 0.9956 0.9998
MSE − 0.0066 7.507
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