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Disease-associated alleles in genome-wide
association studies are enriched for derived low
frequency alleles relative to HapMap and neutral
expectations
Joseph Lachance1,2

Abstract

Background: Genome-wide association studies give insight into the genetic basis of common diseases. An open
question is whether the allele frequency distributions and ancestral vs. derived states of disease-associated alleles
differ from the rest of the genome. Characteristics of disease-associated alleles can be used to increase the yield of
future studies.

Methods: The set of all common disease-associated alleles found in genome-wide association studies prior to
January 2010 was analyzed and compared with HapMap and theoretical null expectations. In addition, allele
frequency distributions of different disease classes were assessed. Ages of HapMap and disease-associated alleles
were also estimated.

Results: The allele frequency distribution of HapMap alleles was qualitatively similar to neutral expectations.
However, disease-associated alleles were more likely to be low frequency derived alleles relative to null
expectations. 43.7% of disease-associated alleles were ancestral alleles. The mean frequency of disease-associated
alleles was less than randomly chosen CEU HapMap alleles (0.394 vs. 0.610, after accounting for probability of
detection). Similar patterns were observed for the subset of disease-associated alleles that have been verified in
multiple studies. SNPs implicated in genome-wide association studies were enriched for young SNPs compared to
randomly selected HapMap loci. Odds ratios of disease-associated alleles tended to be less than 1.5 and varied by
frequency, confirming previous studies.

Conclusions: Alleles associated with genetic disease differ from randomly selected HapMap alleles and neutral
expectations. The evolutionary history of alleles (frequency and ancestral vs. derived state) influences whether they
are implicated in genome-wide assocation studies.

Background
The onset of affordable high-throughput genotyping
technology has enabled association studies to be con-
ducted on a genome-wide scale, and multiple successes
have occurred using this approach [1,2]. Notable exam-
ples include genes associated with LDL cholesterol levels
[3], colorectal cancer [4], and type 1 diabetes [5].
Despite these successes, genome-wide association

studies (GWAS) have been unable to account for the
majority of heritable variation for most diseases [6,7].
One reason for the mixed success of GWAS is that the
efficacy of such studies depends upon the underlying
genetic architecture of traits [8-10]. Also relevant is the
accuracy of the common disease-common variant
hypothesis. Under this formulation, complex diseases
are caused by high frequency alleles. By contrast, the
genetic heterogeneity (rare allele-major effect) hypoth-
esis proposes that distinct low-frequency alleles are
responsible for the same trait in different individuals.
Regardless of the relative validity of each of these
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hypotheses [11,12], there are now enough genome-wide
association studies to be able to say something about
the frequencies and ancestral or derived state of disease-
associated alleles relative to HapMap and neutral expec-
tations. A previous study gave an initial glimpse into the
nature of disease-associated alleles, finding a median
allele frequency of 0.40 [13]. However, less than 50
replicated SNPs were analyzed in the review article by
Iles. Multiple studies have found that the allele frequen-
cies of disease-associated SNPs do not significantly differ
across populations compared to random SNPs [14,15].
Additionally, alleles associated with genetic disease are
underrepresented in intergenic regions and overrepre-
sented in nonsynonymous sites and 5 kb promoter
regions [16]. An open question is whether the allele fre-
quency distribution and ancestral vs. derived states of
disease-associated alleles differ from the rest of the gen-
ome. What types of disease-associated alleles have been
found in GWAS to date?
Alleles can be classified by frequency, ancestral vs.

derived state, and relative disease risk. Disease-
associated marker alleles need not be causal; they may
be linked to alleles that are actually responsible for
increased risk. Importantly, the alleles characterized in
this paper are marker alleles. Because statistical power is
maximized at intermediate allele frequencies [17], alleles
detected in a GWAS are unlikely to be rare. Alleles can
also be classified as ancestral or derived, where ancestral
alleles are shared with closely related species and
derived alleles are not [18]. There is currently a lack of
published studies indicating whether disease-associated
alleles are enriched for ancestral or derived states.
Finally, alleles can be classified by their relative risk
(measured as an odds ratio). In many GWAS, disease-
associated alleles increase risk by only a modest amount,
i.e. odds ratios are less than 1.5 [1]. However, it is
unknown whether these odds ratios vary by ancestral vs.
derived state. In addition, the first study to detect a par-
ticular association can overestimate the odds ratio, a
phenomenon dubbed the “winner’s curse” [19].
The aim of this study was to determine the character-

istics of disease-associated alleles and compare this data
to null expectations from HapMap data and the neutral
theory. Allele frequency distributions and ancestral vs.
derived states were obtained for every disease-associated
allele found in genome-wide association studies prior to
January 2010. The hypothesis that disease-associated
alleles do not differ from the rest of the genome [20]
was also tested.

Methods
Null expectations: HapMap data
Alleles from the HapMap dataset were obtained to serve
as a baseline of genomic diversity. These alleles were

subsequently weighted by the probability of detection in
a GWAS. The set of all HapMap SNPs from data release
#27 were downloaded via the HapMart tool [21]. This
build included merged data from phases II and III of
the International HapMap Project [22]. A Perl script
was then used to randomly select 1000 unique SNPs
from this file. The positions of HapMap SNPs were
tested to ensure that linkage disequilibrium was minimal
(distances between SNPs were at least 200 kb). Because
allele frequencies can vary from population to popula-
tion, and the majority of GWAS use European and Eur-
opean-American cases and controls, CEU allele
frequencies were used in this study. This allowed Hap-
Map dataset to act as a control for demographic pro-
cesses. While disease prevalence and allele frequencies
vary among populations [23], population-level differ-
ences in allele frequencies are similar for disease-asso-
ciated SNPs and random genomic SNPs [14]. An
additional consideration is that SNP discovery protocols
may bias the HapMap dataset towards high frequency
alleles [24,25]. For each SNP, alleles were chosen at ran-
dom after weighting by allele frequency. Thus, a SNP
with allele frequencies of 0.80 and 0.20 would have an
80% chance of yielding the major allele. Because high
frequency alleles are more likely to be ancestral [26],
randomly chosen alleles from the HapMap dataset are
more likely to be ancestral than derived.
Outgroups (such as chimpanzees) enable SNPs to be

polarized and ancestral states to be inferred. Ancestral
alleles were determined via BLAST searches of disease-
associated SNP regions against the chimpanzee genome.
In addition, the single nucleotide polymorphism data-
base, dbSNP, contains information on the ancestral state
of SNPs at http://www.ncbi.nlm.nih.gov/projects/SNP
[27]. Ancestral alleles in dbSNP were inferred via parsi-
mony [28]. SNPs were only selected if ancestral allele
states could be inferred. HapMap alleles were then
binned by allele frequency and ancestral vs. derived
state. Unlike disease-associated alleles, randomly
selected HapMap alleles are not weighted by their prob-
ability of detection. Because of this, comparisons
between the allele frequency distribution of disease-
associated alleles and null expectations incorporated the
probability that a particular allele is detectable in a
GWAS. Phase three of the HapMap project used the
Illumina Human1 M and Affymetrix SNP 6.0 platforms
(the same platforms used in many GWAS). This indi-
cates that the HapMap dataset served as an appropriate
control for GWAS data.

Null expectations: neutral theory
Population genetic theory was used to test whether dis-
ease-associated SNPs differ from neutral expectations.
These expectations were subsequently weighted by the
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probability of detection in a GWAS. An infinite sites
model was used to obtain the theoretical allele frequency
distribution of neutral loci. Under this model, novel
mutations occur at different nucleotide sites [29]. Marker
loci were assumed to be diallelic and lack recurring
mutations. In constant sized populations the probability
of observing a derived neutral allele at a particular fre-
quency is inversely proportional to allele frequency [30].
The parameter C in the equations below is a normalizing
constant, and “unweighted” refers to the fact that these
probability density functions do not incorporate the
probability of detection in a GWAS. x is the frequency of
the disease-associated allele at a marker locus.

P x X
C

x
( | )= , unweighted derived = (1)

P x X
C

x
( | )= =

−
, unweighted ancestral

1
(2)

The probability density of Equation 1 goes to infinity
as allele frequencies go to zero. Because of this, poly-
morphisms were only considered if the minor allele fre-
quency was above some arbitrary threshhold
frequency, d. Allele frequencies were allowed to range
from d to 1-d, with the parameter d arbitrarily set equal
to 0.025. MATLAB [31] simulations verified the accu-
racy of Equation 1 (see Figure 1A). In these simulations,
alleles were binomially sampled each generation and fre-
quencies of derived alleles were recorded. Upon fixation
or loss, a single derived allele was allowed to enter the
population. Simulations were run for 107 time steps
with a population size of 104 individuals.
The probability that an allele is ancestral is equal to its

probability of fixation [32,33]. For neutral loci, the prob-
ability that a randomly chosen allele is ancestral is sim-
ply its allele frequency [26].

P x X x( | )ancestral = = (3)

The right-hand sides of Equations 2 and 3 were multi-
plied and integrated from d to 1-d. This expression was
then normalized by dividing by the total probability den-
sity, giving the overall probability that a neutral allele is
ancestral (unweighted by the chance of detection in a
GWAS).
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After integration and extensive algebra:

P
d

d d
(ancestral, unweighted) = + −

− −
1

2 1
1ln( ) ln( )

(5)

Probability of detection (statistical power calculations)
Because statistical power varies by allele frequency [17],
computer simulations were used to calculate the

Figure 1 Neutral expectations, statistical power, and
probability of detection. A) Unweighted probability density of
derived allele frequencies under the neutral theory. Calculations use
Equation 1 and are represented by a black line. MATLAB simulation
data is represented by grey circles. B) Statistical power of GWAS
plotted as a function of odds ratio and allele frequency. Darker
shading indicates greater statistical power. Parameter values: 2500
cases and controls, a p-value of 5 × 10-8, complete linkage,
multiplicative dominance. C) Probability of detecting a disease-
associated allele. Three distributions of odds ratios are considered:
uniform (evenly distributed odds ratios between 1.0 and 1.5, dashed
grey line), Dirac delta (every allele has an odds ratio of 1.25, solid
grey line), and normal (mean 1.25, standard deviation = 0.1, dashed
black line). Equation 6 is plotted as a solid black line.
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probability of detecting an association between disease
and a marker allele at a particular frequency. Statistical
power calculations were obtained via the Windows pro-
gram QUANTO [34,35]. This program numerically cal-
culates power for a variety of experimental designs, but
it does not explicitly take into account ages of SNPs and
ancestral vs. derived states. Statistical power is a func-
tion of linkage disequilibrium between causal and mar-
ker alleles (see Appendix). The following parameter
values were used: 2500 cases and controls, a p-value of
5 × 10-8, complete linkage, multiplicative dominance.
Statistical power was calculated for odds ratios ranging
from 1 to 2 (at increments of 0.01) and allele frequen-
cies ranging from 0 to 1 (at increments of 0.01). As
indicated by Figure 1B, alleles with low odds ratios can
only be detected at intermediate allele frequencies.
Although the true distribution of odds ratios for the

set of all disease-associated alleles is unknown, most dis-
ease-associated alleles increase relative risk by small
amount (i.e. odds ratios are less than 1.5) [1]. Three dif-
ferent distributions of odds ratios were considered: uni-
form (evenly distributed odds ratios between 1.0 and
1.5), Dirac delta (every allele has an odds ratio of 1.25),
and normal (mean 1.25, standard deviation = 0.1). Plots
of statistical power vs. allele frequency were similar for
each of these distributions (Figure 1C). A simple expres-
sion yields a reasonable estimate of statistical power
given the parameter values listed above. For mathemati-
cal simplicity, subsequent calculations assume that the
probability of detecting a disease-associated allele is:

P x X x x( ) ( )detection| , parameter values listed above= ≈ −2 1 (6)

It is coincidental that the expression in Equation 6
also gives the expected heterozygosity. Different sample
sizes and/or odds ratios would yield different expres-
sions for the probability of detection.

Null expectations: weighted frequency distributions
HapMap and neutral expectations were weighted by the
probability of detection to enable fair comparisons with
disease-associated alleles. Probability densities of each
allele frequency bin were multiplied by the expression in
Equation 6 and normalized. This resulted in elevated
probabilities of observing intermediate frequency alleles.
For neutral expectations.

P x X x( | ) ( )= = −, weighted derived 2 1 (7)

P x X x( | )= =, weighted ancestral 2 (8)

The right-hand sides of Equations 3 and 8 were multi-
plied and integrated from d to 1-d. This expression was
then normalized by dividing by the total probability

density, giving the overall probability that a neutral allele
is ancestral (weighted by the chance of detection in a
GWAS).
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After integration and extensive algebra:

P d d(ancestral, weighted) = − +2
3

12( ) (10)

Empirical data: disease-associated alleles
The set of all disease-associated alleles found prior to
January 1, 2010 was obtained to investigate whether
these alleles differed from the rest of the genome. An
excellent database of GWAS and disease-associated
SNPs exists online at http://www.genome.gov/gwastu-
dies and it was used in this study [16,36]. This Catalog
of Published Genome-Wide Association Studies includes
every disease-associated SNP to date. Criteria for inclu-
sion in this database included p-values < 10-5 and a
minimum of 100,000 SNPs tested in the initial stage of
a study [16]. The set of all genome-wide association stu-
dies prior to January 1, 2010 spans 486 papers and a
total of 2186 disease-associated SNPs. Some of these
SNPs were present in multiple studies, and in many
cases the disease-associated allele was not listed in the
database. Allele frequencies in control populations were
obtained from NHGRI’s Catalog of Published Genome-
Wide Association Studies. When allele frequency data
were absent from this database, CEU HapMap frequen-
cies were used. If a particular SNP was associated with
diseases in multiple studies, mean allele frequencies
were calculated. The ancestral vs. derived state of each
allele was determined via dbSNP. When ancestral allele
state could not be inferred, SNPs were omitted from the
dataset. After taking into account ancestral vs. derived
states of alleles, a total of 1143 disease-associated SNPs
remained. Of these SNPs, 530 had odds ratio data.
For comparisons with null expectations, disease-

associated SNPs were binned into 10% allele frequency
intervals (see Figure 3). Differences between the allele-
frequency distributions of disease-associated alleles and
null expectations were assessed via c2 goodness-of-fit
tests. Relative magnitudes of disease-associated and con-
trol allele frequencies were compared via Mann-Whit-
ney U tests. Proportions of ancestral alleles were
compared via binomial tests, with a null hypothesis that
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equal proportions of disease-associated and control
alleles were ancestral. In addition, 95% confidence inter-
vals of mean allele frequency were found by sampling
with replacement. This bootstrap analysis was per-
formed in MATLAB (100000 replicates) [31]. It is possi-
ble that alleles found in multiple studies have different
characteristics than alleles found in a single study.
Because of this, the mean frequency and evolutionary
history of replicated alleles (alleles implicated in multi-
ple studies) were compared with the overall patterns of
disease-associated alleles. A total of 142 replicated alleles
had frequency and evolutionary history data.
Alleles implicated in GWAS were also sorted into

seven different phenotypic classes (cancer, cardiovascu-
lar, metabolism, miscellaneous disease, morphological,
and neurological). Some alleles were associated with
multiple phenotypic classes. The morphological class
included alleles that were not technically associated with
any disease. Instead, they were associated with traits
such as height and hair color. 92 of 1143 GWAS alleles

were implicated in studies of non-European populations,
and the remaining 1051 alleles were re-analyzed to
determine whether this had any effect. Because of the
small number of alleles implicated in studies of non-
European populations, additional analysis was not con-
ducted on these 92 GWAS alleles. See Additional file 1
for a list of SNPs, allele frequencies, ancestral vs. derived
states, odds ratios, and phenotypic class.
To test whether the properties of disease-associated

alleles changed over time, disease-associated were
binned into six-month intervals by date of first publica-
tion. Mean frequency, probability ancestral, and odds
ratio data were calculated for each time interval. To
determine whether genotyping platforms biased the
properties of alleles, data from Affymetrix, Illumina, and
Perlegen arrays were compared. Many studies used mul-
tiple genotyping platforms, and characteristics of dis-
ease-associated alleles in these studies were also
analyzed. The number of genotyped SNPs passing qual-
ity control varied in each study. To assess whether this

Figure 2 Allele frequency distributions for null expectations. Allele frequencies are binned into 0.10 intervals. Derived probabilities are
labelled in black and ancestral probabilities are labelled in grey. Neutral expectations use a polymorphism threshold (d) of 0.025. A) Allele
frequency distributions for HapMap alleles prior to detection (n = 1000). B) Allele frequency distributions for HapMap alleles after weighting by
the probability of detection (n = 1000). C) Theoretical allele frequency distributions for neutral alleles prior to detection. D) Theoretical allele
frequency distributions for neutral alleles after weighting by the probability of detection.
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had any effect, disease-associated alleles were binned
into three intervals corresponding to the number of
genotyped SNPs ( < 500,000, between 500,000 and
1,000,000, and >1,000,000). These numbers include
imputed SNPs.

Estimated ages of SNPs
Ages of SNPs were calculated to determine if detectable
associations occur more often in young or old SNPs.
Estimates of SNP ages were calculated from the allele
frequency distributions of HapMap and GWAS alleles.
Under the neutral theory [37], the expected age of a
SNP (τ) is

E
x

x
x( ) ln( )t = −

−
2

1
(11)

x in Equation 11 refers to the frequency of the derived
allele and time is measured in units of 2Ne generations
(where Ne is the effective population size). SNPs with
low frequency derived alleles tend to be younger SNPs.
However, variance in τ tends to be quite large and allele
frequencies only give a rough estimate of the SNP age.
Because of this, the cumulative probability density func-
tion [38,39] was used.

P x
n nt

( t)t ≤ ≅ −( )− + +
1

1 1 2/( / ) (12)

Sample size (n) in Equation 12 was arbitrarily set
equal to 2500. The derivative of Equation 12 with
respect to t was taken for a range of allele frequencies
(0.05 to 0.95 at intervals of 0.10) and SNP ages (0 to 8
Ne generations at intervals of 0.04 Ne generations).
Allele frequency distributions in Figures 2B and 3A
were then used to generate the expected distributions

of SNP ages for weighted HapMap loci and GWAS
loci.

Results
Null expectations
HapMap alleles were qualitatively similar to neutral
alleles. In both cases, randomly selected alleles were
likely to be ancestral and high frequency (see Table 1).
High frequency (0.80-1.00) ancestral alleles and low fre-
quency (0.00-0.10) derived alleles were the most com-
mon types of alleles for neutral and HapMap datasets
(Figure 2). Unweighted proportions of ancestral alleles
were comparable to estimates from whole-genome data
(0.707 for a French individual) [40]. Weighting by the
probability of detection in a GWAS increased the prob-
ability of observing intermediate frequency alleles and
decreased the probability that an allele was ancestral.
Despite these similarities, there were important quan-

titative differences between HapMap alleles and neutral
expectations. HapMap alleles were less likely to be
ancestral than alleles under the neutral theory (0.623 vs.
0.741 for the unweighted scenario, and 0.568 vs. 0.650
for the weighted scenario). HapMap alleles were also
more likely to be found at intermediate frequencies, and
goodness-of-fit tests indicate that differences existed
between the allele frequency distributions of HapMap
and neutral alleles (p-value < 10-10 for both the
unweighted and weighted scenarios, c2 test with 19 d.f.).
The relative lack of HapMap loci with a minor allele fre-
quency < 0.1 may be due to ascertainment bias, as SNPs
identified from a small panel of individuals are known
to have an excess of intermediate frequency alleles [25].
Sensitivity analysis of the HapMap dataset suggests the

absence of selection bias in the 1000 randomly selected
SNPs. The mean frequency of minor alleles was 0.219

Figure 3 Allele frequency distributions for GWAS data. Allele frequencies are binned into 0.10 intervals. Derived probability densities are
labelled in black and ancestral probability densities are labelled in grey. A) All disease-associated alleles (n = 1143). B) Disease-associated alleles
that have been implicated in multiple studies (n = 142).
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for the HapMap dataset used in this paper, compared to
0.214 and 0.199 for additional sets of 1000 SNPs from
the HapMap (CEU) and Perlegen (EUR) databases,
respectively.

Disease-associated alleles
Empirical data from genome-wide association studies
indicated that a majority of disease-associated alleles
were derived. Out of 1143 unique SNPs, disease-
associated alleles were ancestral in 499 cases and
derived in 644 cases. As shown in Table 1 the propor-
tion of ancestral alleles was less than HapMap and neu-
tral theory expectations (p-value < 0.0001, binomial test
for each comparison). Alleles shared with chimpanzees
were less likely to be associated with genetic disease
than alleles that are not shared with chimpanzees.
The majority of disease-associated alleles had frequen-

cies below 0.50 (Figure 3). Goodness of fit tests indi-
cated that the empirical allele frequency distribution
differed from both the HapMap and neutral expecta-
tions (p-value < 0.0001 in both cases, c2 test with 19 d.
f.). Allele frequency bins containing the highest propor-
tion of disease-associated alleles were derived alleles
with frequencies between 0.00 and 0.50 and ancestral
alleles with frequencies between 0.30 and 0.50. The
mean allele frequency of disease-associated alleles was
0.394, and comparisons disease-associated alleles had
lower frequencies than HapMap and neutral expecta-
tions (p-value < 0.0001, Mann-Whitney U test). This is
consistent with population genetics theory that predicts

neutral variants linked to deleterious alleles should be
found at lower frequencies [41]. 95% bootstrap confi-
dence intervals of mean allele frequency ranged from
0.3802 to 0.4076. When data from studies of non-
European populations were excluded, patterns were lar-
gely unchanged (mean frequency was 0.397 and the pro-
portion of ancestral alleles was 0.428). Observed
patterns were largely insensitive to p-value thresholds of
GWAS: the correlation between allele frequency and
negative log p-value was -0.0733, and disease-associated
alleles found at p-values < 10-8 had a mean frequency of
0.404. Mean allele frequencies for the complete set of
GWAS alleles were 0.463 for ancestral and 0.340 for
derived alleles, indicating that disease-associated alleles
tended to be minor alleles. This is in contrast to null
expectations, where ancestral alleles tended to be major
alleles. The shape of the disease-associated allele fre-
quency distribution did not resemble either null expec-
tation, suggesting that additional factors were involved.
Misidentification of ancestral states can result in an
excess of high frequency alleles [42]. Because the dataset
of disease-associated alleles had a deficiency of high-fre-
quency alleles, this suggests that ancestral states were
correctly inferred.
Alleles implicated in multiple studies showed similar

patterns to the overall set of disease-associated alleles.
Replicated alleles had a mean frequency of 0.396 and a
0.437 probability of being ancestral. The allele frequency
distribution of replicated alleles also exhibited an excess
of rare alleles relative to null expectations (Figure 3B).

Table 1 Disease-associated alleles vs. null expectations

Mean frequency of a randomly chosen allele Proportion ancestral

Null expectations

HapMap data (n = 1000, unweighted) 0.721 0.623

HapMap data (n = 1000, weighted) 0.610 0.568

Theoretical (neutral, unweighted) 0.741 0.741

Theoretical (neutral, weighted) 0.650 0.650

Disease-associated alleles

Cancer (n = 112) 0.362** 0.446*

Cardiovascular (n = 145) 0.364** 0.379**

Metabolism (n = 160) 0.365** 0.456*

Miscellaneous disease (n = 290) 0.413** 0.434**

Morphological (n = 276) 0.409** 0.467*

Neurological (n = 135) 0.429** 0.430*

Multiple phenotypic classes (n = 25) 0.312* 0.320*

All GWAS alleles (n = 1143) 0.394** 0.437**

All replicated GWAS alleles (n = 142) 0.396** 0.437**

Unweighted values do not incorporate the probability of detection, and weighted values incoporate the probability of detection in a GWAS. Neutral expectations
use a polymorphism threshold (d) of 0.025 and Equations 5 and 10. Relative magnitudes of disease-associated and control allele frequencies were compared via
Mann-Whitney U tests, and proportions of ancestral alleles were compared via binomial tests. * indicates significant differences from HapMap and neutral
scenarios (p-value < 0.05), and ** indicates highly significant differences from HapMap and neutral scenarios (p-value < 0.0001). Totals for GWAS alleles are
labeled in boldface type. Replicated alleles are those alleles that have been implicated in multiple studies.
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Differences between disease-associated alleles and the
rest of the genome can be due either to properties of
loci or properties of alleles. Characteristics of loci were
revealed in derived frequency distributions (Figure 4A).
By contrast, the frequency distributions in (Figures 2
and 3) revealed characteristics of both alleles and loci.
Goodness of fit tests indicated that derived frequency
distributions differed for neutral expectations, HapMap
SNPs, and disease-associated SNPs (p-value < 0.0001
for each pairwise comparison, c2 tests with 9 d.f.).
However, derived frequency distributions were more
similar than allele frequency distributions (compare
Figures 2, 3, and 4). In addition, disease-associated
SNPs and weighted HapMap SNPs had similar mean
derived frequencies (0.426 vs. 0.432). This suggests
that much of the difference between disease-associated
alleles and the rest of the genome was due to proper-
ties of alleles rather than loci.

Different phenotypic classes
Similar patterns were observed for each of the phenoty-
pic classes (Table 1). In each case, disease-associated
alleles had lower frequencies than HapMap and neutral
expectations (p-value < 0.0001 for each comparison,
Mann-Whitney U test). Regardless of phenotypic class,
disease-associated alleles were more likely to be derived
alleles than randomly selected HapMap alleles and neu-
tral expectations (p-value < 0.05 for each comparison,
binomial test). Alleles associated with cardiovascular dis-
ease were most likely to be low frequency derived
alleles. Alleles associated with neurological disease had
the highest mean allele frequency, and alleles associated
with morphological traits were more likely to be

ancestral. However, differences among phenotypic
classes were smaller than the differences between each
phenotypic class and null expectations (p-value < 0.05
for allele frequency and ancestral vs. derived data, One-
way ANOVA).

Additional controls
Characteristics of disease-associated alleles were inde-
pendent of publication date and genotyping platform.
Mean allele frequencies for each six-month interval
were between 0.363 and 0.421. Similarly, the proportion
of ancestral alleles ranged from 0.414 to 0.481. Median
odds ratios for each six-month interval were between
1.24 to 1.365. Temporal trends were not observed for
any of these characteristics. Allele frequencies of dis-
ease-associated alleles and proportion of ancestral alleles
were similar for different genotyping platforms (Table
2). Median odds ratios were also similar for each manu-
facturer (1.28 for Affymetrix, 1.26 for Illumina, and
1.425 for Perlegen). Although the number of genotyped
SNPs did not appear to affect mean allele frequency, the
proportion ancestral alleles was slightly less for studies
with >1,000,000 genotyped SNPs (Table 2). Overall, dif-
ferences between platforms were smaller than differ-
ences between disease-associated alleles and null
expectations.

Estimated ages of SNPs
Genome-wide association studies were enriched for
young SNPs compared to randomly selected HapMap
loci (Figure 4B). Mean ages of SNPs were estimated to
be 2.78 Ne generations for HapMap loci and 2.74 Ne

generations for GWAS loci. However, the spread around

Figure 4 Characteristics of different types of loci. A) Derived frequency distributions. Derived allele frequencies are binned into 0.10 intervals
and probability densities for different types of loci are indicated by shading (neutral expectations in light grey, HapMap SNPs in black, and
disease-associated GWAS SNPs in dark grey). Similar numbers of loci were analyzed for each data type (1000 for neutral expectations and
HapMap SNPs, and 1143 for GWAS SNPs). B) Estimated ages of SNPs. The probability density for HapMap SNPs (weighted by probability of
detection) is labelled black and the probability density for disease-associated GWAS SNPs is labelled dark grey. Probability densities were
obtained via Equation 12, and calculated at intervals of 0.04 Ne generations.
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the mean was quite large for each locus type. The prob-
ability densities in Figure 4B reveal that SNPs arising in
the last 1 Ne generations were over-represented in the
GWAS dataset. This occurred because disease-
associated alleles had an excess of low frequency derived
alleles (the same sorts of alleles that tend to occur in
young SNPs). Recall that these calculations assumed
that SNPs were neutral. Directional selection would
reduce the expected ages of SNPs for both types of loci
[39]. Similarly, ascertainment bias due to the small sam-
ple size of the SNP discovery panel [43] can affect both
types of SNPs.

Odds ratios
The findings of previous studies [1,13,16] were con-
firmed: most disease-associated alleles only increase dis-
ease risk by only a moderate amount (Figure 5). This is
consistent with expectations from population genetics
theory as alleles with high odds ratios are expected to
have a higher fitness burden [44]. In addition, odds
ratios of disease-associated alleles varied by frequency.

The median odds ratio of ancestral alleles was 1.28 and
the median odds ratio of derived alleles was 1.32. This
indicates that the average effect of derived alleles was
slightly larger than ancestral alleles (p-value < 0.05,
Mann-Whitney U test). Low frequency alleles with high
odds ratios tended to be derived alleles, but this was
simply a byproduct of GWAS being enriched for derived
alleles. Few intermediate frequency disease-associated
alleles had high odds ratios. 26.8% of disease-associated
SNPs with a minor allele frequency ≤ 0.2 had an odds
ratio > 2, while only 8.0% of SNPs with a minor allele
frequency > 0.2 had an odds ratio > 2 (p-value < 0.0001,
Fisher’s exact test). It is difficult to detect statistical
associations between diseases and low frequency marker
alleles, suggesting that the high odds ratios observed for
SNPs with a minor allele frequency ≤ 0.2 were indicative
of a “winner’s curse.” As only those alleles that are sta-
tistically significant were reported, published odds ratios
may be overestimated [45].

Discussion
Disease-associated alleles were more likely to be low fre-
quency derived alleles than neutral and CEU HapMap
expectations. Patterns were similar for alleles associated
with different phenotypic classes. These findings were
independent of publication date and genotyping plat-
form. SNPs implicated in genome-wide association stu-
dies were enriched for young SNPs compared to
randomly selected HapMap loci. One caveat is that that
the majority of published studies to date have used
european populations, and it is unclear whether these
patterns will apply to other populations.

Statistical power, sample sizes, and allele frequencies
Because statistical power is minimal at extreme allele
frequencies, it is not surprising that most disease-
associated alleles have minor allele frequencies greater
than 0.1 (Figure 3). The relative inability of GWAS to
explain the high heritabilities of many diseases [7]

Table 2 Disease-associated alleles from different genotyping platforms

Mean frequency (disease-associated alleles) Proportion ancestral (disease associated alleles)

Manufacturer

Affymetrix (n = 638) 0.387 0.414

Illumina (n = 852) 0.395 0.444

Perlegen (n = 90) 0.410 0.434

Multiple platforms used (n = 430) 0.402 0.419

SNPs genotyped in study

< 500,000 (n = 597) 0.399 0.452

500,00 to 1,000,000 (n = 205) 0.390 0.478

> 1,000,000 (n = 322) 0.390 0.388

Because many studies used multiple genotyping platforms, the number of disease-associated alleles by platform sums to greater than 1143. In 19 cases, the
number of genotyped SNPs was unknown. Importantly, this table only describes the characteristics of disease-associated alleles.

Figure 5 Odds ratios for ancestral and derived alleles as a
function of allele frequency. Derived alleles are represented by
black circles, and ancestral alleles are represented by grey circles. A
total of 530 alleles have odds ratio data.
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suggests that many genes responsible for common diseases
might actually be at undetectably low frequencies. Simula-
tions reveal that much of the fitness variance associated
with genetic diseases can be due to very low frequency,
large-effect alleles [46]. Theoretical work also indicates
that rare causal alleles can create associations that are
credited to common marker alleles (a phenomenon that
has been called “synthetic association”) [47]. Alternatively,
common genetic diseases may be due to multiple allele of
small effect, synergistic epistasis, and/or genotype-by-
environment interactions [6]. To avoid only detecting
associations with intermediate frequency alleles, larger
sample sizes are needed. Increasing the number of geno-
typed SNPs also results in a greater likelihood of detecting
an association [48], but all SNPs are not equally informa-
tive. In addition, the results of this study suggest that
future GWAS may benefit from the inclusion of many
young SNPs with low frequency derived alleles.

Genetic background and linkage phase of causal and
marker alleles
Genetic background and linkage phase may explain why
disease-associated alleles were enriched for derived
alleles. Consider the following thought experiment: Two
alleles already segregate at a marker locus when a causal
mutation occurs at a nearby locus. If the causal muta-
tion occurs in an ancestral genetic background, only a
small proportion of disease-associated marker alleles will
be in phase with the causal mutation. This is because
ancestral alleles tend to have higher frequencies than
derived alleles [26]. As a result, the (P(B|A) - P(B|a))2

term in Equation A1 (see Appendix) tends to be smaller
when causal alleles are in phase with an ancestral allele
at the marker locus. All other things being equal, link-
age disequilibrium (r2) and statistical power are greater
when causal mutations occur in a derived genetic
background.
Recombination breaks down linkage disequilibrium

between causal and marker alleles over time, reducing
the likelihood of statistical associations. This is consis-
tent with the finding that SNPs showing detectable asso-
ciations with genetic disease are younger than randomly
selected HapMap SNPs. Genome-wide association stu-
dies are also less likely to be successful if mutations
occur multiple times at a causal locus. This is because
the causal alleles can be found in multiple genetic back-
grounds, reducing statistical associations between causal
alleles and marker alleles. Population heterogeneity can
also be an issue, as causal mutations can occur in differ-
ent genetic backgrounds in different populations [49,50].

Natural selection against disease alleles
Natural selection against deleterious alleles may also
cause disease-associated alleles to differ from the rest of

the genome. Population genetic theory indicates that
marker alleles linked to low fitness causal alleles are
expected to be uncommon [30,51]. This is in agreement
with the finding that alleles associated with genetic dis-
ease tend to be found at lower frequencies than ran-
domly selected HapMap alleles. Natural selection may
also be able to explain differences in SNP age between
disease-associated alleles and HapMap alleles.
The efficacy of selection varies for different genetic

diseases. Because fitness refers to the expected contribu-
tion to the next generation’s gene pool, diseases with
late onset are likely to be found at higher frequencies.
In addition, allele frequency distributions are shaped by
the evolutionary history of a disease. Selection pressures
that change over time can allow disease alleles to segre-
gate at intermediate frequencies [52]. The genetic archi-
tecture of a disease also affects the strength of selection:
Tajima’s D and Dn/Ds ratios reveal that the signature of
selection is stronger for Mendelian diseases than com-
plex genetic diseases [53]. This may explain why differ-
ent phenotypic classes have slightly different profiles
(Table 1). However, alleles associated with morphologi-
cal traits (as opposed to disease) differ from null expec-
tations. Additional factors than natural selection may be
required to explain why GWAS alleles differ from the
rest of the genome.

Can population size changes explain the observed
patterns?
Disease-associated alleles are enriched for derived low
frequency alleles, a pattern that can occur when popula-
tions increase in size [54,55]. However, population
expansions affect the frequency distributions of all
alleles, not just disease-associated alleles. Because Hap-
Map data do not show an excess of derived low fre-
quency alleles relative to neutral expectations (Figure 2),
this indicates that population size changes alone cannot
fully explain the characteristic patterns of disease-asso-
ciated alleles.

Conclusion
At these initial stages, alleles found via genome-wide
association studies tend to be low hanging fruit. How-
ever, there is strong evidence that disease-associated
alleles differ from the rest of the genome. Costs of
microarray-based genotyping platforms are decreasing,
and as the number of SNPs analyzed per individual
increases, so too does the chance of detecting direct
associations between disease and causal SNPs (rather
than merely linked marker SNPs). In addition, direct
sequencing is becoming increasingly affordable and it
allows previously unknown SNPs to be identified.
Because of this, direct sequencing of large genomic
regions adjacent to disease-associated marker alleles is

Lachance BMC Medical Genomics 2010, 3:57
http://www.biomedcentral.com/1755-8794/3/57

Page 10 of 12



advisable. Direct sequencing of GWAS-informed regions
can also be combined with familial inheritance patterns
to improve genetic linkage analyses. This brings up an
intriguing question: are causal alleles for a particular
trait more likely to be ancestral or derived? Also, how
can GWAS be planned to maximize the likelihood of
detecting candidate genes associated with a particular
disease? Combining the perspectives of genetic epide-
miology and evolutionary genetics allows these ques-
tions to be answered.

Appendix
Statistical power in GWAS is a function of odds ratios
and the amount of linkage disequilibrium between cau-
sal alleles and marker alleles. The relevant measure of
linkage disequilibrium in this case is r2 [56]. Consider a
causal locus with two segregating alleles (A and a), and
a linked marker locus with two segregating alleles
(B and b). r2 is defined as:

r P B A P B a
y y

x x
2 2 1

1
= −( ) −

−
( | ) ( | )

( )
( )

, (A1)

where P(B|A) and P(B|a) are the probabilities that a
haplotype has the marker allele B given a linked causal
allele of A or a, y is the frequency of the disease allele
at the causal locus, and x is the frequency of the dis-
ease-associated allele at the marker locus.

Additional material

Additional file 1: GWAS data. This file is a Microsoft Excel spreadsheet
that contains allele frequencies, ancestral vs. derived state, and
phenotypic class for each disease-associated allele analyzed in this study.
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