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Advances in nanopore-based sequencing techniques have enabled rapid
characterization of genomes and transcriptomes. An emerging application of this
sequencing technology is point-of-care characterization of pathogenic bacteria.
However, genome assessments alone are unable to provide a complete understanding
of the pathogenic phenotype. Genome-scale metabolic reconstruction and analysis is
a bottom-up Systems Biology technique that has elucidated the phenotypic nuances
of antimicrobial resistant (AMR) bacteria and other human pathogens. Combining these
genome-scale models (GEMs) with point-of-care nanopore sequencing is a promising
strategy for combating the emerging health challenge of AMR pathogens. However,
the sequencing errors inherent to the nanopore technique may negatively affect the
quality, and therefore the utility, of GEMs reconstructed from nanopore assemblies. Here
we describe and validate a workflow for rapid construction of GEMs from nanopore
(MinION) derived assemblies. Benchmarking the pipeline against a high-quality reference
GEM of Escherichia coli K−12 resulted in nanopore-derived models that were >99%
complete even at sequencing depths of less than 10× coverage. Applying the pipeline
to clinical isolates of pathogenic bacteria resulted in strain-specific GEMs that identified
canonical AMR genome content and enabled simulations of strain-specific microbial
growth. Additionally, we show that treating the sequencing run as a mock metagenome
did not degrade the quality of models derived from metagenome assemblies. Taken
together, this study demonstrates that combining nanopore sequencing with GEM
construction pipelines enables rapid, in situ characterization of microbial metabolism.

Keywords: antimicrobial resistance (AMR), metabolic model reconstruction, constraint-based model, nanopore
sequencing, MinION nanopore device R©, MinION long-read sequencing

INTRODUCTION

Recent advancements in sequencing technologies have opened up the possibility of in situ analysis
of genomes and transcriptomes. In particular, the nanopore MinION sequencer (Oxford Nanopore
Technologies, Oxford, United Kingdom) has emerged as a promising technology in this application
space. The small size and computational footprint required to run the device (Lu et al., 2016)
has enabled its use in human health settings, such as the detection of biothreat pathogens
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(Gargis et al., 2019), and in extreme environments such as
Antarctica (Johnson et al., 2017) and the International Space
Station (Castro-Wallace et al., 2017). The platform generates
relatively long sequencing reads enabling the assembly of
genomes at low coverage depth (Wick and Holt, 2019). This
reduces the computational resources required to assemble
genomes from nanopore reads, facilitating bioinformatic
pipelines that can be run on a personal laptop (Castro-Wallace
et al., 2017). However, despite advances in reagent chemistry,
flowcell design and computational basecalling algorithms, the
technology suffers from lower consensus genome accuracy
compared with short-read sequencing techniques, especially
in homopolymer regions (Gargis et al., 2019). Computational
techniques exist to correct the frame-shift mutations that
arise from these sequencing errors (Arumugam et al., 2019);
however, resource intensive techniques may not be accessible
in austere locales where the MinION device’s portability is a
unique capability.

Point-of-care, rapid characterization of pathogenic bacteria
is a promising in situ application of these technologies and
techniques (van Belkum and Rochas, 2018; Monk, 2019). In
standard hospital laboratories, short-read (Raven et al., 2019)
and hybrid assembly (Hikichi et al., 2019) based methods
successfully assessed methicillin-resistance in Staphylococcus
aureus (hereafter S. aureus). Additionally, the nanopore
sequencing technology rapidly profiled antimicrobial resistant
(AMR) pathogens in a clinical setting along with characterization
of patient microbiota (Leggett et al., 2020). However, a critique
of genome-based approaches is their inability to elucidate
an understanding of the pathogenic phenotype (Hendriksen
et al., 2019). Recent developments in genome-scale metabolic
modeling of pathogenic bacteria have shown promise in filling
this gap between genotype and phenotype.

Genome-scale metabolic reconstruction is an emerging tool
in the characterization and analysis of bacterial virulence and
antibiotic resistance. These reconstructions are biochemical
knowledge bases built from the annotated metabolic content
encoded in the organism’s genome. When parameterized with
constraints, these reconstructions become genome-scale models
(GEMs) that simulate the organism’s phenotype under a given
set of environmental conditions (O’Brien et al., 2015). To
date, genome-scale reconstructions have been built for a wide
range of pathogenic bacteria to include Escherichia coli (Monk
et al., 2013), multiple strains of Salmonella (Seif et al., 2018),
Acinetobacter baumannii (Norsigian et al., 2018), S. aureus (Seif
et al., 2019), Klebsiella pneumoniae (Norsigian et al., 2019),
and Streptococcus oralis (Jensen et al., 2020), among others.
While the direct simulation of AMR mechanisms in these
models is still in its infancy, the GEMs resulting from these
reconstructions elucidated differential metabolic capabilities that
provide a window into the phenotype of these pathogens
beyond the simple presence-absence of AMR conferring genome
content. For example, alternate nitrogen resource utilization
in Klebsiella pneumoniae was used to classify strains by
antibiotic resistance (Norsigian et al., 2019). Additionally, there
is a growing consensus that bacterial metabolism represents
fundamental constraints in the ability of bacteria to develop AMR

evolutionary trajectories (Zampieri et al., 2017). As genome-scale
metabolic reconstructions are based on an annotated genome,
combining point-of-care sequencing with rapid metabolic model
construction would augment existing genome-only assessments.
However, it is unknown whether MinION assembly accuracy is
sufficient for constructing high-quality genome-scale models.

MATERIALS AND METHODS

Additional methods detail and example code can be found in the
Supplementary Material.

Assembly and Reconstruction Pipeline
Read Filtering and Adapter Trimming
Details on MinION sequencing and basecalling are captured
in the sample specific sections below. Basecalled reads in Fast5
format were concatenated into a single file using the command
line. Multiplexed samples were separated by their respective
barcodes using qcat1. Reads shorter than 1,000 bp (by default)
were removed using Nanofilt (De Coster et al., 2018) and adapters
were trimmed using Porechop2 with the –no_split argument, as
implemented in the ONT bioinformatics package Pomoxis3.

Metagenome Size Determination
The filtered and trimmed reads were assembled using miniasm
(Li, 2016) as implemented in Pomoxis with one round of
Racon (Vaser et al., 2017) polishing to create a consensus
sequence. This low quality assembly was parsed with SeqIO
in the Biopython package (Cock et al., 2009) and the total
genome/metagenome size was determined to be the sum of all
sequences larger than 100 kbp.

Genome Assembly
The reads were assembled using Flye [v2.6, (Kolmogorov et al.,
2019)]. The genome size parameter was determined above and
the minimum overlap was set to 1,500 bp and the –plasmids
argument was used. Additionally, for metagenomes, the –meta
argument was included. For certain analyses the –asm_coverage
argument was used and set to 70×. The resulting assembly was
parsed and the total size was determined by summing all contigs
with 10× or greater coverage. If the initial and final genome size
parameters differed by a factor of 2 the assembly was repeated
with the new genome size value.

Genome Polishing
The draft assembly from Flye was polished with two rounds of
Racon after mapping the reads to the assembly using minimap2
(Li, 2016). The Racon polished assembly was polished with ONT’s
Medaka consensus polishing tool (v0.94).

Contig Binning
Contigs that were assessed to be circular based on the Flye
assembler were separated from the linear contigs, as were contigs

1https://github.com/nanoporetech/qcat
2https://github.com/rrwick/Porechop
3https://github.com/nanoporetech/pomoxis
4https://github.com/nanoporetech/medaka
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with less than 10× coverage. Linear contigs with GC content that
different by less than 5%, determined by SeqIO, and coverage that
differed by less than 15%, based on the Flye output, were grouped
into a single folder for subsequent analysis.

Draft Genome-Scale Models Construction
All contigs were annotated with Prokka [v1.13 (Seemann, 2014)].
Draft genome-scale models were built by either taking the
Genbank file output from Prokka as an input into a reference-
based model building protocol (Norsigian et al., 2020b) or the
protein sequences output from Prokka in Fasta format as an
input into CarveMe (Machado et al., 2018). Content that was not
included in the draft metabolic reconstructions was annotated by
homology-based search using either the NCBI Blast search tools
(Camacho et al., 2009) or DIAMOND search (Buchfink et al.,
2015) against the Swissprot database downloaded from Uniprot
[Downloaded: 2020/03/22, (The UniProt Consortium, 2019)].

Split ORF Recovery
Open reading frames that were split into multiple fragments due
to sequencing errors were recovered by generating bidirectional
(reciprocal) best-hit mappings between the protein sequences
from Prokka and the Swissprot database. Adjacent genes with the
same Swissprot best-hit were combined into a single amino acid
sequence and output to a new file in the Fasta format. This new
file was used in the reference-dependent protocol above.

Escherichia coli K−12 str. BOP27
Validation Experiments
Culturing
Escherichia coli K−12 strain BOP27 from a frozen glycerol stock
was first streaked on an LB agar plate and grown overnight at
37◦C. Several mL of LB media was inoculated with a single colony
and grown to late exponential phase.

DNA Extraction
The cells were pelleted by centrifugation and resuspended in
500 µL SETS buffer (75 mM NaCl, 25 mM EDTA pH 8, 20 mM
Tris-HCl pH 7.5, 25% Sucrose). 5 µL RNaseA and 10 µL
lysozyme were then added and the sample was incubated at
37◦C for 60 min. 14 µL proteinase K and 30 µL 20% SDS were
added, the sample was mixed gently by inversion and incubated
at 55◦C for 2 h inverting occasionally. 200 µL 5 M NaCl was
added and the sample mixed thoroughly by gentle inversion.
500 µL chloroform was then added and the sample mixed by
gentle inversion for 30 min at room temperature. Following
centrifugation for 15 min at 4,500 × g at room temperature
the upper aqueous phase was transferred to new 1.5 mL tube
and another round of chloroform extraction was performed. The
upper aqueous phase was transferred to new 1.5 mL tube. The
volume was measured and 1/10 that volume of 3 M sodium
acetate was added to the sample. DNA was precipitated with 0.7
volumes of isopropanol and the sample was placed on a slow
rocker for 5 min. The filamentous genomic DNA precipitate was
fished out with a Pasteur pipette, formed into a hook and sealed
with a flame, and transferred to a series of 3 microcentrifuge
tubes containing 1 mL 70% ethanol each. The final tube was

centrifuged to pellet the DNA and the ethanol was removed
with a pipette. The pellet was air dried for several minutes and
resuspended in nuclease-free water. A Nanodrop was used to
assess the quality of the genomic DNA prep, Qubit BR assay to
check the concentration and Agilent TapeStation to check the
size distribution.

MinION Sequencing
Native BOP27 genomic DNA (gDNA) was sequenced on
a MinION R9.4 flowcell [Oxford Nanopore (ONT)]. The
sequencing library was prepared using the ONT Rapid Barcoding
Sequencing kit (SQK-RBK004) according to the manufacturer’s
protocol with the following modifications: to two separate 0.2 mL
PCR tubes, 1 and 0.5 µg gDNA, were diluted to 9 µL in
ONT EB (10 mM Tris, 50 mM NaCl, pH 8.0). The barcoded
fragmentation mix was added in a ratio of 3:1 and 1:1 (µg gDNA:
µL fragmentation mix) to the 1 and 0.5 µg samples, respectively.
Half the library (∼0.75 µg) was loaded onto the MinION flowcell
without loading beads. ONT EB was used to bring the total
library volume to 75 µL prior to loading. Sequencing was
performed for 6 h on a flowcell with approximately 700 active
pores. Sequencing Fast5 files were basecalled using the ONT
Guppy basecaller (v3.2.2) with GPU acceleration on a laptop
with an Intel i7-6550U processor and 8 GB RAM connected
to an external GPU housing with an Nvidia GTX1070 (1920
CUDA cores, 8 GB VRAM) via a Thunderbolt 3 connection.
Quality filtering was enabled with default settings using high
accuracy, high accuracy with base pair modification, and fast base
calling algorithms. Basecalled reads were demultiplexed with qcat
(v1.1.05) prior to assembly.

Assembly and Annotation
The pipeline above was used to generate draft assemblies and
annotations for high accuracy, high accuracy with base pair
modification, and fast basecalling methods. Subsets of reads at
15, 20, 40, and 100× coverage (before size filtering and adapter
trimming) at N50 values of 20 and 10 k, were generated by
randomly subsampling the total dataset (approximately 320×
coverage). Additionally, a “worst-case” subset was generated by
taking the 15× subset and removing all reads larger than 15 kbp.
Overall accuracy of the BOP27 strain assembly versus the E. coli
strain K12 substrain MG1655 reference was determined using
the assess assembly function in Pomoxis6. Single nucleotide
polymorphisms (SNPs) and InDels were determined using the
dnadiff functions within MUMmer (Kurtz et al., 2004). The
NanoFilt parameters were set to remove reads shorter than 2,000
base pairs prior to adapter and barcode trimming by Porechop.
All assemblies were generated on a laptop computer equipped
with an Intel i7-8650U processor and 16 GB of RAM.

Draft Model Construction
The pipeline above was used to generate draft genome
scale metabolic reconstructions (GEM). The most recent
E. coli strain K12 substrain MG1655 GEM, iML1515 (Monk
et al., 2017) was used as the reference model and reference

5https://github.com/nanoporetech/qcat
6https://github.com/nanoporetech/pomoxis
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genome (NCBI Reference Sequence: NC_000913.3). The
Swissprot database downloaded from Uniprot [(The UniProt
Consortium, 2019), downloaded: March 22, 2020] was used
as the reference database and DIAMOND (Buchfink et al.,
2015) was used to create the bidirectional best hit list. Model
construction and simulation were performed in the Python
programming language with COBRApy (Ebrahim et al.,
2013) using the default GLPK solver in Jupyter Notebooks
(Kluyver et al., 2016).

Assembly and Reconstruction of
Pathogenic Bacteria
Culturing Methods
Clinical isolates of S. aureus, Acinetobacter baumannii (hereafter:
A. baumannii) and Enterococcus faecium (hereafter: E. faecium)
were cultured in the same manner as described above for
E. coli. DNA extraction leveraged the same protocol as that
for E. coli above with the exception that lysostaphin was used
instead of lysozyme.

MinION Sequencing
Native genomic DNA (gDNA) was sequenced on a MinION
R9.4 flowcell [Oxford Nanopore (ONT)]. The sequencing library
was prepared using the ONT Rapid Barcoding Sequencing kit
(SQK-RBK004) according to the manufacturer’s protocol with
the following modification: the gDNA input was increased to
800 ng genomic DNA and the optional SPRI bead cleanup was
omitted. The run was allowed to proceed for approximately 6 h.

Assembly and Annotation
The pipeline above was used to generate draft assemblies and
annotations for high accuracy (HAC) and high accuracy with
base pair modification (HAC+mod) basecalling methods. The
NanoFilt parameters were set to remove reads shorter than 1,000
base pairs prior to adapter and barcode trimming by Porechop.
Flye was set to a minimum overlap of 1,500 bp and the –
plasmid option was enabled. All assemblies were generated on
a laptop computer equipped with an Intel i7-8650U processor
and 16 GB of RAM.

Draft Model Construction
The pipeline above was used to generate draft genome scale
metabolic reconstructions (GEM) from the draft genomes of
the clinical isolates. For S. aureus, the most recent GEM of
strain USA300 substrain TCH1516, iYS854 (Seif et al., 2019),
was used as the reference model and reference genome (NCBI
Reference Sequence: NC_010079.1). For A. baumannii, the most
recent GEM of strain AYE, iCN718 (Norsigian et al., 2018),
was used as the reference model and reference genome (NCBI
Reference Sequence: NC_010410.1). The Swissprot database
downloaded from Uniprot [(The UniProt Consortium, 2019),
downloaded: March 22, 2020] was used as the reference database
and DIAMOND (Buchfink et al., 2015) was used to create the
bidirectional best hit list. Unique genome content was defined as
putative open reading frames that did not map to the reference
genome (percent ID cutoff of 80% and e-value cutoff of e-10).
These proteins were annotated by homology search against the

Swissprot database using DIAMOND. These annotations were
manually curated for metabolic content, the putative biochemical
reaction catalyzed determined from online databases [BiGG
(Norsigian et al., 2020c) and KEGG (Kanehisa and Goto, 2000;
Kanehisa et al., 2019)], and the reaction manually coded into the
draft metabolic reconstruction to create complete, curated GEMs.

Draft metabolic reconstructions for the E. faecium
clinical isolate were generated using a modified version of
the multi-strain reconstruction pipeline described above
(Supplementary Material) and the following reference genome-
scale reconstructions: Lactococcus lactis subsp. cremoris
MG1363, iNF516 (Flahaut et al., 2013), E. coli strain K12
substrain MG1655, iML1515 (Monk et al., 2017), Bacillus
subtilis strain 168, iYO844 (Oh et al., 2007), and S. aureus strain
USA300 substrain TCH1516, iYS854 (Seif et al., 2019). A draft
reconstruction was also generated using CarveMe (Machado
et al., 2018) using the default settings. Model simulations and
reconstruction were performed in the Python programming
language with COBRApy (Ebrahim et al., 2013) using the default
GLPK solver in Jupyter Notebooks (Kluyver et al., 2016).

Mock Metagenome Assembly
The metagenome was assembled following the pipeline without
demultiplexing the barcoded reads prior to assembly. Bin
contamination was manually determined by homology search of
proteins annotated in each bin contig using NCBI Basic Local
Alignment Search Tool [BLAST (Camacho et al., 2009)] against
the non-redundant database.

Phylogenomic Analysis
Phylogenomic analysis was performed using GToTree (Lee,
2019) and the tools included therein (Edgar, 2004; Capella-
Gutiérrez et al., 2009; Hyatt et al., 2010; Price et al., 2010; Eddy,
2011; Tange, 2018; Shen and Xiong, 2019). Phylogenomic analysis
of the clinical isolates with other strains of the species was
performed by taking the Prokka protein sequence FASTA file
and comparing it to all Refseq assemblies for that species in the
NCBI genome database. For placing the clinical isolates in the
BiGG Models Database phylogeny, the database was parsed for
the NCBI accession number used to reconstruct each GEM, the
genomes were downloaded from NCBI and used for analysis.
To place the BiGG models into a microbial tree of life, a table
of all representative, complete archea and bacteria genomes was
downloaded from the NCBI genome browser (approximately
3,200 genomes). From this list, a single representative from each
phylum was selected (54 genomes) and the genbank file passed
to GToTree for analysis. All phylogenomic trees were visualized
using the Interactive Tree of Life web-based tool (Letunic and
Bork, 2019). A list of NCBI accession numbers used can be found
in the Supplementary Material.

RESULTS

Assembly and Reconstruction Pipeline
Our objective was to assess the quality of genome-scale metabolic
network reconstructions resulting from MinION-based
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assemblies. The assembly and draft reconstruction pipeline
was designed to rapidly take extracted gDNA to a contextual
framework for characterizing microbial metabolism (Figure 1).
We leveraged existing studies that compare long-read assemblers
to develop our assembly pipeline (Wick and Holt, 2019).
The Flye assembler (Kolmogorov et al., 2019) showed the
best balance of speed and accuracy and was used for all our
assemblies. Flye requires an approximation of genome or
metagenome size. Thus, we used a rapid, but inaccurate,
assembly method [miniasm, (Li, 2016)] to approximate the
genome size prior to assembly by Flye. This step can be bypassed
if the approximate genome size is known. We polished the Flye
assembly with multiple rounds of Racon (Vaser et al., 2017)
before running the assembly polisher, Medaka, as recommended
by ONT. We attempted to use existing binning tools for our
metagenomes [BinSanity (Graham et al., 2017)]; however, these
programs required computational resources in excess of a typical
laptop. As our pipeline is designed to be used in austere field
conditions, we implemented a simple binning strategy based
on coverage and contig GC content. This approach requires
manual curation of the binned contigs prior to annotation
and model building.

We employed reference-dependent and independent
strategies for generating draft metabolic reconstructions. We
adapted a recently published protocol for building multi-strain
metabolic reconstructions based on a reference model (Norsigian
et al., 2020b). The input for this protocol requires a file in the
NCBI Genbank format. The annotation tool Prokka includes a
Genbank formatted output appropriate for this pipeline input.
For organisms without a reference model of a closely related
strain or species, we used CarveMe (Machado et al., 2018), a tool
that uses the entire BiGG Models database (King et al., 2016)
and homology search to generate a draft genome-scale network
reconstruction. An additional automated reconstruction tool,
modelSEED (Henry et al., 2010), is available but was not used as it
performs similar or worse than CarveME (Machado et al., 2018)

and it leverages a different name-space for reactions and
metabolites, making model comparison difficult.

Pipeline Validation With E. coli K−12
We assessed the ability of MinION sequencing and our pipeline
to recapitulate the well-curated E. coli strain K−12 substrain
MG1655 genome-scale model iML1515 (Monk et al., 2017).
A primary objective of this study was to optimize the trade-off
in time versus accuracy; thus, we explored multiple basecalling
strategies for the raw reads. CPU basecalling was prohibitively
slow (on the order of days to weeks); thus, we only present GPU
accelerated basecalling results, which was 100-times faster. The
MinION generated approximately 200 k reads, 83% of which
passed the Q score quality threshold for all basecaller methods;
however, this 83% of the reads constituted 94% of the base
pairs sequenced. The coverage depth for the E. coli genome
varied depending on the basecalling method; the high accuracy
algorithm (both with and without methylation calling) resulted
in ∼307× coverage while the fast method resulted in only 260×
coverage. The N50/N90 values were approximately 21/6 kbp
for all methods. The high-accuracy basecalling model required
177 min while the fast method required 53 min (Table 1).

We compared the polished genomes with varying rounds of
Racon combined with Medaka (Table 2). Overall, miniasm with
one round of Racon was similar in accuracy to the Flye assembly
with no additional polishing steps, although Flye alone resulted in
a sixfold reduction in SNPs, likely due to Flye’s built in polishing
step. Polishing the Flye assembly with Medaka increased the
accuracy of the assembly compared to Flye alone. Two rounds
of Racon were necessary and sufficient to maximize assembly
accuracy (Table 2).

We assessed the time versus accuracy tradeoff for three
different basecalling models. The Guppy basecalling program
can leverage a Fast algorithm as well as two high-accuracy
(HAC) algorithms; one of which accounts for methylation of
A and C nucleotides (HAC+mod). As previously mentioned,

FIGURE 1 | A schematic of the genome assembly and model construction pipeline used in this study.
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TABLE 1 | Summary of assembly statistics for E. coli strain K12 substr. BOP27.

Basecaller Coverage Read N50
(bp)

Genome
size (Mbp)

Contigs Q score SNPs InDels Basecalling
time (min)

Assembly
time (min)

HAC+ 307× 22k 4.640 1 32.0 21 598 177 207

HAC− 306× 22k 4.639 1 27.3 4452 901 176 207

Fast 260× 22k 4.638 1 24.3 10621 4316 53 197

TABLE 2 | Assembly quality for E. coli strain K12 substr. BOP27 at different steps
in the pipeline for reads basecalled with the high accuracy algorithm with
methylation calling enabled.

Genome size (Mbp) Q-score SNPs InDels

MiniASM_R1 4.636 25.6 470 9279

Flye 4.649 25.3 76 10482

Flye + Medaka 4.641 30.7 27 1660

Flye + R1 + M 4.639 30.9 32 654

Flye + R2 + M 4.640 32.0 21 598

Flye + R4 + M 4.640 32.0 25 596

R#, Racon rounds; M, Medaka; SNP, single nucleotide polymorphism; InDel,
insertions/deletions.

the HAC algorithm takes approximately 3 times longer than
the Fast algorithm. The overall accuracy of the assemblies at
similar coverage values (∼300× for both HAC algorithms and
260× for the Fast algorithm) were quite different with Q scores
of 32.0, 27.3, and 24.3 for the HAC+mod, HAC, and Fast
algorithms, respectively (Table 1). All three methods resulted
in a single contig of a size that was shorter than the reference
genome by 1.7 to 3.3 kbp. The HAC+mod algorithm reduced the
number of SNPs by 200-fold compared to the HAC algorithm,
suggesting DNA modification has a significant effect on read
accuracy. The number of InDels in the HAC+mod algorithm
was reduced by 33% compared to the HAC algorithm. The Fast
algorithm resulted in an assembly with over 10,000 SNPs and
4,300 InDels (Table 1).

We evaluated the effect of coverage depth on the assembly
accuracy and time for the basecalled reads. We subsampled the
HAC+mod reads to generate two datasets with genome coverage
of 15, 20, 40, and 100× coverage. The N50 value of one dataset
was left at the original value (approximately 21 kbp) while one
set was subsampled to have an N50 value of 11 kbp. These sets
were then filtered to remove reads smaller than 2,000 bp and a
quality score lower than 7, as well as adapter trimmed, resulting
in final coverage values of 11, 14, 27, and 58×. An additional
subset was generated from the 15× read set where all reads
larger than 15 kbp were removed resulting in 7× coverage and
an N50 of 9 kbp. We generated similar datasets for reads from
the Fast algorithm.

Assembly accuracy increased rapidly with increasing coverage
depth. For the HAC+mod datasets, all read subsets resulted
in a single, circular contig except for the 7× coverage subset
with all reads longer than 15 kbp removed (Supplementary
Table 2). Assembly time increased linearly with coverage
depth (Figure 2A); however, assembly accuracy increased
non-linearly with the 58× coverage read set achieving a Q

score of 30.4 compared to 32.0 for the highest coverage
dataset (Figure 2B).

The Fast algorithm also resulted in single, circular contigs
for most datasets. The exceptions were the worse-case scenario
(6× coverage with all reads longer than 15 kbp removed), which
resulted in 24 contigs, and a dataset with 9× coverage and an N50
of 22k, which resulted in 2 contigs. Similar to the HAC+mod
algorithm, assembly accuracy increased non-linearly with a Q
score of 23.9 at 66× coverage versus 24.3 at 260× (Figure 2B).
For both algorithms, decreases in both SNPs and InDels followed
the same non-linear trend (Supplementary Figures 1A,B). Based
on these results, an assembly reaches 99% of the maximum
accuracy at 80× coverage with an assembly time of 56 min for
a genome size of approximately 5 Mbp.

Errors in the assemblies affected the number of coding
DNA sequence(s) (CDS) identified by Prokka. The E. coli
K−12 MG1655 reference genome annotation contains 4305
CDS, 88 tRNA, and 22 rRNA. The HAC+mod assemblies
had a higher number of CDS annotated that varied from a
4% to an 83% increase over the reference (Supplementary
Table 2). The increase in the number of CDS was linearly
correlated with assembly accuracy and can be used as a proxy
for assembly quality (Figure 3). While the correlation was the
same between HAC+mod and Fast algorithms (coefficient of
determination = 0.98), the slope was different between the two
algorithms due to the difference in maximum assembly accuracy.

Genome-Scale Metabolic
Reconstructions From MinION
Assemblies
We used the outputs from the Prokka annotation to build
genome-scale metabolic network reconstructions (GEMs) for
three representative assemblies from the Fast and HAC+mod
algorithms. We leveraged a recently published model building
protocol that generates a reconstruction based on a reference
model (Norsigian et al., 2020b). We added an additional step
that attempts to recombine CDS that were split into multiple
protein sequences due to sequencing errors. This homology-
based correction resulted in a substantial recovery of split CDS.
For the Fast basecalling algorithm, 76–84% of split CDS were
recombined into a single protein sequence (Table 3). For the
HAC+mod algorithm, this ranged from 82 to 96% with the
highest coverage assembly achieving 4312 putative CDS versus
4305 for the reference E. coli K−12 MG1655 reference genome.
We also leveraged an optional step in the process where the
nucleotide sequences for each CDS in the reference genome is
queried against the draft genome. Open reading frames missing
from the draft annotation due to sequencing errors can be
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FIGURE 2 | Assembly statistics versus coverage depth. (A) Assembly time versus genome coverage depth. (B) Assembly accuracy versus coverage depth.

FIGURE 3 | Assembly accuracy versus the number of coding DNA sequences
annotated.

recovered using this step. A summary of recovered open reading
frames is shown in Table 3.

Using the most recent E. coli K−12 MG1655 GEM, iML1515,
as a reference model, we generated GEMs based on homology
search between annotations of the corrected draft assemblies and
the reference genome. The resulting models were surprisingly
complete, even for the lowest accuracy assemblies (Table 3).
When simulated, all models, even the lowest accuracy assembly
from the Fast basecalling algorithm, predicted the same growth
rate as the reference model. All metabolic reactions were present
in the models, with the exception of the lowest accuracy
HAC+mod assembly, which was missing 2 of 2,712 reactions.
All models contained over 99% of the genes present in the
reference model. Predicted growth capabilities on 298 possible
carbon sources were identical for all six models and iML1515
(Supplementary Figure 2).

Assembly and Reconstruction of
Pathogenic Bacteria
After validating the model generation pipeline on E. coli K−12,
we applied the method to characterize clinical isolates of

pathogenic bacteria. The clinical isolates included a hospital-
acquired MRSA strain isolated from a patient with prolonged
bacteremia secondary to osteomyelitis at Westchester Medical
Center in Valhalla, New York. The A. baumannii strain was
isolated from an osteomyelitis patient in 2017 in San Diego, CA,
United States. The E. faecium strain was isolated from a patient
in Cairo, Egypt. These isolates provided a practical application
of the pipeline as antibiotic resistance genes can be identified
by comparative analysis with reference models. Additionally,
high-quality genome scale metabolic reconstructions exist for
A. baumannii strain AYE (Norsigian et al., 2018) and S. aureus
strain USA300 (Seif et al., 2019), which could serve as reference
reconstructions. Currently a metabolic reconstruction is not
available for E. faecium. Thus, we assessed the completeness of
draft reconstructions of E. faecium using our pipeline compared
to an automated reconstruction pipeline [CarveMe (Machado
et al., 2018)]. The demultiplexed samples were basecalled,
assembled and annotated using our pipeline, a summary of which
is shown in Table 4. Circular contigs were generated for all
three bacterial genomes. Additionally, plasmids were recovered
for A. baumannii and E. faecium.

Staphylococcus aureus Clinical Isolate
The S. aureus isolate reads were assembled into a single
circular contig that resulted in a near-complete genome-
scale model. Overall genome coverage was approximately
75×, which, based off the pipeline validation in E. coli, was
expected to result in a near-complete assembly. We generated
assemblies using reads from both high accuracy algorithms,
with and without accounting for methylation of A and C bases
(HAC−mod and HAC+mod, respectively). The HAC−mod
assembly resulted in fewer total ORFs with a longer mean length
(Table 4). The reduction in fragmented ORFs suggested the
HAC−mod algorithm resulted in a more accurate assembly
than the HAC+mod algorithm, in contrast to the results in
E. coli (Table 1).

The draft genome-scale model of the clinical isolate was
nearly identical to that of the reference model. Using the
pipeline’s split ORF recombination step reduced the number of
predicted ORFs by 58 in the HAC−mod assembly and 145 in
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TABLE 3 | Statistics of genome-scale metabolic reconstructions built from the assembly and annotation pipeline.

Basecaller Coverage # contigs Split CDS recovered (%) ORFs recovered Genes Reactions Growth rate (hr−1)

Fast 6× 24 4155 (76%) 547 1502 2712 0.877

66× 1 1725 (84%) 40 1507 2712 0.877

260× 1 1576 (83%) 32 1511 2712 0.877

HAC+mod 7× 5 2902 (82%) 233 1510 2710 0.877

58× 1 360 (93%) 5 1515 2712 0.877

307× 1 176 (96%) 3 1516 2712 0.877

iML1515 N/A N/A N/A N/A 1516 2712 0.877

TABLE 4 | Assembly statistics for clinical isolates of pathogenic bacteria characterized in this study.

HAC+ HAC−

Barcode Species ID Size (Mbp) Cov. ORFs Mean ORF length (bp) ORFs Mean ORF length (bp) Assembly time (min)

BC07 A. baumannii 3.93 13× 5826 561 5376 622 13

BC09 E. faecium 2.89 46× 3595 669 3217 762 34

BC11 S. aureus 2.84 75× 2961 803 2788 859 27

the HAC+mod; again suggesting the HAC−mod algorithm was
more accurate due to fewer split ORFs. For both algorithms, only
a single ORF was recovered by homology search of reference
nucleotide sequences against the assemblies. The draft clinical
isolate metabolic reconstruction consisted of 851 genes and
1,448 reactions compared to 866 genes and 1,455 reactions
in the reference model iYS854. Of the 7 missing reactions
none were essential and the growth rate predicted by the
draft model, before curation, was identical to that of the
reference model. Draft reconstructions were identical for both the
HAC−mod and HAC+mod assemblies. Thus, we only curated
the HAC−mod derived draft.

The model construction pipeline provides an annotation
of unique content, both in the reference strain and clinical
isolate. Using these annotations, we rapidly curated the draft
clinical isolate reconstruction into a complete model. The
clinical isolate had 181 proteins without a clear homolog in
the USA300 strain (Figure 4), of which 57 had homology to a
protein the Swissprot database. From these 57 proteins, it was
determined 16 were homologous to a protein in the reference,
but below the 80% PID cutoff. Thus, we curated the final list
of 41 proteins in the clinical isolate for unique metabolic and
antibiotic resistance or toxicity content. A similar analysis of
the reference strain USA300 TCH1516 resulted in 447 proteins
without homology in the clinical isolate (Figure 4). Of these
477 proteins, 100 were homologous to Swissprot proteins and
upon manual curation, we identified 67 as proteins of known
function that were unique to the reference compared to the
clinical isolate.

The metabolic capabilities of USA300 TCH1516 and the
clinical isolate were almost identical. We first assessed the
reactions missing from the draft model that were present in
the reference. For 5 of the 7 missing reactions, we determined
homology scores below the cutoff resulted in the reactions
being removed from the draft reconstruction. However, after
manual curation of these proteins against the Swissprot database

homology search, we added the reactions back to the draft
reconstruction of the clinical isolate. The final missing reactions
were alternate peptidoglycan biosynthesis pathways in the
reference strain. This alternate pathway is missing or different in
the clinical isolate and its omission from the draft reconstruction
was valid. The only unique capabilities in the reference strain
genome were a putative arsenate reductase and a trio of poorly
characterized ATP-dependent transporters with low homology
to cation uptake proteins. There were no unique metabolic
capabilities identified in the clinical isolate. The final, curated
clinical isolate reconstruction, iSA854isolate (Supplementary
Material), consisted of 854 genes, 1,453 reactions and 1,335
metabolites (Figure 4).

There were differences in the antibiotic resistance capabilities,
host toxicity mechanisms and antimicrobial peptide biosynthesis
between the reference strain and the clinical isolate (Figure 4).
Of the methicillin resistance genes present in the reference
strain, USA300 TCH1516, only the transmembrane β-lactam
sensor, MecR1 (Peacock and Paterson, 2015), was missing in
the clinical isolate. The clinical isolate genome encoded for a
possible MacB efflux transporter (Kobayashi et al., 2001), which
confers resistance to macrolides, such as erythromycin (Lin
et al., 2009). The chemotaxis inhibitory protein, responsible for
evading the host immune system (de Haas et al., 2004), and
phenol-soluble modulins, capable of lysing host cells (Cheung
et al., 2014), were not present in the clinical isolate. While
both the reference strain and clinical isolate genomes encoded
for Staphylococcal enterotoxin A, D, and E, the clinical isolate
also encoded for enterotoxins C, G, and H. Biosynthesis of
the antimicrobial lantibiotic, epidermin, was unique to the
reference strain. No known lantibiotic biosynthesis pathways
were present in the clinical isolate; however, a lantibiotic exporter
was annotated. It should be noted, this analysis is based on
genome comparison analysis and not direct outputs from model
simulations as many of these mechanisms are out of scope
for GEMs. However, the genome comparison was facilitated by

Frontiers in Microbiology | www.frontiersin.org 8 November 2020 | Volume 11 | Article 596626

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-596626 November 7, 2020 Time: 19:27 # 9

Broddrick et al. Metabolic Models From MinION

FIGURE 4 | Comparison of S. aureus USA300 TCH1516 versus the S. aureus clinical isolate based on outputs of the genome-scale metabolic reconstruction
pipeline.

the pipeline as only non-redundant content required manual
intervention and annotation.

Acinetobacter baumannii Clinical Isolate
The A. baumannii isolate reads were assembled into one circular
genome and one linear plasmid despite an overall genome
coverage of approximately 13×. We generated assemblies using
reads from both high accuracy algorithms, with and without
accounting for methylation of A and G bases (HAC−mod
and HAC+mod, respectively). Again, the HAC−mod assembly
resulted in fewer total ORFs with a longer mean length (Table 4)
and, thus, resulted in a more accurate assembly than the
HAC+mod algorithm.

The metabolic content of the draft genome-scale model
of the clinical isolate differed from that of the reference
model. The pipeline’s split ORF recombination step reduced the
number of predicted ORFs by 326 in the HAC−mod assembly
suggesting the low genome coverage, and resulting accuracy,
resulted in a substantial number of frameshifts. Five ORFs were
recovered by homology search of reference nucleotide sequences
against the assemblies. The draft clinical isolate metabolic
reconstruction consisted of 675 genes and 1,007 reactions
compared to 709 genes and 1,015 reactions in the reference
model iCN718. Of the 8 missing reactions, one was essential;
a capsular polysaccharide (CPS) biosynthetic enzyme, UDP-
N-acetyl-D-glucosamine epimerase (model reaction UAG4E).
Upon removing the product of this reaction, UDP-N-acetyl-D-
galactosamine, from the CPS biomass reaction, the draft model
was able to simulate growth. This observation, along with the
absence of another CPS biosynthetic enzyme, UDP-N-acetyl-
D-mannosamine oxidoreductase (model reaction UACMAMO),
suggested differences in the CPS between the two species, which
was evident during the subsequent manual curation phase.

The A. baumannii clinical isolate had 700 proteins without a
clear homolog in the AYE reference strain (Figure 5), of which

244 had homology to a protein the Swissprot database. From
these 244 proteins, it was determined 83 were homologous to a
protein in the reference, but below the 80% PID cutoff. Thus,
we curated the final list of 161 proteins for unique metabolic
and antibiotic resistance or toxicity content. A reciprocal analysis
of the reference strain AYE resulted in 558 proteins without
homology in the clinical isolate (Figure 5). Of these 558 proteins,
267 were homologous to Swissprot proteins and upon manual
curation, we identified 179 as proteins of known function that
were unique to the reference compared to the clinical isolate.

We first assessed the remaining reactions missing from the
draft model that were present in the reference. Manual curation
of the non-CPS missing reactions suggested these capabilities
were indeed not present in the clinical isolate. These included
acetolactate decarboxylase, proline racemase, allophanate
hydrolase, an ABC-type histidine/cationic amino acid importer,
and a plasmid encoded creatine amidohydrolase. Additionally,
the DNA modifying enzyme cytosine-5-methyltransferase
(model reaction CYTOM) was absent in the clinical isolate.
Unique capabilities in the reference strain AYE genome included
heavy metal efflux pumps for arsenic, and mercury as well as
several genes related to CPS biosynthesis in addition to those
mentioned above.

In contrast, there were several additional metabolic
capabilities annotated in the clinical isolate. Degradation
pathways for glucarate and galactarate, putrescine, and gallate
were present in the isolate (Figure 5). These pathways were
already present in the BiGG Models database (Norsigian et al.,
2020c) in models for E. coli [iML1515 (Monk et al., 2017)],
Bacillus subtilis [iYO844 (Oh et al., 2007)], and Pseudomonas
putida [iJN1462, (Nogales et al., 2020)]. As such, this new model
content was easily transferred to the draft reconstruction and
the gene-reaction associations updated with the clinical isolate
ORFs (Supplementary Material). While both the clinical isolate
and the reference strain contained a Type-I dihydropteroate
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FIGURE 5 | Comparison of A. baumannii AYE versus the A. baumannii clinical isolate based on outputs of the genome-scale metabolic reconstruction pipeline.

synthase, the clinical isolate also encoded for a Type-II version
of this enzyme. The Type-I is rapidly inhibited by sulfonaminde
antibiotics while the Type-II may confer resistance to this class
of antibiotics (Rådström et al., 1991).

The CPS biosynthesis loci in the clinical isolate suggested the
presence of pseudaminic acid. The genetic organization of the
clinical isolate CPS loci was highly similar to the pseudaminic
acid containing K2 capsule (Kenyon et al., 2014). However, the
K2 capsule is hypothesized to use N-acetyl-galactosamine as
the initiation sugar (Kenyon et al., 2014). As mentioned above,
the clinical isolate is missing the UDP-N-acetyl-D-glucosamine
epimerase, which biosynthesizes N-acetyl-galactosamine. Thus,
the initiating CPS sugar for the clinical isolate is unknown. The
pseudaminic acid biosynthesis pathway was not in the BiGG
Models Database. Thus, we manually curated the pathway into
the draft reconstruction. There was one additional metabolic
capability annotated in the clinical isolate but not added to the
draft reconstruction. A gene cluster with very low homology
to siderophore-mediated iron uptake was annotated. The low
homology annotations prevented the content from being added
to the model; however, this pathway is redundant with iron
uptake systems present in both the reference strain and the
clinical isolate. The final, curated clinical isolate reconstruction,
iAB710isolate (Supplementary Material), consisted of 710 genes,
1,032 reactions and 918 metabolites (Figure 5).

There were differences in the antibiotic resistance capabilities
and antimicrobial toxins between the A. baumannii reference
strain and the clinical isolate (Figure 5). Genetic evidence for
antibiotic resistance unique to the reference AYE strain included
kanamycin, tetracycline, gentamicin, chloramphenicol and small
multidrug resistance. The clinical isolate genome encoded for an
ABC transporter that functions as a cefoperazone efflux pump
(Yamanaka et al., 2016). Additionally, in the clinical isolate,
there was evidence for an aminoglycoside acetyltransferase that
acetylates aminoglycoside molecules conferring resistance to
purpurosamine ring containing antibiotics (Nobuta et al., 1988).

For antimicrobial toxins, the clinical isolate genome included a
contact-dependent growth inhibition system, CdiA (Willett et al.,
2015), which was not present in the reference genome. Efflux
pumps and the aminoglycoside acetyltransferase are in-scope for
the GEM and if combined with a model of antibiotic uptake
kinetics could simulate AMR mechanisms. However, the CdiA
mechanism is out of scope for GEMs and the analysis above is
based on genome comparison.

E. faecium Draft Reconstruction
We attempted to generate a draft metabolic model of
Enterococcus faecium (E. faecium) using a modified version
of the pipeline. As a reference model does not exist for this
species, we adapted the model construction pipeline to use a
neighboring organism in the BiGG Models Database (Norsigian
et al., 2020c) as a reference. As expected, phylogenomic
analysis indicated the E. faecium strain clustered with the other
Firmicutes in the BiGG database (Supplementary Figure 3).
We also chose a “type-strain,” in this case E. faecium strain DO
(NCBI: NC_017960.1), which was used to perform the ORF
recovery step of the pipeline. Additionally, this version of the
pipeline used an e-value threshold (1e-10) instead of PID to
establish homology with the reference species. We generated
draft metabolic reconstructions of E. faecium using three
Firmicute GEMs due to their phylogeny as well as E. coli due to
the model size and quality as reference species (Table 5).

None of the E. faecium reconstructions created a complete
model. The reconstructions varied in size from 319 to 448 genes
(Table 5). However, each reconstruction also contained unique
content not present in the draft models derived from the other
reference species. The total, non-redundant draft reconstruction
consisted of 626 genes, 1,045 reactions and 1,050 metabolites
(Supplementary Material). This combined model was unable
to simulate growth, likely due to the lack of a species-specific
biomass reaction. The number of ORFs without homology to the
reference species increased with increasing phylogenetic distance
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TABLE 5 | Draft metabolic reconstructions of E. faecium clinical isolate using different reference genome-scale reconstructions.

Reference Strain Ref model genes Model Genes Unique No BBH hits

E. faecium GEM Lactococcus lactis 517 342 35 1435

Bacillus subtilis 844 319 21 1492

Staphylococcus aureus 854 448 77 1545

Escherichia coli 1515 434 97 1848

from E. faecium (Table 5). However, this did not correlate with
model size as the most phylogenetically distance species, E. coli,
resulted in the second largest model.

We compared the results from our pipeline with that from
an automated reconstruction tool, CarveMe (Machado et al.,
2018). CarveMe uses a universal model based on an older version
of the BiGG database, which is conceptually similar to, but
more comprehensive than, our use of multiple reference models
above. CarveMe then removes model content based on a linear
programming (MILP) approach. Annotated E. faecium protein
sequences aligned to the CarveMe universal model protein
database suggested 708 unique hits with an e-value above the
threshold of 1e-10, which is similar to our combined model
size of 626 genes. The CarveMe GEM contained 471 genes,
1,045 reactions and 784 metabolites. While this model was
smaller than our combined model, it was capable of simulating
growth on a chemically rich media (all exchange reactions open)
while our combined model was not. The difference between the
number of homologous proteins in our E. faecium assembly
(708) and the final CarveMe model gene count (471) suggested
the MILP “carving” process removed metabolic content that
should likely be included in the E. faecium reconstruction. As
the CarveMe method is a top-down model building tool, this is
somewhat expected. There was unique content in both models.
Of the 471 genes in the CarveMe model, 106 were missing from
our combined model. At the same time, our combined model
contained 261 genes not present in the CarveMe model. These
results suggest the reconstructions resulting from both pipelines
require manual curation.

Mock Metagenome
As analysis of microbial communities in situ is an important
capability of the MinION sequencing platform, we assessed the
quality of assemblies derived from treating the entire sequencing
run as a mock metagenome. There were six separate sample
preparations, or carry-over from previous runs, present in the
mock metagenome including three strains of E. coli, with an order
of magnitude difference in the read count between the least and
most abundant sample (Supplementary Table 3). Single, circular
contigs were recovered from the metagenome for S. aureus,
A. baumannii, and E. faecium, similar in length to the assemblies
from demultiplexed reads (Table 6). Comparison of the genomes
derived from the HAC−mod reads and the metagenome resulted
in Q-scores of 29.4, 34.2, and 43.6 for A. baumannii, E. faecium,
and S. aureus, respectively (99.88% similar or better). Fragmented
contigs for Synechococcus elongatus PCC 7942, assessed to
be carry-over from a previous sequencing run on the same
MinION flow cell, did not exceed the coverage cutoff for

binning and annotation (10×). Reads for a substrain of E. coli
CFT073 constituted 11% of the total reads but only 3% of
the sequenced nucleotides (Supplementary Table 3) and did
not exceed the coverage cutoff for binning. Surprisingly, the
assembly for a substrain of E. coli O157:H7 was fragmented
with highly variable coverage of the main chromosome (14–
22×). This sample stood in stark contrast to the other assemblies
above the cutoff threshold suggesting an issue during gDNA
extraction or library construction. Still, the size of the assembled
fragments was similar to the canonical size for this strain of
E. coli (Table 6) and a draft reconstruction (not curated for
novel content) based on iML1515 was able to solve for growth
(Supplementary Dataset).

As A. baumannii had the least similarity of the circular
genomes, we ran the model reconstruction pipeline on the
metagenome-derived assembly for this isolate. The metagenome-
derived assembly contained 5,019 annotated ORFs with an
average ORF length of 659 bp compared to 5,376 ORFs and
622 bp in the HAC−mod assembly. This result suggested
assembly quality was higher for the metagenome than the
demultiplexed assembly, possibly due to slightly higher coverage
(Table 6). The draft reconstruction from the metagenome-
derived assembly and the HAC−mod assembly were identical
with 675 genes and 1,007 reactions, with the same 8 reference
model reactions missing in both draft reconstructions. This result
suggests near-complete genome scale metabolic reconstructions
can be built with metagenome-derived assemblies.

DISCUSSION

Overall, the results from the assembly and model
construction pipeline suggest accurate genome-scale metabolic
reconstructions can be generated directly from MinION-based
assemblies. The pipeline delivered >99% complete E. coli models
for all coverage depths and assembly accuracies. Assembly
accuracy rapidly increased with increasing coverage depth while
the time required for assembly increased linearly with coverage
depth (Figures 2A,B). These data suggest a coverage target
of approximately 80× provides a balance between assembly
accuracy and time required. At this value, an assembly is within
1% of its maximum accuracy and the pipeline can be complete
in less than an hour on a laptop, for a genome of approximately
5 Mbp. While the Fast basecaller resulted in low accuracy, error
prone assemblies, the reconstructions that resulted from these
reads were still greater than 99% complete. This is likely due
to the fact that network reconstructions require only a binary
presence-absence assessment in order to add a reaction to the
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TABLE 6 | Assembly statistics for the MinION mock metagenome assembly.

Contigs Contig ID Mean coverage # contigs Mean GC content (%) Size (bp)

Circular contigs A. baumannii 16 1 39 3924200

A. baumannii plasmid 125 1 38 19664

E. coli O157:H7 Fragment 5 1 49 7257

E. coli O157:H7 Fragment 23 1 55 2035

E. coli O157:H7 Plasmid 50 1 48 92091

E. faecium 57 1 38 2877951

E. faecium plasmid 275 1 36 57023

E. faecium plasmid 610 1 35 48025

E. faecium plasmid 3164 1 39 2014

S. aureus 80 1 33 2826253

S. elongatus sp. PCC 7942 33 1 60 7842

Bin 1 E. coli O157:H7 17 3 50 737975

Bin 2 E. coli O157:H7 39 1 49 55052

Bin 3 E. coli O157:H7 plasmid 829 2 44 3300

Bin 4 S. elongatus sp. PCC 7942 12 1 53 43757

Bin 5 E. coli O157:H7 27 3* 50 4626033

Bin 6 E. faecium plasmid 71 1 36 164487

*2 kbp S. aureus contaminating contig.

model. Taken together, this data suggests the GEM accuracy is
equal to the genome assembly accuracy. As MinION assemblies
achieve greater than 99% consensus accuracy, the resulting GEMs
also achieve this level of completion. It should be noted that
assembly quality and speed continue to increase due to advances
in computational algorithms and hardware. For example, we
validated the Supplementary Dataset example pipeline process
on a laptop equipped with an intel i7-9750 45W processor with
32 GB RAM, and an RTX2060 GPU. High accuracy basecalling
of the E. coli data took 90 min compared to 177 min (Guppy
v. 3.6.1 vs. 3.2.2, mobile RTX2060 vs. desktop GTX1070) and
assembly of a 40× HAC E. coli dataset took 12 min compared to
28 min on the i7-8650U processor.

The assembly pipeline resulted in circular contigs for S. aureus,
A. baumannii, and E. faecium clinical isolates. The relationships
between coverage depth and the overall genome accuracy and
number of split ORFs were consistent with the validation results
from E. coli. The recovery of the complete A. baumannii genome
despite an overall coverage of 13×, was particularly encouraging.
Additionally, the pipeline recovered plasmids for A. baumannii
and E. faecium, an important capability as plasmids often contain
AMR conferring genes (Buckner et al., 2018).

Treating the sequencing run as a metagenome did not degrade
the quality of the resulting assemblies. In fact, our results for
A. baumannii suggested an increase in assembly quality due to the
incorporation of reads that are excluded from the demultiplexed
samples due the lack of a barcode (approximately 11% of the
reads, Supplementary Table 3). This result shows promise for
rapid in situ characterization of simple microbial communities,
for which there is precedence in the literature (Castro-Wallace
et al., 2017; Arumugam et al., 2019; Sevim et al., 2019). The
fragmented nature of the E. coli O157:H7 genome in the mock
metagenome stood out from the quality assemblies of the other
species. We hypothesized the presence of three different E. coli

strains in the same metagenome may have affected the assembly
quality. However, an assembly of the demultiplexed barcoded
reads yielded similar results (Supplementary Table 4). Thus, the
issue was inherent in the read data and the presence of multiple,
similar strains did not affect the assembly quality. Consistency
between the metabolic capabilities of the S. aureus clinical
isolate and the reference strain, USA300 TCH1315, resulted in
a solvable, near complete genome-scale model directly from
the pipeline. The pairwise comparison output from the pipeline
also enabled a rapid assessment of putative AMR capabilities
(Figure 4). The observed differences, such as the presence
of a putative MacB efflux pump in the clinical isolate, could
assist in treatment selection or be used to correlate disease
presentation and clinical outcomes with genomic content. These
observations were based on comparative genomics and not a
result of model simulations.

The metabolic capabilities of the A. baumannii clinical isolate
diverged from the reference AYE strain (Figure 5). The presence
of additional catabolic pathways, especially gallate, provide
insight into the potential source and environmental background
of the pathogen. Phylogenomic analysis of the clinical isolate
identified A. baumannii strain XL380, isolated from cucumber
rhizosphere, as the most similar (NCBI accession CP046536.1,
Supplementary Figure 4). As gallate is a plant metabolite, it
is plausible the clinical isolate also originated from a plant
rhizosphere. Additionally, the pipeline generated sufficient detail
about the clinical isolate’s capsular polysaccharide (CPS) to
associate it with the K2 capsular (Kenyon et al., 2014), while at
the same time deduced the initiating sugar is different in this
strain. The presence of pseudaminic acid in the polysaccharide of
Helicobacter pylori was correlated with increased virulence (Kao
et al., 2016), again demonstrating the pipeline employed in this
study has value in identifying metabolic content that may inform
disease progression and likely clinical outcomes.
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Manually curating additional content into the A. baumannii
clinical isolate highlighted a potential bottleneck in the pipeline.
The automated steps do allow for rapid identification of
conserved content between a new strain and its corresponding
reference, highlighting strains that may require significant
manual curation. Still, the power of GEMs comes from the
ability to simulate the metabolic phenotype. This requires the
new content to be added to the in silico reconstruction. For
content that is already present in the BiGG Models Database, this
step is trivial and was accomplished in minutes (Supplementary
Material). However, the manual curation of the pseudaminic acid
biosynthesis pathway into the model did pose a barrier to rapidly
simulating metabolic capabilities. The time investment is on the
order of a few hours for manual curation of this pathway and its
subsequent addition to the model. A solution to this challenge
is to expand the number of pangenome-scale reconstructions.
Pangenomes are compendia of all unique content in a given
species (Norsigian et al., 2020a). For example, a pangenome of

A. baumannii would have already included the pseudaminic acid
biosynthesis pathway, as the K2 CPS containing species would
have been included in the pangenome content. Pangenome-scale
reconstructions require significant up-front effort as they require
the curation of thousands of genes. Still, these reconstructions
do exist in the BiGG database (Seif et al., 2018). Pangenome-
scale reconstructions would be an important contribution to
the implementation of point-of-care sequencing and metabolic
characterization of AMR pathogens.

The primary limitation of our approach was evident in the
attempt to reconstruct the E. faeciummetabolic network. The lack
of an E. faecium reference strain resulted in all reconstructions
being approximately 50% complete. Using phylogeny to select
the most appropriate reference strain appeared to minimize the
number of protein sequences in E. faecium lacking homology to
a protein in the reference strain (Table 5). However, it did not
increase the completeness of the resulting reconstruction. This
observation highlights the primary downside of our approach:

FIGURE 6 | Phylogenomic analysis of genome scale models in the BiGG Models database.
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the quality of the reference model is projected onto the new
reconstruction. Combining multiple reference models resulted in
a more complete reconstruction and mirrors the methodology of
the CarveMe method (Machado et al., 2018). Still, the CarveMe-
derived model did not include all metabolic content encoded in
the E. faecium genome. This content may have been lost during
the model reduction or “carving” step performed by this method.
Additionally, the universal model used by CarveMe is based on
an older version of the BiGG database that lacked two relevant
GEMs: iYS854 for S. aureus USA300 TCH1315 and iNF514 for
L. lactis, both of which are phylogenetic neighbors of E. faecium
(Supplementary Figure 2). An update to the CarveMe universal
model may result in a more complete reconstruction. For the
draft resulting from our pipeline, manual curation is necessary
to generate a complete reconstruction.

The primary objective of our investigation was to evaluate the
quality of GEMs derived from MinION assemblies. The results
from the E. coli assemblies and reconstructions suggest a GEM
built from scratch using the MinION assembly from our pipeline
would recapitulate the highly accurate E. coli model, iML1515.
Still, it is important to note we cannot assess the accuracy of
the clinical isolate genomes and resulting GEMs as an assembly
from an orthogonal, high-accuracy sequencing technology is not
available, nor is there physiological data available to perform
validation of GEM simulations. These constraints will likely be
true in austere environments as well. Thus, while the MinION-
derived E. coli GEMs and the growth rate simulations of the
S. aureus and A. baumannii clinical isolate GEMs suggest near-
complete reconstructions, it is important to highlight the lack of
extensive accuracy and validation metrics.

Looking ahead, two growth areas are evident to increase the
applicability of GEMs to point-of-care pathogen sequencing and
characterization. First, directly simulating AMR mechanisms in
GEMs would enable a quantitative assessment of the metabolic
cost of antibiotic resistance and is an important next step. At the
same time, it is important to note some AMR mechanisms are
out of scope for metabolic modeling, including some identified
in this study. For those mechanisms, there is no benefit of
metabolic modeling over comparative genomics. Still, the results
in this study indicate MinION-derived assemblies are of sufficient
quality for these types of analysis.

An additional challenge is the requirement for manually
curating the unique content of new strains. Fully automated
pipelines, such as modelSEED, sacrifice some phenotypic
prediction accuracy (Machado et al., 2018). Both our pipeline
and the CarveMe method are reference-based reconstruction
methods. Our pipeline uses a single reference model while
CarveMe leverages the entire BiGG Models Database, a
repository of high-quality, manually curated genome-scale
reconstructions (Norsigian et al., 2020c). Still, the database’s
microbial (archaea and prokaryote) model content is biased
toward Gammaproteobacteria, which constitutes over 80% of
the reconstructions present in the database (Figure 6). The
next most abundant phylum is the Firmicutes at around
8%. Of the 54 bacterial and archaea phyla used in our

analysis, genome-scale metabolic reconstructions are present
in less than 15% (8/54 phyla). Additionally, as our results
in E. faecium show, simply being in the same phylum
does not result in a complete GEM, nor can automated
reconstruction tools, such as CarveMe, completely bridge the
gap between species. Thus, a significant expansion of manually-
curated GEMs across the phylogenetic tree is needed. Our
assembly and draft model construction pipeline can facilitate
this expansion by minimizing the amount of manually curated
unique content.
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