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Abstract

Action observation typically recruits visual areas and dorsal and ventral sectors of the

parietal and premotor cortex. This network has been collectively termed as extended

action observation network (eAON). Within this network, the elaboration of kine-

matic aspects of biological motion is crucial. Previous studies investigated these

aspects by presenting subjects with point-light displays (PLDs) videos of whole-body

movements, showing the recruitment of some of the eAON areas. However, studies

focused on cortical activation during observation of PLDs grasping actions are lac-

king. In the present functional magnetic resonance imaging (fMRI) study, we assessed

the activation of eAON in healthy participants during the observation of both PLDs

and fully visible hand grasping actions, excluding confounding effects due to low-

level visual features, motion, and context. Results showed that the observation of

PLDs grasping stimuli elicited a bilateral activation of the eAON. Region of interest

analyses performed on visual and sensorimotor areas showed no significant differ-

ences in signal intensity between PLDs and fully visible experimental conditions, indi-

cating that both conditions evoked a similar motor resonance mechanism. Multivoxel

pattern analysis (MVPA) revealed significant decoding of PLDs and fully visible grasp-

ing observation conditions in occipital, parietal, and premotor areas belonging to

eAON. Data show that kinematic features conveyed by PLDs stimuli are sufficient to

elicit a complete action representation, suggesting that these features can be dis-

entangled within the eAON from the features usually characterizing fully visible

actions. PLDs stimuli could be useful in assessing which areas are recruited, when

only kinematic cues are available, for action recognition, imitation, and motor

learning.
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1 | INTRODUCTION

During the observation of an action performed by another individual,

a mechanism provided by the mirror neuron system (MNS) allows the

observer to automatically understand another's action by matching its

visual description onto her/his motor representation of the same

action (Rizzolatti et al., 2014). Mirror neurons have been originally

found in monkey ventral premotor cortex (F5) and then in the inferior

parietal lobule (PFG) (Di Pellegrino et al., 1992; Fogassi et al., 2005);

subsequently, neurons with mirror properties have been found in

other cortical areas, such as, for example, the anterior intraparietal

area (AIP) (Lanzilotto et al., 2019; Maeda et al., 2015), dorsal premotor

cortex (PMd) (Papadourakis & Raos, 2019; Tkach et al., 2007) and pre-

supplementary motor cortex (pre-SMA) (Lanzilotto et al., 2016;

Yoshida et al., 2011).

By using electrophysiological and neuroimaging techniques, a

comparable parieto-premotor MNS has been described also in

humans, homologous to that of monkeys, that includes the ventral

premotor cortex (PMv) plus the inferior frontal gyrus (IFG) and the

inferior parietal lobule (IPL) (Molenberghs et al., 2012). Further studies

demonstrated that mere action observation recruits an extended net-

work of cortical and subcortical areas, collectively called “extended
action observation network” (eAON), including PMd, a sector of

intraparietal sulcus (IPS), superior parietal lobule (SPL), primary

somatosensory cortex (SI), occipitotemporal areas (middle temporal

area [MT]), posterior superior temporal sulcus (pSTS), and the lateral

part of cerebellum (Abdelgabar et al., 2019; Errante & Fogassi, 2020;

Filimon et al., 2007; Gazzola & Keysers, 2009; see also Caspers

et al., 2010; Hardwick et al., 2018; Molenberghs et al., 2012).

Within the eAON, there are parietal and frontal areas crucial for

generating in the observer an internal motor resonance with the

observed action (Rizzolatti et al., 2014). Some of these areas have also

been proposed to take part in the elaboration of additional features of

the observed actions (Kemmerer, 2021) including kinematics (Filimon

et al., 2007; Koul et al., 2018), type of grip used to achieve the final

action goal (Errante et al., 2021; Grafton & Hamilton, 2007), and con-

textual information (Amoruso et al., 2016; Iacoboni et al., 2005).

The decoding of the kinematic aspects of observed actions relies

on the elaboration of biological motion by high-order visual areas

located in the inferotemporal cortex, as it has been clearly demon-

strated in both monkeys and humans (Caspers et al., 2010; Perrett

et al., 1989). The outcome of this elaboration is then provided to the

eAON. Interestingly, within this latter network, the PMd sector has

been shown to play a role in decoding observed actions complying

with the “two-thirds power law” (Casile et al., 2010), which describes

the relation between the speed and the trajectory of biological move-

ments (Lacquaniti et al., 1983). According to this law, the movement

velocity depends on the trajectory curvature, namely velocity is lower

in more curved parts than in less curved parts of the trajectory. One

method that allows to study the kinematic properties of biological

motion, in absence of pictorial content, is that of point-light displays

(PLDs) (Blake & Shiffrar, 2007; Johansson, 1973; Pavlova, 2012;

Thornton, 2006). Using this technique, consisting in small lights

attached to the main joints of one's body on a dark background, so

that only the lights are visible, it is possible to present visually

impoverished stimuli of several human behaviors. Behavioral data

showed that motion information conveyed by PLDs is enough to

distinguish biological from nonbiological actions (Hiris, 2007;

Johansson, 1973; Lapenta et al., 2017) and also to recognize features

such as, for example, the gender or the emotional state of the

observed agent, or the effort exerted when lifting a weight

(Chouchourelou et al., 2006; Kozlowski & Cutting, 1977; Shim

et al., 2004). Furthermore, the results of previous electrophysiological

and neuroimaging studies employing whole-body PLDs stimuli

suggested that these latter can convey sufficient information about

movements of the human body to activate sensory-motor processes

within some of the areas of the eAON, similar to those typically

involved during fully visible action observation (Bonda et al., 1996;

Grossman & Blake, 2002; Peelen et al., 2006; Peuskens et al., 2005;

Saygin et al., 2004; Ulloa & Pineda, 2007; van Kemenade et al., 2012).

Interestingly, not only human adults are able to perceive and extract

information by PLDs but also human infants (Pavlova et al., 2001;

Simion et al., 2008) and even monkeys (Jastorff et al., 2012).

This technique has also found important applications in the clini-

cal field. For example, recent evidence on people with autism spec-

trum disorder shows that deficits are particularly evident when

biological motion is needed to infer intention, action goal or emotion

from an observed action (Federici et al., 2020). The authors also pro-

pose that an analysis of the distinct levels of biological motion by

means of PLDs technique, aimed at assessing brain processing of spe-

cific spatio-temporal components of the action, may be useful for

deepening the understanding of this syndrome, laying the foundation

for future clinical investigations in early infancy.

Most of neuroimaging evidence obtained during observation of

PLDs concerns only whole-body movements, while very few studies

focused on upper limb actions. One of them, by Lestou et al. (2008)

investigated with functional magnetic resonance imaging (fMRI) the

brain activation obtained during observation of upper limb PLDs

actions (such as knocking, lifting, waving, and throwing) combined with

their mental simulation. The study showed the activation of several

areas including IPL, SPL, PMv, as compared to mere observation.

However, the results of pure observation are not explicitly reported.

Another study, performed by Quadrelli et al. (2019) with electroen-

cephalographic technique, showed that in 9-month infants, it is possible

to elicit an attenuation of alpha band activity during the observation of

the reaching phase of a silhouette of a grasping action, suggesting that

this type of stimulus is able to elicit a motor resonance mechanism.

Altogether, these studies suggest that the motor system can be acti-

vated by observation of impoverished version of upper limb actions.

The present fMRI study aimed at investigating the activation of

the eAON in healthy human participants during mere observation of

hand grasping actions presented in PLDs version versus fully visible

version, in order to reveal, at the level of cortical activation, the impor-

tance of the decoding of kinematic features for understanding others'

actions. The use of several control conditions allowed us to assess

more precisely the role of eAON areas in encoding grasping action
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features in both PLDs and fully visible stimuli, excluding confounding

effects due to low-level visual features, motion, and contextual infor-

mation. To address the specific contribution of different eAON areas

in the encoding of PLDs and fully visible actions, we used a combined

approach based on univariate analysis and multivariate pattern analy-

sis (MVPA), this latter allowing to extract finer grain information.

Using this latter approach, we were able to investigate whether infor-

mation encoded in eAON areas during the observation of PLDs and

fully visible stimuli could be disentangled with machine-learning

approaches.

2 | MATERIALS AND METHODS

2.1 | Participants

Twenty-three healthy human volunteers (12 female; mean age

25.5 years; range 21–32 years) with no history of neurological or

orthopedic disorders, and of drug or alcohol abuse, participated in the

study. All participants were right-handed according to the Edinburgh

Handedness Inventory (Oldfield, 1971). Informed consent was

obtained in accordance with Helsinki declaration. The study was

approved by the local ethics committee (Comitato Etico Area Vasta

Emilia Nord – AVEN; code NEUROIMAGE_UNIPR).

2.2 | Stimuli

Experimental stimuli consisted of video events showing grasping

actions either fully visible (fully visible set) or as point-light displays

(point-light displays set). All videos lasted 2 s.

2.2.1 | Fully visible set

In this set, videoclips showed a fully visible (FV) human right hand

grasping an object (FV_Grasp) (Figure 1a). Videos were recorded from

a lateral perspective (90� angle) in a well-lit environment on a neutral

background by means of a digital HD camera (©GoPro, Inc., USA) with

a frame rate of 25/s and a resolution of 1920 � 1080 p. In order to

use a wide set of stimuli, we recorded four grasping actions each per-

formed with a different grip (whole hand, five-fingers grip, three-

fingers grip, and precision grip) congruent with the size of the object

to be grasped, for a total number of 16 grasping videos. The first static

frame of each grasp stimulus was used as a control condition

(FV_Static).

To control for possible effects due to velocity and direction of

motion of the observed stimuli, a box-like stimulus moving in the

same direction at linear velocity, with colors and size/shape similar to

those of a human arm, was created using an image editing software

(©Affinity Photo v 1.6.7, Serif Europe Ltd) and animated in Final Cut

Pro X (v 10.5.1, Apple Inc.) (FV_Box). In order to create FV_Box videos,

first we carried out 2D kinematic analysis (©Tracker v 5.1.5, 2020,

Douglas Brown) to calculate the velocity profile of the wrist in each

grasping video (Figure 1c). Then, we used these velocity data to ani-

mate the box, maintaining the same direction and mean velocity of

each FV_Grasp video. Thus, the experimental grasping videos and the

box control condition were matched for movement direction and

mean velocity.

A further control condition was the scrambled version of

FV_Grasp videos (FV_Scrambled). This was realized using an ad hoc

script capable of dividing each frame of the experimental stimuli in

squares of 10 � 10 pixels and randomize the position of each

square in each frame, so that the basic visual features

(e.g., contrast, luminance, and color) were the same of the original

video, but the contents of the latter were no longer recognizable

(Figure 1a).

2.3 | Point-light displays set

In this set, videoclips showed PLDs stimuli created starting from FV

stimuli in order to reduce at minimum the pictorial aspects of the

stimulus, keeping the same kinematic features (Figure 1b). In order

to accurately match joints trajectory, grasping stimuli were realized

by tracking the movement of the hand joints for each frame, using

the tracker feature included in Motion software (v 5.5.1, Apple Inc.)

and by placing, on each joint, a white point of 9 px diameter

(PLD_Grasp). The first static frame of each PLD grasp stimulus was

used as a control condition (PLD_Static) (Figure 1b). The PLDs box-

like stimuli were created by overlapping a series of white points (ø

9 px) to the edges of the FV box, forming a silhouette of the box

shape (PLD_Box).

The same ad hoc script used for FV stimuli was used to randomize

the position of each square in each frame of the PLDs grasping stimuli

so that the point configuration was not recognizable in spite of the

same amount of visual basic information (PLD_Scrambled).

2.4 | fMRI task

Before fMRI scanning, participants were briefly informed about the

scanning procedure in order to help them to familiarize with the

experimental environment and setting. During MR scanning, they laid

supine in the bore of the scanner in a dimly lit environment.

The experiment was performed in a single imaging acquisition

session divided in six functional runs each lasting 4 min and 56 s

(148 volumes) during which participants had to observe the video

stimuli presented by means of a digital goggles system (Resonance

Technology, Northridge, CA) (60 Hz refresh rate) with a resolution

of 800 horizontal pixels � 600 vertical pixels and horizontal eye

field of 30�. To dampen scanner noise, sound-attenuating (30 dB)

headphones were employed. During the whole imaging session, a

white cross was presented in the center of the screen, and partici-

pants were instructed to fixate it. Each run was acquired using a

block paradigm. Each block lasted 20 s and comprised 10 videos of
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the same experimental or control condition. During a single run, a

total of eight blocks were presented, one for each condition. A total

of 48 blocks were presented during the whole imaging session, for

a total of 480 trials (60 trial per condition). Blocks were interleaved

by a fixation no-videoclip event lasting 16 s used as baseline during

which only the fixation cross at the center of a black background

was visible.

In order to monitor participants' attention to the visual stimuli,

catch trials were presented, in 25% of the blocks, equally distrib-

uted among all conditions. During the catch trial, participants

observed a video stimulus (2 s duration), whose color was altered

by applying a color correction filter (blue, red, and green) (Final

Cut Pro X 10.5.1, Apple Inc.), after which they had to indicate the

main color of the stimulus, using a response pad, by selecting one

of the two options presented on the screen (4 s time window). On

all valid given answers, participants were accurate 99% of the

times. In order to remove potential signal artifacts due to the hand

movement, a 12 s signal denoising period (post-catch), in which

participant had to remain still, followed the attention task

(Figure 1d).

F IGURE 1 Stimuli and paradigm. Illustrations of fully visible (a) and point-light displays (b) sets including experimental and control stimuli.
(c) Top: Mean wrist velocity of all grasping actions and matched mean box velocity. Bottom: Velocity profiles of the wrist and the box, the latter
moving linearly. (d) Action observation paradigm, presented in six functional runs, formed by independent blocks of 20 s, each consisting of
10 randomly presented videos of the same condition, alternated with a baseline period of 16 s
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2.5 | fMRI data acquisition

Both anatomical T1-weighted and functional T2*-weighted MR

images were acquired with a 3 T General Electric scanner (MR750

Discovery) equipped with an 8-channel receiver head-coil. Functional

volumes were acquired with the following parameters: 40 axial slices

of functional images covering the whole brain acquired in an inter-

leaved bottom-up order using a gradient-echo echo-planar imaging

(EPI) pulse sequence, slice thickness = 3.0 mm, interslice gap

= 0.5 mm, 64 � 64 � 37 matrix with a spatial resolution of

3.5 � 3.5 � 3.5 mm, TR = 2000 ms, TE = 30 ms, FOV

= 205 � 205 mm2, flip angle = 90�, in plane resolution

= 3.2 � 3.2 mm2. A morphological 3D T1-weighted (Bravo_Mik) vol-

ume was acquired as anatomical reference. Its acquisition parameters

were 192 slices, 512 � 512 matrix, spatial resolution

0.9 � 0.5 � 0.5 mm, TR = 9700 ms, TE 4 ms, FOV = 252 � 252 mm,

flip angle 90�.

2.6 | fMRI data analysis

2.6.1 | Data preprocessing and analysis

Processing was carried out using SPM12 (Wellcome Department of

Imaging Neuroscience, University College, London, UK; http://www.

fil.ion.ucl.ac.uk/spm) on MATLAB R2017a (The Mathworks, Inc.). The

first four volumes of each run were discarded to allow T1 equilibration

so that magnetization could reach a steady state. For each participant,

all volumes were preprocessed using the same standard pipeline.

Images were spatially realigned to the first volume of the first func-

tional run and un-warped to correct for between scan motion, and

slice timing corrected considering slice acquisition order. Spatial trans-

formation parameters derived from the segmentation and spatial nor-

malization of the anatomical T1-weighted images to the Montreal

Neurological Institute (MNI) space were then applied to the realigned

EPIs and re-sampled in 2 � 2 � 2 mm3 voxels using a fourth degree

B-spline interpolation in space. Lastly, all functional T2*-weighted vol-

umes were spatially smoothed with an 8-mm full-width half-maximum

isotropic Gaussian kernel (FWHM).

Data were analyzed using a random-effects model (Friston

et al., 1999), implemented in a two-level procedure. In the first-level

analysis, single-subject fMRI time series were modeled using the gen-

eral linear model. The design-matrix included the onsets and the dura-

tions of all experimental and control condition as well as the response

of catch trial conditions for each of the six functional runs. Each pre-

dictor (FV_Grasp, FV_Static, FV_Box, FV_Scrambled, PLD_Grasp,

PLD_Static, PLD_Box, PLD_Scrambled), including 10 consecutive videos

in a block, was modeled as a single epoch lasting 20 s. The catch trials

were modeled as consecutive blocks lasting 18 s (Catch_Trial; 2 s color

altered stimulus, 4 s explicit response, plus 12 s post-catch signal

denoise period). Rest periods between blocks were considered as

implicit baseline. Contrasts between each experimental/control condi-

tion versus implicit baseline were calculated. Specific effects were

tested using t statistical parametric maps, with degrees of freedom

corrected for nonsphericity at each voxel. In the second level group-

analysis, corresponding t-contrast images of the first-level conditions,

except for Catch-Trial, were entered into a flexible ANOVA with

sphericity-correction for repeated measures (Friston et al., 2002). In

particular, since we did not want to test for all possible main effects

and interactions, we modeled two factors specifying our scans and

conditions, corresponding to: (a) subjects, modeling participants vari-

ability; (b) conditions, modeling task effects.

Within this model, in order to exclude the confounding effects

due to the context, direction, mean velocity of the movement and

low-level visual processing, the activation maps resulting from the

contrast between experimental condition FV_Grasp and its

corresponding control conditions (FV_Static, FV_Box, FV_Scrambled;

collectively termed as FV_Ctrls) were calculated. In addition,

PLD_Grasp condition was contrasted with its corresponding PLDs

controls (PLD_Static, PLD_Box, PLD_Scrambled; collectively termed as

PLD_Ctrls). The rationale for this type of analysis is that experimen-

tal stimuli were embedded with information about (a) the context in

which the action was performed, (b) kinematic aspects, for example,

velocity and movement direction, and (c) low-level visual character-

istics. All these features are concurrent and collectively contribute

to the encoding of the grasping action. Thus, the subtraction of

these characteristics altogether allowed us to better assess which

areas mostly contribute to the encoding of grasping actions, after

excluding confounding effects.

Significant brain activations shared between FV and PLD con-

trasts, were assessed by means of a conjunction analysis (FV_Grasp

vs. FV_Ctrls ^ PLD_Grasp vs. PLD_Ctrls) revealing cortical areas

involved in both experimental conditions. In order to highlight gen-

eral significant cortical activation for FV or PLDs contrasts, a global

analysis was conducted (FV_Grasp vs. FV_Ctrls and PLD_Grasp

vs. PLD_Ctrls) (see Section 2.6.3). Statistical inference was drawn at

a voxel level, corrected with family-wise error (FWE) with a thresh-

old of p < .01.

2.6.2 | Lateralization index analysis

In order to assess activation pattern distribution between the two

hemispheres, we performed a lateralization analysis using LI-toolbox

(Wilke & Lidzba, 2007). This index is computed, first, by calculating

the number of voxels surviving a statistical threshold in each hemi-

sphere and then applying the formula (Σleft � Σright)/(Σleft + Σright),

yielding a lateralization index value ranging from �1 to 1. Positive

values correspond to left lateralization, while negative values corre-

spond to right lateralization.

Contrast images of PLDs and FV grasping conditions from each

subject were entered as input in the toolbox and one default value

threshold (t = 3) was applied to all images. An interhemispheric exclu-

sive mask of ±5 mm was applied, masking out the midline. Finally, the

lateralization index was computed following the previously described

formula.
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2.6.3 | Region of interest selection and analysis

To examine potential differences between blood oxygen level depen-

dent (BOLD) activations in FV and PLDs conditions, a region of inter-

est (ROI) analysis was performed. ROIs were selected using an

anatomical approach starting from the group level results of the global

analysis. Brain areas revealed by global analysis were determined by

means of cytoarchitectonic probabilistic maps of the human brain

using SPM-Anatomy toolbox v. 2.1 (Eickhoff et al., 2005). In order to

determine which anatomical areas were included in the activation

map, global analysis pattern was overlayed onto cytoarchitectonic

probabilistic maps and the cytoarchitectonic area corresponding to

the maxima of each cortical cluster, plus adjacent areas with a high

assigned probability, were selected. This allowed the selection of

19 cortical ROIs, located in left hemisphere (see Figures 4–6, for a

visualization of ROI positions).

ROIs masks were created using Anatomy toolbox v. 3.0 (Eickhoff

et al., 2005), Automated Anatomical Labeling atlas (AAL) included in

the WFU-PickAtlas Toolbox (https://www.nitrc.org/projects/wfu_

pickatlas; Maldjian et al., 2003]), the Human Motor Area Template

(HMAT; http://lrnlab.org; Mayka et al., 2006) and Brainnetome Atlas

(https://www.nitrc.org/projects/bn_atlas; Fan et al., 2016). To pre-

serve only the voxels within the activation pattern, we used a masking

procedure provided by MRIcron software (https://www.nitrc.org/

projects/mricron). In addition, a spherical ROI built in the white matter

(CTRL_WM; r = 4.5 mm, x = �20, y = 42, z = 2) was used as control

and created by means of MarsBaR software for SPM (http://masbar.

sourceforge.net/).

The average BOLD signal change across all significant voxels was

extracted separately in each ROI using the SPM Rex Toolbox (http://

web.mit.edu/swg/rex). BOLD signal change was compared between

all conditions by means of repeated measures ANOVAs. Significant

differences were assessed with post hoc comparisons computation by

using paired-sample t-test with Bonferroni correction for multiple

comparisons.

2.6.4 | Multivoxel pattern analysis

To detect all fine information included in the fMRI data patterns,

MVPA was conducted on the un-smoothed normalized T2* functional

brain images using Pattern Recognition for Neuroimaging Toolbox

(PRoNTo v.2.1; Schrouff et al., 2013), a MATLAB (The MathWorks

Inc.) based toolbox.

The intensity value of each voxel (feature) is represented as a

series of points in a multidimensional space (feature space). Then a

classifier algorithm is trained and employed to find the optimal sep-

arating boundary between the features, associated with a categori-

cal label corresponding to the experimental conditions, in the

feature space. After training and testing the classification model,

which consists of applying a trained model to the tested set of

data, the classifier returns a predicted label for different brain pat-

terns. The performance of the classifier in discriminating between

different conditions is assessed on new data not previously used to

train it.

In order to perform MVPA analyses, the experimental design ele-

ments, that is, labels, onsets, duration and number of each block and

interscan interval were specified. The un-smoothed normalized T2*

functional brain images belonging to the experimental conditions

(FV_Grasp and PLD_Grasp) for each subject were selected (1380 vol-

umes total) and then a first-level mask, including only voxels con-

taining relevant features and discarding those with nonrelevant

information, that is, voxels outside the brain, was applied to the data.

Successively, a linear kernel included in PRoNTo toolbox, was used to

compute a similarity matrix. The kernel function, by calculating the

dot product of each feature in pairs, returns a value characterizing the

similarity between each pair, creating a kernel matrix of the feature

space. A first degree polynomial detrending was applied to the data

since fMRI data represent continuous temporal series. As a second-

level masks, the same ROIs used in the univariate analysis (See

Section 2.6.3) were entered, in order to focus on specific sets of

features.

A binary classification model was computed using a support vec-

tor machine algorithm (SVM) which, using the similarity matrix previ-

ously determined, computes a hyperplane that splits the feature

space, maximizing the margin that separates values belonging to the

two experimental conditions, finally extracting the weight vectors run-

ning perpendicularly to the hyperplane. For each binary classification

model, FV_Grasp functional images were assigned to Class 1 and

PLD_Grasp to Class 2.

The performance of the classifier and its ability to generalize the

results of its computations on an independent nontrained dataset was

assessed by means of a leave one subject out cross validation scheme.

Specifically, the entire dataset was separated into two sets: one used

for training and the other for test. The number of folds in which data

were partitioned was equal to the number of subjects. The set of data

used for training was equal to the number of subjects minus one. The

learned function was then used to predict the labels on the remaining

unused subject's data. Further operations were applied to the data,

including sample averaging within subjects, mean centering the fea-

tures using training data and dividing the data vectors by their Euclid-

ean norm. In order to estimate the model p value, 1000 permutations

were run so that the model was retrained by the specified number of

times. Model accuracy and the area under curve were computed to

assess the model performance.

3 | RESULTS

3.1 | Univariate analysis

Figure 2 shows cortical activation maps, FWE corrected at a voxel

level with a significance threshold of p < .01, overlaid on an MNI

template. Contrast between FV_Grasp versus baseline shows a large

activation pattern in the left cerebral hemisphere, including occipito-

temporal (pMTG, pFG) and occipito-parietal (SPOC) clusters, superior
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and inferior parietal areas (SPL, IPS, IPL), both dorsal and ventral sec-

tor of premotor cortex (PMd, PMV), pars triangularis of the IFG, SMA.

In the right cerebral hemisphere, clusters were roughly symmetrical

but less extended than in the left hemisphere. No significant activa-

tion of IPL and SMA was found in the right hemisphere. Subcortical

clusters were localized in the thalamus at the level of the Pulvinar

(bilaterally), and in cerebellum, including bilateral lobules VI, Crus I,

VIIb, and VIIIb (Figure 2a).

The contrast between PLD_Grasp versus baseline shows a pattern

rather similar to that of FV_Grasp condition, although the activation in

the former condition was more bilateral than in the latter one. Further

differences consist in the absence of activation of left IFG, pars

triangularis, the presence of a small cluster in the posterior sector of

the left middle cingulate cortex (pMCC) and the bilateral activation of

inferior parietal cortex. Subcortical activations were comparable to

those of FV_Grasp (Figure 2b).

The activation map corresponding to the contrast between

FV_Grasp versus all fully visible control conditions (FV_Static, FV_Box,

and FV_Scrambled) revealed activated clusters in areas pMTG, pFG,

SPOC, SPL, PMd, bilaterally, although more extended in the left hemi-

sphere. Some clusters were fully lateralized to the left hemisphere,

such as those in PMv, IPL, and pMCC. Subcortical clusters were local-

ized in left pulvinar, cerebellar lobules VI and Crus I bilaterally, and

right lobule VIIb (Figure 2a; Figure 2c).

Cortical activation map derived from the contrast between

PLD_Grasp versus PLDs control conditions (PLD_Static, PLD_Box,

PLD_Scrambled) revealed bilateral clusters in areas pMTG, pFG, SPOC,

SPL, IPS, IPL, PMd, and PMv. A significant cluster was also present in

the left pMCC. Additional subcortical structures included the lateral

sectors of cerebellar lobules VI, Crus I and VIIb bilaterally (Figure 2d).

For statistical details about MNI coordinates of activation peaks see

supplementary table 1.

F IGURE 2 Cortical
activations projected onto a 3D
MNI152 Brain template (Surfice;
https://www.nitrc.org/projects/
surfice/). (a) Contrast between
the observation of FV_Grasp and
baseline. (b) Contrast between
the observation of PLD_Grasp and
baseline. (c) Contrast between
FV_Grasp and all corresponding
controls. (d) Contrast between
PLD_Grasp and its respective
control conditions. Conjunction
(e) and global (f) analysis between
FV_Grasp and PLD_Grasp versus
their corresponding controls
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Figure 2e shows the conjunction analysis between FV_Grasp and

PLD_Grasp, versus their corresponding controls. This analysis revealed

shared bilateral clusters in pMTG, pFG, and SPL, and left-lateralized

clusters in SPOC, IPL, IPS, PMd, and PMv. Subcortical clusters were

localized in cerebellar lobules VI and VIIb, bilaterally, while the cluster

in Crus I was more evident on the right.

The cortical activation map emerging from global analysis reveals

clusters significantly active in either FV_Grasp, PLD_Grasp, or in both

conditions, each versus its respective controls (Figure 2f). The pattern

obtained with this analysis was used to define the areas in which to

perform a subsequent ROI analysis.

3.2 | Lateralization analysis

Lateralization index computation showed a significant difference

(p < .001) between PLDs (mean = 0.04, s.d. = 0.15) and FV

(mean = 0.21, s.d. = 0.16) grasping conditions, indicating a more bilat-

eral pattern for observation of PLDs grasping (Figure 3).

3.3 | ROI analysis

Comparisons between BOLD signal change in the different

conditions were also carried out by means of a ROI analysis, in

cortical areas chosen following an anatomical approach

(see Section 2.6.3). For each ROI, BOLD signal change was com-

pared between conditions by means of repeated measure

ANOVA and significant differences were assessed with post hoc

comparisons by using paired-sample t-test with Bonferroni

correction.

The analysis carried out revealed a significant effect for all consid-

ered ROIs except for the CTRL_WM ROI (F(1,7) = 0.75, p < .63,

η2 = 0.03). We clustered the remaining cortical ROIs using a func-

tional criterion. Significant effects between conditions were found in

the following:

(a) Visual ROIs: V4_hOc4la (F(1,7) = 82.72, p < .001, η2 = 0.79),

V5_hOc5 (F(1,7) = 82.12, p < .001, η2 = 0.79), pMTG (F(1,7) = 32.90,

p < .001, η2 = 0.60), FG2 (F(1,7) = 41.64, p < .001, η2 = 0.65), FG4

(F(1,7) = 35.16, p < 0.001, η2 = 0.62), SPOC (F(1,7) = 23.45, p < .001,

η2 = 0.52) (Figure 4).

(b) Parieto-premotor ROIs: SPL_5L (F(1,7) = 32.41, p < .001,

η2 = 0.60), SPL_7A (F(1,7) = 42.51, p < .001, η2 = 0.66), SPL_7PC

(F(1,7) = 38.82, p < .001, η2 = 0.64), aIPS_IP1 (F(1,7) = 16.65, p < .001,

η2 = 0.43), aIPS_IP3 (F(1,7) = 25.60, p < .001, η2 = 0.54], IPL_PFt

(F(1,7) = 16.93, p < .001, η2 = 0.43), SMG (F(1,7) = 22.68, p < .001,

η2 = 0.51), PMd (F(1,7) = 23.58, p < .001, η2 = 0.52), PMv

(F(1,7) = 19.97, p < .001, η2 = 0.48) (Figure 5).

(c) Somatomotor ROIs: PSC_2 (F(1,7) = 21.85, p < .001, η2 = 0.50)

PSC_3b (F(1,7) = 13.60, p < .001, η2 = 0), pMCC (F(1,7) = 17.48,

p < .001, η2 = 0.44) (Figure 6).

Post hoc tests showed no significant difference between experi-

mental conditions (FV_Grasp and PLD_Grasp) in all considered ROIs.

Instead, a significant difference between FV experimental condition

and all its corresponding control conditions (FV_Grasp vs. FV_Static,

FV_Box, FV_Scrambled) was observed in: V4_hOc4la (p < .001),

V5_hOc5 (p < .001), pMTG (p < .001), SPOC (p < .001), FG2

(p < .001), FG4 (p < .05), SPL_5L (p < .001), SPL_7A (p < .001),

SPL_7PC (p < .001), aIPS_IP3 (p < .01), IPL_PFt (p < .01), SMG

(p < .001), PSC_2 (p < .001), PSC_3a (p < .001), PSC_3b (p < .001),

PMv (p < .01), PMd (p < .001).

F IGURE 3 Lateralization index (LI) analysis results at group (a) and single subject (b) level. Positive values correspond to left lateralization,
while negative values correspond to right lateralization. In (a), the data show a significant difference (p < .001) in LI between PLDs (mean = 0.04,
s.d. = 0.15) and FV (mean = 0.21, s.d. = 0.16) grasping conditions. Error bars indicate the standard error of the mean
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Considering PLDs conditions, the analysis revealed a significant

difference between PLD_Grasp versus its corresponding controls

(PLD_Static, PLD_Box, and PLD_Scrambled) in the following ROIs:

V4_hOc4la (p < .001), V5_hOc5 (p < .001), pMTG (p < .001), SPOC

(p < .01), FG2 (p < .001), FG4 (p < .001), SPL_5L (p < .001), SPL_7A

(p < .01), SPL_7PC (p < .001), aIPS_IP3 (p < .01), IPL_PFt (p < .01),

SMG (p < .001), PSC_2 (p < .001), PSC_3a (p < .01), PSC_3b (p < .001),

PMv (p < .001), PMd (p < .001).

In pMCC, no significant difference was found between both

FV_Grasp versus FV_Box (p = 1; n.s.) and PLD_Grasp versus PLD_Box

(p = .09; n.s.), in aIPS_IP1 between FV_Grasp versus FV_Static

(p = .06; n.s.) and PLD_Grasp versus PLD_Box (p = .07; n.s.). Note that

F IGURE 4 Results of the region of interest (ROI) analyses on visual areas. Histograms show the BOLD signal change in each ROI. The red
colored bars refer to fully visible (FV) conditions, blue to point-light displays (PLDs) ones. Vertical lines in the histograms indicate standard error of
the mean. Above each histogram, the corresponding ROI is represented on a sagittal slice of a human left hemisphere. Asterisks indicate
significant effects corrected for multiple comparisons (*p < .05, **p < .01, ***p < .001; Bonferroni corr)
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F IGURE 5 Results of the region of interest (ROI) analyses on parieto-premotor areas. Histograms show the BOLD signal change in each ROI.
The red colored bars refer to fully visible (FV) conditions, blue to point-light displays (PLDs) ones. Vertical lines in the histograms indicate
standard error of the mean. Above each histogram, the corresponding ROI is represented on a sagittal slice of a human left hemisphere. Asterisks
indicate significant effects corrected for multiple comparisons (*p < .05, **p < .01, ***p < .001; Bonferroni corr).
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in this latter ROIs p values were close to significance threshold,

although not reaching it.

3.4 | Multivariate analysis

The analysis, performed by computing a binary classification model

using an SVM algorithm and performing the permutation testing for

1000 times on the un-smoothed normalized T2* functional brain

images belonging to FV_Grasp and PLD_Grasp experimental condi-

tions for each subject, revealed significant decoding accuracy in the

following ROIs: FG4 (model accuracy = 69.57%, p < .05), SPOC

(model accuracy = 69.57%, p < .05), SPL_7A (model accu-

racy = 78.26%, p = .001), SPL_7PC (model accuracy = 78.26%,

p < .01), PMd (model accuracy = 67.39%, p < .05) and PMv (model

accuracy = 73.91%, p = .01) (Figure 7). No significant above

threshold model accuracy was found in the remaining ROIs (for

details see Table 1).

In order to evaluate the contribution of the voxels to the

decision function in each ROI, we computed the weight maps of

the classification models for both FV_Grasp and PLD_Grasp con-

ditions (Figure 8). A voxel's weight parameter reflects the contri-

bution of that voxel to the discrimination process. Since all

voxels with a value different from zero contribute to the func-

tion value, we represented the intensity of each weight with a

color grading: colder colors for the weights with an intensity <0;

warmer ones for intensities >0. Weights with a positive value

tend to move the classification boundaries toward class

1 (FV_Grasp), on the contrary those with a negative one, toward

class 2 (PLD_Grasp).

4 | DISCUSSION

In the present fMRI study, healthy participants observed hand grasp-

ing actions performed by a fully visible human hand or PLDs represen-

tation of it. The results show that (a) kinematic information conveyed

by observation of PLDs hand grasping action elicits activation of the

eAON; (b) the activation pattern is more bilateral during observation

F IGURE 6 Results of the region of interest (ROI) analyses on somatomotor areas. Histograms show the BOLD signal change in each ROI. The
red colored bars refer to fully visible (FV) conditions, blue to point-light displays (PLDs) ones. Vertical lines in the histograms indicate standard
error of the mean. Above each histogram, the corresponding ROI is represented on a sagittal slice of a human left hemisphere. Asterisks indicate
significant effects corrected for multiple comparisons (*p < .05, **p < .01, ***p < .001; Bonferroni corr).

F IGURE 7 Results of the Multivoxel pattern analysis (MVPA).
Histograms show the percentage of model accuracy in each region of
interest (ROI) clustered in visual, parieto-premotor and somatomotor
areas. The dotted line represents the chance level. Red colored bars
show the ROIs with a significant (*p < .05, **p < .01, ***p < .001)
model accuracy assessed by means of a permutation testing (n�

permutation = 1000)
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of PLDs stimuli than during observation of fully visible grasping, that

is lateralized to the left hemisphere; (c) activation, assessed within

multiple ROIs, is comparable between the experimental conditions;

and (d) visual, parietal, and premotor cortex discriminate between the

two versions of grasping actions with significant decoding accuracy.

4.1 | Brain activations during observation of PLDs
and fully visible grasping actions

A large body of studies demonstrated that observation of hand

grasping actions recruits a bilateral cortical network of occipito-tem-

poral, parietal, and premotor areas belonging to the eAON (Caspers

et al., 2010; Hardwick et al., 2018). It is well established that areas of

this network code the goal of an observed action. However, activa-

tion within eAON could also involve the processing of low-level

visual characteristics, motion aspects (e.g., linear velocity and motion

direction), as well as the elaboration of the target object and the con-

text in which the action is performed. To exclude all these effects,

leaving only those features that still allow to decode action goal, we

introduced control conditions, thus subtracting potential confounds

from both PLDs and fully visible experimental conditions. The con-

trast between PLDs grasping condition and all its controls revealed a

bilateral activation pattern including occipito-temporal, posterior

parietal, and premotor areas known to be involved in the processing

of observed actions, corresponding to the eAON. This demonstrates

that the information conveyed by PLDs hand grasping stimuli is

enough to elicit activation in eAON, suggesting the involvement of a

motor resonance mechanism similar to that elicited by fully visible

actions. Thus, the observation of a visually impoverished grasping

performed with a specific effector, in our case a right hand, is suffi-

cient to activate areas coding action goal even when low-level visual

characteristics (contrast, luminance), motion direction and velocity,

as well as static hand-shape pattern, are excluded. Therefore, the

remaining biological kinematic information is still able to elicit this

mechanism. Neuroimaging studies using observation of PLDs ver-

sions of whole-body complex movements revealed an activation of

some areas within the eAON (Beauchamp et al., 2003; Grossman &

Blake, 2002; Peelen et al., 2006; Peuskens et al., 2005; Saygin

et al., 2004; Vaina et al., 2001). Beauchamp et al. (2003), comparing

observation of fully visible whole-body human actions with PLDs

ones, showed that inferior temporal cortex and fusiform gyrus were

more strongly activated by fully visible videos than by PLDs. Studies

focused on the perception of whole-body PLDs, comparing biologi-

cal with nonbiological motion, consistently showed activations in

temporal and occipital areas (Grossman & Blake, 2002; Peelen

et al., 2006; Peuskens et al., 2005). On the other hand, there are

studies showing the recruitment of parietal areas during observation

of whole-body biological PLDs stimuli, in particular of IPS and SPL

(Grèzes et al., 2003; Vaina et al., 2001). The present study, that is

focussed on the observation of PLDs hand grasping actions, is in line

with the above findings, while adding new information, since it also

TABLE 1 MVPA detailed results of
the binary support vector machine
classification models

ROI Accuracy % p value AUC Class 1% Class 2%

Visual hOc4la 65.22 .06 0.70 73.91 56.52

hOc5 58.70 .17 0.63 65.22 52.17

pMTG 56.52 .28 0.63 69.57 43.48

FG2 67.39 .08 0.72 69.57 65.22

FG4 69.57 .04 0.81 69.57 69.57

SPOC 69.57 .03 0.75 73.91 65.22

Parieto-premotor SPL 5A 63.04 .12 0.66 60.87 65.22

SPL 7A 78.26 .001 0.78 78.26 78.26

SPL 7PC 78.26 .003 0.78 69.57 86.96

IPL PFt 67.39 .06 0.75 73.91 60.87

SMG 67.39 .08 0.72 78.26 56.52

aIPS IP1 65.22 .08 0.70 65.22 65.22

aIPS IP3 63.04 .12 0.70 73.91 52.17

PMd 67.39 .04 0.80 78.26 56.52

PMv 73.91 .01 0.75 86.96 60.87

Somatomotor PSC 2 60.87 .18 0.69 65.22 56.52

PSC 3b 58.70 .24 0.67 65.22 52.17

pMCC 63.04 .14 0.60 78.26 47.83

CTRL WM 54.35 .44 0.64 60.87 47.83

Note: Model accuracy and the area under curve (AUC) were computed to assess model performance.

Significant values are indicated in boldface.

Abbreviation: MVPA, multivoxel pattern analysis.
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shows premotor cortex activations and a more extended parietal

activation pattern, which includes IPL, part of human parieto-

premotor MNS, usually recruited in both observation and execution

of hand grasping actions (Caspers et al., 2010; Hardwick

et al., 2018).

The activation of occipito-temporal areas, that in the present

study includes V4, MT/V5, pMTG and pFG, very likely reflects the

elaboration of biological motion, also in line with previous studies

(Chang et al., 2018; Grossman et al., 2000; Grossman & Blake, 2002;

Peelen et al., 2006; Pelphrey et al., 2005; Servos et al., 2002). Indeed,

the random motion of PLDs in the scrambled control condition and

the motion of the PLDs box control stimuli, although sharing

several low-level visual characteristics and motion features with the

experimental stimuli, elicited a weaker activation in these areas. This

suggests their tuning to biological features of motion rather than to

motion in general. The activation of IPL and PMv is in line with the

results of a large body of studies on action observation of fully visible

stimuli (Caspers et al., 2010; Hardwick et al., 2018), thus suggesting

the involvement of a common motor resonance mechanism in both

PLDs and fully visible grasping stimuli. These regions can be involved

F IGURE 8 Weights maps of
the region of interest (ROIs) in
which the classification model
reached statistical significance.
Results are projected on an
ICBM152 brain template (Surfice;
https://www.nitrc.org/projects/
surfice/) and on a magnified
portion taken from two sagittal

slices. Color bars indicate the
relative importance of the voxel
in the decision function with
warmer colors indicating the
most discriminative voxels for
Class 1 (FV_Grasp) and colder
colors for class 2 (PLD_Grasp).
Weights maps are represented
separately for visual (a,b), parietal
(c,d), and premotor (e,f) areas
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in coding action goal and specific aspects of performed acts, for exam-

ple, grip type and action outcome (Binkofski et al., 1999; Errante

et al., 2021; Grafton & Hamilton, 2007). The activation also involves

areas within the so-called “dorsal circuit” such as PMd, SPL, and

SPOC (Cavina-Pratesi et al., 2010; Filimon et al., 2007; Gallivan

et al., 2009; Gazzola & Keysers, 2009), usually considered as involved

in the observation, as well as in the execution of reaching motor acts.

However, more recent human and monkey studies reported that the

dorsal parieto-premotor circuit plays an important role in processing

grasping/manipulation components (Errante & Fogassi, 2019; Nelissen

et al., 2017). Noteworthy, in the present study, also the ROI analysis

reveals that activation of areas within the dorsal circuit was higher

during observation of grasping actions as compared to the box control

condition, although in this case the stimulus was moving with the

same direction and mean velocity, thus reaching the same portion of

space of the PLDs hand. Therefore, the involvement of dorsal areas

could reflect the processing of other features of observed grasping

acts, such as hand/finger posture for grip configuration and the

desired end state of an action, very likely as during the observation of

fully visible grasping (Errante et al., 2021; Majdandzic et al., 2009). A

similar activation pattern, even though more left-lateralized, was

observed when contrasting fully visible grasping experimental condi-

tion and its controls. The eAON activation elicited by the observation

of fully visible grasping stimuli is in line with previous literature on

action observation (Caspers et al., 2010; Hardwick et al., 2018).

Interestingly, conjunction analysis between the two experimental

conditions after subtraction of the respective control conditions indi-

cates that a specific set of shared areas including left SPL and IPL as

well as PMd and PMv are similarly activated. This suggests that

although the processing of PLDs actions relies only on the available

biological kinematic features; nonetheless, this latter information is

sufficient to elicit in the observer a full action representation.

4.2 | Differential eAON contribution in the
processing of observed PLDs and fully visible grasping
actions

The more left-lateralized activation obtained during observation of

fully visible grasping actions can be explained by a motor resonance

mechanism that allows the observer to understand the action goal,

likely grounded on a praxic knowledge that, in right-handed individ-

uals, is usually left-lateralized (Biagi et al., 2010; Binkofski et al., 1999;

De Renzi, 1982). The activation of a more bilateral pattern during

observation of PLDs grasping actions suggests that very likely this

type of processing is based on the elaboration of movement kinematic

features, by the recruitment of the parieto-premotor grasping net-

work of both hemispheres, in order to extract information about the

final action goal.

Although ROI analysis reveals that in both PLDs and fully visible

actions signal intensity was comparable in all considered areas, it is

reasonable to suppose that spatial distribution of the activation pat-

tern may differ between the two conditions. This was tested by

means of MVPA, the results of which show different features patterns

in FG, SPOC, SPL, PMd, and PMv. The classification model accuracy

was statistically significant, showing that spatially distributed informa-

tion can correctly disentangle, in the considered ROIs, the two classes

of experimental conditions.

Differences in FG pattern may be attributable to a dissimilarity in

the appearance and visual complexity of the two types of hand grasp-

ing stimuli, as well as to the presence of the object in fully visible

grasping condition (Weiner & Zilles, 2016). In fact, this is a high-order

extrastriate visual area, that is known to be also recruited during

observation of actions performed with a visible upper limb (Hardwick

et al., 2018), as well as by object-directed hand movements (Grosbras

et al., 2012). Thus, visual appearance of the fully visible grasping stim-

uli as well as its complex visual characteristics, such as shape, color,

and texture may be key factors in discriminating the two activation

patterns.

Visual dorsal stream area SPOC has been reported to be rec-

ruited during both execution (Cavina-Pratesi et al., 2010; Gallivan

et al., 2009) and observation (Filimon et al., 2007) of arm reaching

actions, as well as of objects within reach (Gallivan et al., 2009).

This region includes human V6 and V6A, the latter being involved

in the visual analysis of the transport phase of reaching-grasping

actions (Pitzalis et al., 2015). Although in our study, SPOC is rec-

ruited in a comparable manner in terms of BOLD intensity during

observation of both PLDs and fully visible grasping actions, a possi-

ble interpretation is that differences in pattern distribution are

mainly due to the prevalence, in fully visible condition, of informa-

tion about arm movement and the presence of the object within

reach.

The MVPA results also indicate a high-level accuracy (�80%) in

decoding between PLDs and fully visible actions in SPL and in PMd.

This is not surprising because, as previously described, both the dor-

sal and ventral parietal and premotor areas are involved in the

processing of reaching but also of some features of the observed

grasping, such as specific grip configuration (Errante et al., 2021;

Errante & Fogassi, 2019). Here, however, the decoding accuracy in

SPL and PMd could not be explained only by differences in reaching

movement features or grip configuration because both PLDs and

fully visible actions were matched for these characteristics. Thus, a

further possible interpretation is that dorsal areas differentially

encode proprioceptive information associated to fully visible hand–

object interaction (Casile et al., 2010; Errante & Fogassi, 2019). In

addition, it is also plausible that the more complete vision of the

arm in fully visible actions elicits a more specific representation of

this effector in the dorsal areas, according with their somatotopic

organization.

Finally, pattern differences in PMv could be in principle attrib-

uted to the processing of the action goal and/or kinematic features

of the movement. However, these variables were matched between

the two main conditions. Therefore, the possible role of PMv in

decoding between PLDs and fully visible grasping actions could be

related to object presence only in fully visible stimuli (Grèzes

et al., 2003).
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5 | CONCLUSIONS

Activation of eAON evoked by PLDs stimuli, in particular, in parietal

and premotor areas, demonstrates that motion features are sufficient

to determine goal encoding without any confounding effect relative

to the observation of contextual information. In addition, the use of

machine learning methods allowed us to assess which areas of the

eAON play a key role in disentangling between PLDs and fully visible

stimuli and, together with data from literature, whether they encode

specific features of the observed grasping action. Based on the pre-

sent data, in the future, it could be interesting to investigate whether

kinematic information provided by PLDs stimuli is exploited during

motor learning tasks to improve some aspects of action execution

such as precise hand/finger configurations.

From a clinical perspective, the present results could be useful to

improve the observation-based methods for rehabilitation in patients

with motor disorders (Buccino, 2014; Franceschini et al., 2012;

Pelosin et al., 2010; Sgandurra et al., 2013). The implementation of

PLDs stimuli in the clinical rehabilitation setting could bring improve-

ments for a personalized therapy focused not only on the imitation of

the action performed by another individual in terms of goal achieve-

ment but also in the imitation of the kinematics of the observed

action, achieving a finer use of the hand.

The application of deep learning models and neural networks to

identify features of biological motion has seen a rapid growth, leading to

the creation of specific tools for such purposes (Insafutdinov

et al., 2017; Nath et al., 2019; Toshev & Szegedy, 2014). Such machine-

learning approaches have been used with whole body PLDs stimuli of

several human actions, which were entered as input in complex pattern

classification algorithms (Tanisaro et al., 2017) and in convolutional neu-

ral networks (Peng et al., 2021). The use of deep learning-based classifi-

cation models to improve hand actions recognition, by extracting the

kinematic features from PLDs actions of both healthy people and

patients, could be useful in the field of human–robot interaction.
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