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Abstract
Over the last few years, there has been an increasing amount of evidence for
the  emergence of protein-coding genes, i.e. out of non-coding DNA.de novo
Here, we review the current literature and summarize the state of the field. We
focus specifically on open questions and challenges in the study of de novo
protein-coding genes such as the identification and verification of de novo
-emerged genes. The greatest obstacle to date is the lack of high-quality
genomic data with very short divergence times which could help precisely pin
down the location of origin of a  gene. We conclude that, while there isde novo
plenty of evidence from a genetics perspective, there is a lack of functional
studies of bona fide  genes and almost no knowledge about proteinde novo
structures and how they come about during the emergence of de novo
protein-coding genes. We suggest that future studies should concentrate on
the functional and structural characterization of  protein-coding genesde novo
as well as the detailed study of the emergence of functional de novo
protein-coding genes.
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Introduction
The question of how new genes come about has been a major 
research theme in evolutionary biology since the discovery that 
different species’ genomes contain varying numbers of genes. This 
question is difficult to answer, since emerging genes cannot easily 
be “caught in the act”. Ohno1 gave the first comprehensive answer: 
new genes can emerge via the duplication of old genes. Conse-
quently, gene duplication was thought to be the only mechanism 
of gene birth for many years2. However, the discovery of so-called 
orphan genes in newly sequenced genomes raised doubt about the 
general validity of Ohno’s model of gene duplication. Orphan genes are 
genes that lack detectable homologs outside of a species or lineage.  
To explain the presence of orphans under the assumption that new 
genes emerge only via duplication, one has to assume gene loss in 
all other lineages or a phase of highly accelerated evolution that 
leads to the loss of detectable sequence similarity3. Yet convergent 
gene loss in many independent lineages is unlikely — especially 
given the high number of orphan genes — and it is difficult to 
explain why so many genes would experience prolonged phases of 
accelerated evolution4. On the contrary, it would be expected that 
genes that do not experience any selective pressure — which is 
required here for accelerated evolution — would be pseudogenized 
eventually, i.e. not be transcribed anymore.

These inconsistencies and further observations suggested that there 
could be other mechanisms of gene emergence5,6, for example 
de novo gene emergence, a process in which a new gene evolves 

from a previously non-genic sequence. The product of this process 
can be an RNA gene or a protein-coding gene. The possibility of  
de novo gene emergence has long been disputed, with many claim-
ing that it is impossible for an intergenic, random open reading 
frame (ORF) to encode a functional protein (reviewed in 4,7). But, 
despite these open questions regarding the exact mechanism of de 
novo gene birth, many recent studies report de novo emergence of 
protein-coding genes5,6,8–19.

In general, genes without detectable homologs can be summarized 
under the term novel genes. These genes can also be called orphan 
genes, or — more precisely — species-/lineage-specific genes. The 
term de novo describes a specific subclass of novel genes, namely 
genes emerging from non-genic sequences20. Additionally, one 
has to discriminate between functional genes and other classes of 
sequences. A de novo transcript can be any species-specific tran-
script that is homologous to an intergenic sequence in outgroups. 
De novo transcripts can be seen as putative de novo genes (see 
also Figure 1). The term protogene also describes intergenic tran-
scripts or ORFs that are situated on a continuum between non-genic 
sequences and functional genes21 (see also Figure 1). At the genic 
end of the spectrum, the term de novo gene describes a functional 
gene that has emerged de novo. De novo genes can either code for 
a protein or be functional as RNAs22. Here, we will use the term  
de novo gene to describe de novo genes of unknown coding status  
and de novo protein-coding gene to describe de novo-emerged 
genes that likely produce a functional protein product.

Figure 1. Schematic depiction of de novo protein-coding gene emergence. Shown is the hypothesis of a step-wise genic and structural 
maturation of an intergenic sequence towards a protein-coding gene. The steps are each shown as pictograms of protein and gene structure. 
An exemplary phylogenetic tree is shown to the right. The status of the protein/gene is projected onto the tree using grey, dotted lines. Gene 
emergence is depicted using a green star, gene loss using a grey X symbol. ORF, open reading frame.
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Identification of de novo genes
The first step necessary to determine de novo status of a gene is 
to verify that no homologous sequences are present in outgroups. 
This homology search is often performed using BLAST or similar 
alignment search tools, for example against non-redundant pro-
tein databases containing all known protein sequences. Usually, an  
e-value cutoff between 10−3 to 10−5 is used for this step to ensure 
that no spurious, suboptimal alignments are taken into account4. 
If this homology search does not find any homologs outside of 
the analyzed species, the query gene has successfully been con-
firmed to be a novel gene. This definition states only that there  
are no homologous sequences outside of a certain phylogenetic 
group. Calling a gene novel does not imply any knowledge about the  
emergence mechanism of the gene.

To additionally determine de novo gene origin, the homolo-
gous non-coding outgroup DNA sequence has to be retrieved14,23. 
The outgroup homologous sequence can be recovered using  
synteny information about the position of orthologous neighbor 
genes. Another possibility is searching the target gene sequence 
in outgroup genomes using alignment search tools such as  
BLAST4,23. A number of different types of de novo genes can be 
discriminated depending on the type of sequence that the genes  
likely emerged from23.

Problems in de novo gene identification and annotation. In the 
past24 and also more recently25,26, studies have raised questions 
regarding the reliability of homology-based searches of novel 
genes. Specifically, short and fast-evolving genes were proposed 
to lose detectable sequence similarity faster than other genes. As 
a result, shorter genes would be expected to be over-represented 
among young genes, thereby biasing the results of studies of genes 
of different ages24–26. Doubts have been raised as to which fraction  
of genes would actually be affected by this effect27. Also, this  
should not be a problem for de novo genes defined by the methods 
summarized here. The possibility that the examined gene is actually 
a fast-evolving old gene is excluded, since for a confirmed de novo 
gene the homologous non-genic outgroup sequence has to be deter-
mined. Additionally, doubts have been raised regarding the accuracy 
of the initial claims of the unreliability of homology detection28.

Another challenge is the previously mentioned identification of a 
non-coding sequence in an outgroup which is clearly homologous to 
the suspected de novo gene. In non-coding DNA, homology signals 
disappear very quickly, since non-coding sequences accumulate 
mutations faster than coding sequences. Because of this, it is often 
impossible to determine the homologous non-coding sequence in 
an outgroup. This problem increases with gene age. As a result, it is 
often not possible to determine the mechanism of origin, especially 
for older genes.

Additionally, there are methodological difficulties in the annotation 
of de novo and also all other types of novel genes4. These prob-
lems could lead to a systematic underestimation of the number of 
de novo/novel genes. The problems are caused by genome annota-
tion also being based on sequence homology29. As de novo/novel 
proteins per definition do not possess any homologs, they cannot 
be annotated based on that criterion and their number is likely to be 

underestimated. Other common criteria such as minimum expres-
sion strength and the presence of multiple exons could also con-
tribute to the problem, as these criteria do not represent intrinsic 
requirements for gene existence and are biased against de novo/
novel genes18. Nevertheless, the criteria might be necessary to pre-
vent an over-annotation of spurious transcripts as genes, but they 
also make it impossible to identify all de novo genes. Recent stud-
ies on de novo protein-coding genes also employed such thresholds 
on exon number and expression strength to produce a more robust 
data set15,17,18.

De novo gene emergence
Conceptually, de novo genes can evolve via two different mecha-
nisms. The first mechanism is transcription-first, where an inter-
genic sequence gains transcription before evolving an ORF20,30. 
Recently, this has been shown to happen frequently when long 
non-coding RNAs (lncRNAs) become protein coding17,31,32.  
Consequently, lncRNAs could represent an intermediate step 
in the evolution of a protein-coding gene33. The second model is  
ORF-first, in which an intergenic ORF gains transcription20,30. 
Such a transcribed de novo ORF has been proposed to represent an  
intermediate step in gene emergence, a protogene (Figure 1). High 
turnover of intergenic transcription34 likely plays a role in de novo 
gene emergence by exposing novel transcripts to selection. Trans-
posable elements can also play a role in de novo gene emergence35. 
Additionally to whole proteins, terminal domains can also emerge 
de novo33,36. One model regarding the emergence of novel domains 
is the “grow slow and molt”, in which reading frames get extended 
gradually and eventually gain a structure and function37,38.

An additional process that could play a role during de novo  
protein-coding gene emergence is a (partial) revival of pseudog-
enized gene fragments. This possibility has already been proposed 
by Ohno1. Regarding de novo protein-coding gene emergence, it 
seems possible that fragments of a pseudogenized gene that has 
been somewhat eroded by drift could become part of a de novo  
ORF later on. These fragments could provide a starting point  
for de novo protein emergence by providing remnants of struc-
tural elements. For all of these models, there are several consistent  
findings, but none of the models is, as yet, supported by a com-
prehensive set of data from diverse sources and corresponding  
experimental data.

De novo gene death. Orphan genes seem to generally have a high 
loss probability14,39 that seems to be negatively correlated with gene 
age40,41. The cause of this correlation is not yet well understood. 
It seems possible that young orphan genes have not yet gained a 
function or do not perform transient functions. It is also not clear 
yet how much of these findings can be transferred to de novo genes, 
as the studies on this topic examined all novel genes of different 
emergence mechanisms jointly.

De novo gene functions
A number of studies have examined the functions of orphan genes, 
some of which may represent de novo-emerged genes. Findings on 
orphan gene functions include involvement of orphan genes in the 
stress response21,42, rapid adaptation to changing environments as 
well as species-specific adaptations43,44, and limb regeneration45. 
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Additionally, novel genes were found to quickly gain interaction 
partners and become essential39,46.

Fewer studies, however, have examined the functions of systemati-
cally verified de novo-emerged genes. Generally, a high number of 
de novo genes was found to be expressed specifically in the testes, 
at least in Drosophila species5,6 and primates18, as well as in plant 
pollen16,47. In the mouse, a de novo-emerged RNA gene was found 
to raise reproductive fitness22. Another study found de novo genes to 
play a role in the Arabidopsis stress response12. More specifically, 
one de novo ORF was found to play a role in male reproduction 
in Drosophila48. Reinhardt et al.48 also presented findings suggest-
ing a role of de novo genes in developmental stages of Drosophila.  
However, these findings have to be interpreted carefully, as the RNAi 
method used has been shown to produce unreliable results49,50. A 
few other examples of functional de novo genes have been found30, 
while others were not able to determine specific functions of  
identified de novo-emerged genes15. The available data suggest that 
de novo-evolved genes can play a role in many different processes 
from reproduction to the stress response.

Recently, one study analyzed the function of two putative de novo 
protein-coding genes in Drosophila melanogaster51. The two ana-
lyzed genes were found to be essential for male reproduction and to 
have testis-biased expression. Both genes are located inside introns 
of other, older genes with homologs in outgroups. However, the 
de novo origin of the analyzed genes could not be confirmed with 
certainty owing to the outgroup homologous sequences not being 
identifiable (see above for a general description of this problem).

Protein structure of de novo proteins
Little is known about the protein structures of de novo proteins. 
Some studies have found a high amount of intrinsic protein disorder52  
in very young genes15,51,53, while others have not21. A priori, it seems 
unlikely that de novo-emerging proteins have a well-defined protein 
structure. Intuitively, it seems more likely for random sequences 
to be intrinsically disordered instead (see Figure 1). Nevertheless,  
disordered regions can also be highly functional52,54 and could as 
such also represent an evolved state.

Also, contrary to intuition, at least semi-random (restricted alpha-
bet) proteins appear to sometimes have a defined secondary  
structure55,56. Additionally, the existing protein structure families 
appear to have multiple origins57. This finding suggests that the 
emergence of new protein structures is at least possible. Avoid-
ance of misfolding and aggregation, on the other hand, have been  
proposed to be driving forces of protein evolution58,59. This observa-
tion and the existence of de novo protein-coding genes suggest that 
de novo proteins have the potential to exhibit a defined structure.

Open questions regarding de novo genes
Despite many advances in recent years, many open questions 
remain regarding de novo protein-coding genes. One understudied 
field is the functional characterization of protein-coding de novo-
emerged genes. One non-coding RNA gene has been found to have 
a role in reproduction in the mouse22, and additionally one likely 
protein-coding gene has been found to be essential for reproduction 
in Drosophila48. However, beyond that, there is a substantial lack of 

data. Consequently, it remains unclear how de novo protein-coding 
genes gain their function and if there are some roles that they are 
more or less likely to carry out.

As described above, the structural characterization of de novo  
protein-coding genes is still an open question. Previously, ambigu-
ous signals have been found regarding the role of intrinsic disorder 
in de novo-emerging protein-coding genes15,21. It would be impor-
tant to experimentally verify the structure — or lack thereof — of 
de novo protein-coding genes. Here it is of major interest to deter-
mine the proportion of intergenic ORFs with folding potential and 
also what the implications are for the retention of such ORFs. This 
would allow further conclusions about de novo gene emergence: if 
most intergenic, random ORFs are foldable, function would seem to 
be the bottleneck of de novo protein-coding gene retention. On the 
other hand, if most confirmed de novo genes are folding, but most 
intergenic ORFs do not possess folding potential, folding potential 
would be a bottleneck of de novo protein-coding gene emergence 
and retention.

Another unsolved problem is how to find specific annotation  
thresholds for orphans/de novo genes4. As described above, a 
number of their properties make de novo genes difficult to annotate  
and to be distinguished from transcriptional noise. One solu-
tion would be to generate high-quality proteome data using e.g. 
mass spectrometry. However, this process is still highly expensive 
and might also not be able to generate a complete picture, since  
low-frequency peptides are hard to detect60. Another method is 
ribosome profiling, which uses ribosome occupancy of sequences 
as a measure of translation. This method has been successfully used 
to show that some transcripts that were previously classified as non-
coding could in fact be translated61.

Additionally, patterns of selection, e.g. measured in the ratio of 
non-synonymous to synonymous mutations, can be used to infer 
the coding status of sequences. Genes with a higher fraction of syn-
onymous mutations compared to non-synonymous mutations can 
be expected to be protein coding and under purifying selection17,20. 
However, these measures require a number of orthologs to be 
present, which makes them of limited use for novel genes. Another 
possibility is the use of population data for the same purpose, which 
circumvents the problem of the unavailability of orthologs for novel 
genes.

As it stands, studies mostly have to rely on arbitrary cutoffs15,17 and 
thus might miss a number of genes. It would be of major inter-
est to be able to differentiate de novo genes and protogenes from 
transcriptional noise. Recent research has already shown that small 
ORFs (smORFs) can play a functional role62,63, and consequently it 
seems quite likely that also very short novel ORFs could be func-
tional. This question also touches upon the problem of differentiat-
ing lncRNAs from protein-coding genes, which is often performed 
via an ORF length cutoff17,32.

Going forward, it is of major interest to fully characterize a large 
number of de novo genes in terms of evolutionary, functional, 
and structural history to be able to draw some general conclu-
sion about their evolution. Specifically, it is of major interest to  
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determine whether a functional role is an exception for protogenes 
or if most expressed ORFs have a functional impact which mostly 
does not affect the fitness of the organism at a significant level. 
If most expressed ORFs have only a negligible fitness effect, they 
would mostly evolve via drift. Two closely related questions are 
how and when de novo proteins gain their function: are de novo 
genes usually functional from the time point of their emergence, or 
do they gain a cellular task only after a period of drift?

Conclusions
In recent years, an increasing number of studies confirmed a major 
role of de novo gene emergence in the evolution of new protein-
coding genes. The functional description of de novo-emerged genes 
is still lacking, but more general findings for orphan genes sug-
gest that novel genes have a broad functional potential. However, 
the more detailed functional as well as structural characterization 
of de novo-emerged protein-coding genes remains one of the big 
open questions. An interesting recent finding was the confirmation 
of lncRNAs as an intermediate step in de novo protein-coding gene 
evolution. This finding offers a solution to two of the big questions 
in de novo gene evolution — how and why do intergenic sequences 
gain transcription? However, these findings also touch upon a dif-
ficult problem in studying de novo genes: how can protein-coding 

genes be distinguished from non-coding ones? This problem is 
exacerbated by recent findings that show that very short ORFs can 
also be functional63. Tackling all of these problems and integrating 
them into detailed studies of the emergence, structure, and func-
tion of de novo protein-coding genes will provide new, interesting 
insights and allow for a deeper understanding of the inner workings 
of the evolution of de novo protein-coding genes.
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